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1. Introduction
This paper deals with serial (multiechelon) inventory sys-
tems of the following type. There are M stages. Stage 1
receives stock from stage 2, stage 2 from stage 3, etc., and
stage M receives stock from an outside supplier with ample
stock. Demands originate at stage 1, and unfilled demand
is backlogged. There are holding, ordering, and backorder
costs, and a central controller has the objective of minimiz-
ing these costs in the appropriate time frame.
In their seminal paper, Clark and Scarf (1960) charac-

terize optimal policies for an uncapacitated serial inven-
tory system. They consider finite-horizon problems and
prove that echelon base-stock policies are optimal when the
demands are independent identically distributed (i.i.d.) and
the lead times between stages are deterministic. Their proof
technique involves a decomposition of the multiechelon
problem into a series of single-stage problems. This gen-
eral approach guided much of the subsequent literature, and
many extensions were obtained using the same stage-by-
stage decomposition. In particular, Federgruen and Zipkin
(1984) extend the results to the stationary infinite-horizon
setting, and Chen and Zheng (1994) provide an alternative
proof that is also valid in continuous time. Rosling (1989)
shows that a general assembly system can be converted
to an equivalent serial system. All of these papers assume
i.i.d. demands and deterministic lead times.
In this paper, we study a system with Markov-modulated

demands and stochastic lead times. We assume that de-
mands and lead times are stochastic and are affected
(modulated) by an exogeneous Markov process. Such a
model can capture many phenomena such as seasonalities,

exchange rate variations, fluctuating market conditions, de-
mand forecasts, etc. This type of demand model, where the
distribution of demand depends on the state of a modulating
Markov chain, is certainly not new to the inventory control
literature. Song and Zipkin (1993), Beyer and Sethi (1997),
Sethi and Cheng (1997), and Cheng and Sethi (1999) all
investigate a single-stage system with such a demand model
and prove the optimality of state-dependent (s!S) policies
under different time horizon assumptions, with and with-
out backlogging assumptions. Song and Zipkin (1992) and
(1996a) evaluate the performance of base-stock policies in
serial inventory systems, with state-independent and state-
dependent policies, respectively. More recently, Chen and
Song (2001) show the optimality of state-dependent ech-
elon base-stock policies for serial systems with Markov-
modulated demand and deterministic lead times, under an
infinite-horizon average cost criterion. Markov-modulated
demand is also considered by Parker and Kapuscinski
(2004) in a capacitated setting.
The study of stochastic lead times in inventory control

dates back to the early days of the literature. Hadley and
Whitin (1963) investigate the subject for a single-stage
problem, and suggest that two seemingly contradictory as-
sumptions are needed—namely, that orders do not cross
each other and that they are independent. Kaplan (1970)
provides a simple model of stochastic lead times that pre-
vents order crossing, while keeping the probability that an
outstanding order arrives in the next time period indepen-
dent of the current status of other outstanding orders. He
shows that the deterministic lead-time results carry over
to his model of stochastic lead times. Nahmias (1979)
and Ehrhardt (1984) streamlined Kaplan’s results. Zipkin
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(1986) investigated stochastic lead times in continuous-time
single-stage inventory models. Song and Zipkin (1996b)
study a single-stage system with Markov modulated lead
times. Svoronos and Zipkin (1991) evaluate one-for-one
replenishment policies in the serial system setting. How-
ever, we are not aware of any optimality results for serial
systems under any type of stochastic lead times. Our
stochastic lead-time model incorporates the same two im-
portant features of Kaplan’s stochastic lead-time model,
i.e., the absence of order crossing and the independence
from the current status of other outstanding orders. In our
model, just like in Kaplan’s, an exogeneous random vari-
able determines which outstanding orders are going to
arrive at a given stage. However, we additionally allow the
stochastic lead times to depend on the state of a modulating
Markov chain, and we also allow for dependencies between
the lead-time random variables corresponding to different
stages in the system.
The standard approach in multiechelon inventory theory

is a decomposition into a series of single-stage problems.
This approach, and especially the simplified and stream-
lined proof technique introduced by Veinott (1966), indeed
does lead to many of the results and extensions discussed
above. Nevertheless, our approach relies on a decomposi-
tion into a series of unit-customer pairs. Consider a single
unit and a single customer. Assume that the distribution
of time until the customer arrives to the system is known
and that the goal is to move the unit through the system
in a way that optimizes the holding versus backorder cost
trade-off. Because only a single unit and a single customer
are present, this problem is much simpler than the origi-
nal one. We show that under the assumptions of this paper,
the original problem is equivalent to a series of decoupled
single-unit single-customer problems. This approach allows
us to handle several extensions to the standard model in an
intuitive manner, and provides an alternative to inductive
arguments based on dynamic programming equations. The
primary contribution of this paper is the formal proof of the
decomposition of the serial inventory problem into essen-
tially decoupled subproblems, each consisting of a single
unit and a single customer.
A decomposition of the type employed here has been

introduced in a series of papers by Axsäter, although with-
out bringing it to bear on the full-fledged dynamic program-
ming formulation of the inventory control problem. Axsäter
(1990) observes that in a distribution system with a single
depot and multiple retailers that follow base-stock policies,
any particular unit ordered by retailer i is used to fill a par-
ticular future demand. He then matches this unit with that
demand and evaluates the expected cost for this unit and
“its demand.” Using this approach, he develops an efficient
method to evaluate the cost of a given base-stock policy for
a two-echelon distribution system in continuous time with
Poisson demand under the infinite-horizon average cost cri-
terion. In Axsäter (1993a), he extends this result to batch-
ordering policies and in Axsäter (1993b), he investigates

the system with periodic review, using the virtual allocation
rule suggested by Graves (1996) and a base-stock policy.
As we show in this paper, Axsäter’s insight, when used
properly, leads to the decomposition of the problem into
single-unit single-customer problems, and provides a pow-
erful technique for developing optimality results and algo-
rithms for multiechelon systems.
A related work is the masters thesis by Achy-Brou

(2001) (supervised by the second author, concurrently with
this work), who studies the single-unit single-customer sub-
problem for the case of i.i.d. demands and deterministic
lead times and a discounted cost criterion. This work for-
mulates the subproblem as a dynamic program, describes
and implements the associated dynamic programming algo-
rithm, analyzes structural properties of the solution, and
discusses the relationship between the subproblem and
base-stock policies in the overall inventory system.
We finally note that besides providing a simple proof

technique, the decomposition into single-unit single-
customer subproblems leads to simple and efficient algo-
rithms for calculating the base-stock levels. Even for
several special cases of our model for which computational
methods are already available, our algorithms are at least
as efficient and provide an alternative method with poten-
tial advantages. These are listed at the end of §6, where the
algorithms are presented.
The rest of the paper has six sections. Section 2 pro-

vides some background results on generic discrete-time
decomposable dynamical systems. Section 3 provides a
mathematical formulation of the problem and the necessary
notation. Sections 4 and 5 contain the results for finite and
infinite-horizon versions of the problem, respectively. Sec-
tion 6 discusses the resulting algorithms for computing the
optimal base-stock levels. Section 7 concludes the paper.

2. Preliminaries: Decomposable Systems
In this section, we introduce the problem of optimal con-
trol of a decomposable system and point out the decou-
pled nature of the resulting optimal policies. The result we
provide is rather obvious, but we find it useful to state it
explicitly, both for ease of exposition and also because it is
a key building block for our subsequent analysis.
Following the notation in Bertsekas (1995), we consider

a generic stationary discrete-time dynamical system of the
form

xt+1 = f "xt!ut!wt#! t = 0!1! $ $ $ !T − 1$ (1)

Here, xt is the state of the system at time t, ut a control
to be applied at time t, wt a stochastic disturbance, and
T is the time horizon. We assume that xt , ut , and wt are
elements of given sets X, U , and W , respectively, and that
f % X×U ×W $→X is a given mapping. Finally, we assume
that, given xt and ut , the random variable wt is condition-
ally independent from the past and has a given conditional
distribution.
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We define a policy & as a sequence of functions, & =
"'0!'1! $ $ $ !'T−1#, where each 't% X $→ U maps the
state x into a control u = 't"x#. Let ( be the set of all
policies.
Given an initial state x0 and a policy &, the sequence xt

becomes a Markov chain with a well-defined probability
distribution. For any time t < T and any state x ∈ X, we
define the cost-to-go J &

t!T "x# (from time t until the end of
the horizon) by

J &
t!T "x#=E

{T−1
∑

)=t

*)−t · g"x) !')"x) ##
∣
∣
∣xt = x

}

!

where g% X×U $→ +0!', is a given cost-per-stage function
and * ∈ +0!1, is a discount factor. The optimal cost-to-go
function J ∗

t!T is defined by

J ∗
t!T "x#= inf

&∈(
J &
t!T "x#$

(Note that J &
t!T "x# and J ∗

t!T "x# can be infinite at certain
states.) A policy &∗ is said to be optimal if

J &∗
t!T "x#= J ∗

t!T "x# ∀ t! ∀x ∈X$

When t = 0, we will use the simpler notation J &
T "x#

and J ∗
T "x# instead of J &

0!T "x# and J ∗
0!T "x#, respectively.

We now introduce the notion of a decomposable sys-
tem. Loosely speaking, this is a system consisting of mul-
tiple (countably infinite) noninteracting subsystems that are
driven by a common source of uncertainty, which evolves
independently of the subsystems and is modulated by a
Markov process st .

Definition 2.1. A discrete-time dynamic programming
problem of the form described above is said to be decom-
posable if it admits a representation with the following
properties:
A1. The state space is a Cartesian product of the form

X = S× *X× *X · · · , so that any x ∈X can be represented as
x= "s!x1!x2! $ $ $# with s ∈ S and xi ∈ *X, for every i! 1.
A2. There is a set +U so that the control space U is the

Cartesian product of countably many copies of +U , that is,
any u ∈ U can be represented as u = "u1!u2! $ $ $# with
ui ∈ +U , for all i! 1.
A3. For each t, the conditional distribution of wt

given xt and ut , depends only on st .
A4. The evolution equation (1) for xt is of the form

st+1 = f s"st!wt#! xi
t+1 = f̂ "xi

t!u
i
t!wt#! ∀ i! 1! ∀ t!

for some functions f s% S×W $→ S and f̂ % *X× +U ×W $→ *X.
A5. The cost function g is additive, of the form

g"xt!ut#=
'
∑

i=1

ĝ"st!x
i
t!u

i
t#!

for some function ĝ% S× *X× +U $→ +0!'#.

A6. The sets *X and W are countable. The sets S and +U
are finite.

In a decomposable system, any policy & can be rep-
resented in terms of a sequence of component mappings
'i

t% X $→ +U , so that

ui
t ='i

t"xt# ∀ i! t$

We are especially interested in those policies under which
the control ui

t that affects the ith subsystem is chosen
locally, without considering the state of the other subsys-
tems, and using a mapping 'i

t that is the same for all i.

Definition 2.2. A policy & for a decomposable system is
said to be decoupled if it can be represented in terms of
mappings *'t% S× *X $→ +U , so that

ui
t = *'t"st!x

i
t# ∀ i! t$

For a decomposable system, the various state compo-
nents x1

t !x
2
t ! $ $ $ do not interact, the only coupling arising

through the exogenous processes st and wt . Because the
costs are also additive, it should be clear that each subsys-
tem can be controlled separately (that is, using a decou-
pled policy) without any loss of optimality. Furthermore,
because all subsystems are identical, the same mapping *'t

can be used in each subsystem. The required notation and
a formal statement is provided below.
Each subsystem i defines a subproblem, with dynamics

st+1 = f s"st!wt#! xi
t+1 = f̂ "xi

t!u
i
t!wt#!

and costs per stage ĝ"st!x
i
t!u

i
t#. A policy +& for a subprob-

lem is of the form +& = " *'0! *'1! $ $ $ ! *'T−1#, where each
*'t is a mapping from S× *X into +U :

ui
t = *'t"s!x

i
t#$

Let

Ĵ ∗
t!T "s!x

i#

be the optimal cost-to-go function for a subsystem that
starts at time t from state (s!xi) and evolves until the end of
the horizon T . Note that this function is the same for all i,
because we have assumed the subsystems to have identi-
cal dynamics and cost functions. Furthermore, because the
control set +U is finite, an optimal policy is guaranteed to
exist.

Lemma 2.1. Consider a decomposable system.
1. For any x = "s!x1!x2! $ $ $# ∈ X and any t " T , we

have

J ∗
t!T "x#=

'
∑

i=1

Ĵ ∗
t!T "s!x

i#$
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2. There exists a decoupled policy &∗ that is optimal,
that is,

J &∗
t!T "x#= J ∗

t!T "x# ∀ t! ∀x ∈X$

3. For any s, xi, and any remaining time k, let
+U ∗
k "s!x

i#⊂ +U be the set of all decisions that are optimal
for a subproblem, if the state of the subproblem at time
T − k is "s!xi#. A policy & = -'i

t. is optimal if and only
if for every i, t, and any x = "s!x1!x2! $ $ $# ∈ X for which
J ∗
t!T "x#<', we have

'i
t"x# ∈ +U ∗

T−t"s!x
i#$

The proof of the above result is straightforward and is
omitted. Suffice it to say that we can pick an optimal pol-
icy for the subproblem and replicate it for all subsystems
to obtain a decoupled and optimal policy. The last part of
the lemma simply states that for any given x and t, a deci-
sion vector ut = "u1

t !u
2
t ! $ $ $# is optimal if and only if each

component ui
t of the decision is optimal for the ith subsys-

tem viewed in isolation (except of course if the cost-to-go
J ∗
t!T "x# is infinite, in which case all possible decisions are
optimal). Let us also remark that the sets +U ∗

k "s!x
i# of opti-

mal decisions only depend on the remaining time k, but
do not depend on the value of T . This is an immediate
consequence of the stationarity of the problem.

3. Problem Formulation
We consider a single-product serial inventory system con-
sisting of M stages, indexed by 1! $ $ $ !M . Customer de-
mand can only be satisfied by units at stage 1. Any demand
that is not immediately satisfied is backlogged. The inven-
tory at stage m (m= 1! $ $ $ !M − 1) is replenished by plac-
ing an order for units stored at stage m + 1. Stage M
receives replenishments from an outside supplier with
unlimited stock. For notational simplicity, we label the out-
side supplier as stage M +1. We assume that the system is
periodically reviewed and, therefore, a discrete-time model
can be employed.
To describe the evolution of the system, we need to spec-

ify the sources of uncertainty, the statistics of the demand,
and the statistics of the lead times for the various orders.
(a) Markovian exogenous uncertainty: We assume that

the customer demands and the order lead times are influ-
enced by an exogeneous finite-state Markov chain st , as-
sumed to be time homogeneous and ergodic (irreducible
and aperiodic).
(b) Demand model: The (nonnegative integer) demand dt

during period t is assumed to be Markov modulated. In
particular, the probability distribution of dt depends on the
state st of the exogeneous Markov chain and, conditioned on
that state, is independent of the past history of the process.
We also assume that E+dt ! st = s,<' for every s ∈ S, and,
to avoid trivial situations, that E+dt ! st = s,> 0 for at least
one value of s.

(c) Lead-time model: We assume that the lead time be-
tween stage m+ 1 and stage m is upper bounded by some
integer lm. We assume that the probability that an outstand-
ing order arrives during the current period depends only on
the amount of time since the order was placed, the exoge-
nous state st , and the destination stage m and, given these, it
is conditionally independent of the past history of the pro-
cess. Finally, we assume that orders cannot overtake each
other: An order cannot arrive at its destination before an
earlier order does.
The lead-time model introduced above includes the obvi-

ous special case of deterministic lead times. It also includes
a stochastic model of the type we describe next, and which
extends the model of Kaplan (1970). At each time period t,
there is a random variable /m

t that determines which out-
standing orders will arrive at stage m at time t + 1. More
precisely, an outstanding order will be delivered at stage m
if and only if it was placed /m

t or more time units ago. Note
that such a mechanism ensures that orders cannot overtake
each other. Let /t = "/1

t ! /
2
t ! $ $ $ ! /

M
t # be the vector of lead-

time random variables associated with the various stages.
We assume that the statistics of /t are given in terms of
a conditional probability distribution, given st . Notice that
such a model allows for dependencies between the lead-
time random variables corresponding to the same period but
different stages. Furthermore, it can also capture intertem-
poral dependencies through the dynamics of st .
The cost structure that we use is fairly standard and con-

sists of linear holding, ordering, and backorder costs. In
more detail, we assume:
(a) For each stage m, there is an inventory holding cost

rate hm that gets charged at each time period to each unit
at that stage. We assume that the holding cost rate hM+1

at the external supplier is zero. For concreteness, we also
assume that after a unit is ordered and during its lead time,
the holding cost rate charged for this unit is the rate corre-
sponding to the destination echelon.
(b) For each stage m, there is an ordering cost cm for ini-

tiating the shipment of a unit from stage m+ 1 to stage m.
(c) There is a backorder cost rate b, which is charged at

each time step for each unit of backlogged demand.
We assume that the holding cost (at stages other than

the external supplier) and backorder cost parameters are
positive, and that the ordering cost is nonnegative.
The detail-oriented reader may have noticed that the

model has not been specified in full detail: We would still
need to describe the relative timing of observing the de-
mand, fulfilling the demand, placing orders, receiving or-
ders, and charging the costs. Different choices with respect
to these details result, in general, to slightly different opti-
mal costs and policies. Whatever specific choices are made,
the arguments used for our subsequent results remain unaf-
fected. For specificity, however, we make the following
assumption about delivery of units to customers: If a cus-
tomer arrives during period t, a unit can be given to that
customer only at time t+ 1 or later.
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3.1. State and Control Variables

In §2, we described a generic discrete-time dynamic sys-
tem. In this subsection, we define our choices for the state,
control, and disturbance variables for the inventory control
system being studied.
The traditional approach would be the following. The

state would consist of a vector whose components are the
number of units at each stage, the number of units that have
been released by stage m and have been in transit for k
time units (one component for each pair (m!k)), the size
of the backlogged demand, and the state of the modulating
Markov chain. The control would be the number of units
to be released from each stage to the next. The demand
in a given period, the various random variables associated
with the random lead times (e.g., the random vector /t

in our earlier example), and the transition of the modu-
lating chain st , would constitute the random disturbance.
Obviously, such a choice is sufficient for optimization pur-
poses because one does not need to distinguish between
units that are at the same stage or between units that have
been in transit for the same amount of time. However, we
approach the problem differently. We treat each individual
unit and each individual customer as distinguishable objects
and then show that this results in a decomposable problem,
with each unit-customer pair viewed as a separate subsys-
tem. Towards this goal, we start by associating a unique
label with each unit and customer.
At any given time, there will be a number of units at each

stage or on order between two given stages. In addition,
conceptually, we have a countably infinite number of units
at the outside supplier, which we call stage M + 1. We
will now introduce a set of conceptual unit locations in the
system that can be used to describe where a unit is found
and, if it is part of an outstanding order, how long ago it
was ordered.

Definition 3.1. The location of a unit: First, each of the
actual stages in the system will constitute a location. Next,
we insert lm − 1 artificial locations between the locations
corresponding to stages m and m+ 1, for m = 1! $ $ $ !M ,
to model the units in transit between these two stages. If a
unit is part of an order between stages m+ 1 and m that
has been outstanding for k periods, 1" k" lm − 1, then it
will be in the kth location between stages m+ 1 and m.
Finally, for any unit that has been given to a customer,
we define its location to be zero. Thus, the set of possi-
ble locations is -0!1! $ $ $ !N + 1., where N =∑M

m=1 lm. We
index the locations starting from location 0. Location 1 cor-
responds to stage 1. Location 2 corresponds to units that
have been released l1 − 1 times ago from stage 2. Loca-
tion l1 corresponds to units that have been released from
stage 2 one time step earlier. Location l1 + 1 corresponds
to stage 2, etc. Location N + 1 corresponds to the outside
supplier (stage M + 1). For example, in Figure 1(a), unit 5
is in location 2 at time t, which means that this unit has
been released from stage 2 (location 4) at time t− 2.1

Figure 1. Illustration of the system dynamics and the
various definitions: Consider a system with
M = 2 stages and deterministic lead times
l1 = l2 = 3; this results in a total of N + 2=
8 locations.

Stage 1Stage 2Stage 3

(d) Customer position at time t+1

7 6 45

. .
 .

68
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2 13

4
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1

0

47. . .

(c) Unit location at time t +1
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1

3

0

5

6

7 6 45

. .
 .

6
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9

2 13

3

4

5

2

1

0

(b) Customer position at time t

6. . .

34

3

1

5 1

0

2

4

2

(a) Unit location at time t

5

Outside supplier

Stage 1Stage 2Stage 3

Outside supplier

Notes. (a) Part (a) shows a configuration at some time t, in which there
are seven units in the system and an infinity of additional units at the
outside supplier. Units 1 and 2 have already been given to customers, in
previous periods.

(b) Part (b) shows a customer configuration. Customers 1 and 2 arrived
in previous periods and have already been given a unit each. Customer 3
has also arrived but has not yet been given a unit. Customers 4, 5, etc.,
have not yet arrived.

Suppose that the following decisions are made: u7
t = 1 and ui

t = 0 for
i -= 7. Suppose also that the new demand dt turns out to be 2.

(c) Because there is only one customer in position 1, unit 3 (the one
with lower index) is given to customer 3. Hence, this unit moves to loca-
tion 0. Also, the released unit 7 moves one location.

(d) Customer 3 obtains unit 3 and moves to position 0. The two newly
arrived customers (4 and 5) move to position 1. Every customer i, i > 5,
moves by two positions.

Definition 3.2. Let A be the set of unit locations corre-
sponding to the actual stages of the system, including the
outside supplier (location N +1). Let A′ be the same as A,
except that location 1 is excluded. Also, let

v"z#= max
m∈A and m"z

m ∀ z > 0!

so that starting from location z and going in the direc-
tion of decreasing z, v"z# is the first location corresponding



Muharremoglu and Tsitsiklis: A Single-Unit Decomposition Approach to Multiechelon Inventory Systems
1094 Operations Research 56(5), pp. 1089–1103, © 2008 INFORMS

to an actual stage. For example, in Figure 1(a), we have
A= -1!4!7., A′ = -4!7., and v"3#= 1.

We index the countably infinite pool of units by the non-
negative integers. We assume that the indexing is chosen at
time 0 in increasing order of their location, breaking ties
arbitrarily.
Let us now turn to the customer side of the model,

which we describe using a countably infinite pool of past
and potential future customers, with each such customer
treated as a distinguishable object. At any given time,
there is a finite number of customers that have arrived and
whose demand is either satisfied or backlogged. In addi-
tion, we envisage a countably infinite number of potential
customers that may arrive to the system at a future period.
Consider the system at time 0. Let k be the number of
customers that have arrived whose demand is already satis-
fied. We index them as customers 1! $ $ $ !k in any arbitrary
order. Let l be the number of customer that have arrived
whose demand is backlogged. We index them as customers
k+ 1!k+ 2! $ $ $ !k+ l in any order. The remaining (count-
ably infinite) customers are assigned indices k+ l+ 1!k+
l+2! $ $ $ in order of their arrival times to the system, break-
ing ties arbitrarily, starting with the earliest arrival time. Of
course, we do not know the exact arrival times of future
customers, but we can still talk about a “next customer,” a
“second to next customer,” etc. This way, we index the past
and potential future customers at time 0. We now define a
quantity that we call “the position of a customer.”

Definition 3.3. The position of a customer: Suppose that
at time t a customer i has already arrived and its demand
is satisfied. We define the position of such a customer
to be zero. Suppose that the customer has arrived but its
demand is backlogged. Then, we define the position of
the customer to be one. If, on the other hand, customer i
has not yet arrived but customers 1!2! $ $ $ !m have arrived,
then the position of customer i at time t is defined to be
i−m+1. In particular, a customer whose position at time t
is k will have arrived by the end of the current period if
and only if dt ! k− 1. For example, in Figure 1(b), cus-
tomer 5 has a position of 3 at time t. Customer 5 will have
arrived at time t+ 1 if and only if two or more customers
(customers 4 and 5) arrive during period t.

Now that we have labeled every unit and every customer,
we can treat them as distinguishable objects and, further-
more, we can think of unit i and customer i as forming a
pair. This pairing is established at time 0, when indices are
assigned, taking into account the initial unit locations and
customer positions, and is to be maintained throughout the
planning horizon.
We are now ready to specify the state and control vari-

ables for the problem of interest. For each unit-customer
pair i, i ∈ !, we have a vector (zit!y

i
t), with zit ∈ Z =

-0!1! $ $ $ !N + 1. and yit ∈ Y =!0, where zit is the location
of unit i at time t, and yit is the position of customer i

at time t. The state of the system consists of a countably
infinite number of such vectors, one for each unit-customer
pair, and finally a variable st ∈ S for the state of the mod-
ulating Markov chain, i.e.,

xt = -st! "z
1
t !y

1
t #! "z

2
t !y

2
t #! $ $ $.$

The control vector is an infinite binary sequence ut =
"u1

t !u
2
t ! $ $ $#, where the ith component ui

t corresponds to a
“release” or “hold” decision for the ith unit. An action ui

t

has an effect only if the corresponding unit i is at a nonar-
tificial location other than location 1, (i.e., zit ∈ A′). If the
unit is in such a location, ui

t = 0 corresponds to holding it
at its current location, and ui

t = 1 corresponds to releasing
it, and the unit will arrive at the next nonartificial location
v"zit −1# after a stochastic lead time (that satisfies the con-
ditions explained at the beginning of §3). The movement
of units that are at artificial locations (in between stages,
i.e. locations outside A) is solely governed by the random-
ness in the lead times.
If a customer i is at position yit ! 2, in the next period,

it moves to position "yit − dt + 1#+ + 1. Finally, units that
are in location 1 and customers that are in position 1 move
to unit location 0 and customer position 0, respectively, in
the following way: Out of the available units in location 1
and arrived customers waiting for a unit (customers in posi-
tion 1), k of them with the lowest indices automatically
move to location 0 and position 0, respectively, where k is
the minimum of the number of units at location 1 and cus-
tomers in position 1. Once a unit moves to location 0 or a
customer moves to position 0, they stay there.
The random disturbance at time t consists of the de-

mand dt , random variables that model the uncertainty in the
lead times (e.g., the vector /t of lead-time random variables
in our earlier example), and whatever additional exogenous
randomness is needed to drive the Markov chain st .

We will refer to the above-described model of the serial
inventory system as the “main model.” Clearly, the main
model is a sufficient description of the overall system, albeit
not the most compact one. Let J &

t!T "x# and J ∗
t!T "x# be the

cost of policy & and the optimal cost, respectively, under
the main model, starting from state x at time t until the
end of the horizon T . We use the shorthand versions J &

T "x#
and J ∗

T "x#, if t = 0.

3.2. Policy Classification

We now define various classes of policies for the main
model, state-dependent echelon base-stock policies being
one particular class. In the next section, we will show that
the search for an optimal policy can be restricted to any one
of these policy classes, without sacrificing performance.
As a first step, we define a class of states that we call

monotonic states.

Definition 3.4. A state xt = -st! "z
1
t !y

1
t #! "z

2
t !y

2
t #! $ $ $. is

called monotonic if and only if the unit locations are mono-
tonic functions of the unit labels, that is,

i < j ⇒ zit " zjt $
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Note that x0 is always a monotonic state, by construc-
tion. The state xt shown in Figure 1 is monotonic, but the
state xt+1 is not.

Definition 3.5. Here, we define three classes of policies.
Let xt = -st! "z

1
t !y

1
t #! "z

2
t !y

2
t #! $ $ $. and ut = "u1

t !u
2
t ! $ $ $# be

the state and control variables as defined in §3.1. Consider
a policy & = -'i

t., where each 'i
t% X $→ +U = -0!1. pre-

scribes the control for the ith unit at time t, according to
ui
t ='i

t"xt#.
Monotonic policies: The policy & is monotonic if it

guarantees that a monotonic state xt always results in a next
state xt+1 that is monotonic. Intuitively, a policy is mono-
tonic if and only if units can never overtake each other.
Decoupled policies: This is essentially the same as Def-

inition 2.2 in the preceding section. We call a policy decou-
pled if it can be represented in terms of mappings *'t% S×
Z× Y $→ +U , so that

'i
t"x#= *'t"st! z

i
t!y

i
t# ∀ i! t$

In other words, a decoupled policy is a policy where the
decision of whether or not to release a unit from its cur-
rent location can be written as a function of the state of
the modulating Markov chain, the location of the unit, and
the position of the corresponding customer. Moreover, the
function is the same for every unit.
State-dependent echelon base-stock policies: A pol-

icy is a state-dependent echelon base-stock policy if for
every t, every state x, every location z ∈A′, and every s ∈ S,
there exists a value2 Sv"z−1#

t "s# such that
# units released from z

︷ ︸︸ ︷

!-i ! zi = z! 'i
t"x#= 1.!

=min













































basestock level of v"z− 1#
︷ ︸︸ ︷

Sv"z−1#
t "s#

−

echelon inventory position at v"z− 1#
︷ ︸︸ ︷
(

!-i ! 1" zi " z− 1.! − !-i ! yi = 1.!
︸ ︷︷ ︸

Backlog

)









+

!

!-i ! zi = z.!
︸ ︷︷ ︸

# units at z

We are using here the notation !B! to denote the cardinal-
ity of a set B, and the notation "a#+ to denote max-0!a..
In other words, such a policy operates as follows: For
every unit location z > 1 corresponding to an actual stage
(z ∈A′), the policy calculates the echelon inventory posi-
tion at the next actual stage (unit location v"z−1# ∈A) and
releases enough units (to the extent that they are available)
to raise this number to a target value Sv"z−1#

t "s#. The eche-
lon inventory position at the actual stage that corresponds
to unit location v"z−1# is the total number of units at loca-
tions 1! $ $ $ !v"z− 1#, plus the units in transit towards loca-
tion v"z−1# (i.e., units at locations v"z−1#+1! $ $ $ ! z−1),
minus the backlogged demand.

Note that if the initial state is a monotonic state (which
we always assume to be the case) and one uses a monotonic
policy, the state of the system at any time in the planning
horizon will be monotonic.
We say that a set of policies (0 is optimal "respectively,

M-optimal# for the main model if

inf
&∈(0

J &
t!T "x#= J ∗

t!T "x#

for all t and all states x (respectively, all monotonic
states x).
In the next section, we show that the intersection of the

sets of monotonic and decoupled policies is M-optimal for
the main model. Proposition 3.1 below will then imply
that state-dependent echelon base-stock policies are also
M-optimal. We then show in the next section (Theorem 4.1)
that state-dependent echelon base-stock policies are opti-
mal at all states, not just monotonic ones. This is the main
result of this paper.

Lemma 3.1. If a policy is monotonic and decoupled, then
for every unit location z > 1 that corresponds to an actual
stage "z ∈A′), the underlying subproblem policy *'t"s! z!y#
has to be nonincreasing in y over the set -y ! y ! 1..

Proof. If the underlying subproblem policy *'t"s! z!y#
does not have the claimed property, then when the decou-
pled policy is applied to the main model, it will be
possible for units to overtake each other, contradicting
monotonicity. #

Proposition 3.1. Suppose that & is a monotonic and
decoupled policy. Then, there exists a state-dependent eche-
lon base-stock policy that agrees with & at every monotonic
state.

Proof. A monotonic and decoupled policy releases units
whose corresponding customers are in positions less than
or equal to a certain threshold. Let y∗t "s! z# be the threshold
for releasing units at location z, when the Markov chain is
in state s, at time t. At a monotonic state, this is equiva-
lent to trying to set the echelon inventory position at the
next downstream stage v"z− 1# to y∗t "s! z#− 1, which is a
state-dependent echelon base-stock policy with Sv"z−1#

t "s#=
y∗t "s! z#− 1. #

4. Finite-Horizon Analysis
In this section, we consider the finite-horizon model and
establish the optimality of state-dependent echelon base-
stock policies for the main model. We start with the obser-
vation that the set of monotonic policies is optimal.

Proposition 4.1. The set of monotonic policies is optimal
for the main model.

Proof. Because units are identical, releasing units with
smaller indices no later than units with higher indices can
be done without loss of optimality. #
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Note that the main model is not decomposable because
of the coupling that arises when available units are deliv-
ered to available customers. Indeed, if there are two units
at location 1, and if only one customer has arrived, only
one unit will move to location 0, the one that has the
lower index. Thus, the dynamics of the unit that was not
delivered is affected by the presence of the unit that was
delivered, violating condition A4 for decomposable systems
in Definition 2.1.
We now introduce a modified model, to be referred to as

the “surrogate model,” that is identical to the main model
except for the way units and customers move from unit
location 1 and customer position 1, respectively. In partic-
ular, in the surrogate model, we have

if "zit!y
i
t#= "1!1#! then "zit+1!y

i
t+1#= "0!0#!

if zit = 1 and yit > 1! then zit+1 = 1!

if yit = 1 and zit > 1! then yit+1 = 1$

In other words, a unit i moves to location 0 and the cor-
responding customer i moves to position 0 if and only if
unit i is available in location 1 and customer i has arrived
and is in position 1. This modification removes the cou-
pling that was present in the main model, and makes the
surrogate model decomposable. Note that the state and con-
trol spaces of the main and surrogate models are identical.
Hence, any policy & can be applied to either the main or
the surrogate model. Let V &

t!T "x# and V ∗
t!T "x# be the cost of

policy & and the optimal cost, respectively, under the sur-
rogate model, starting from state x at time t until the end
of the horizon T . We use the shorthand versions V &

T "x# and
V ∗
T "x#, if t = 0. As before, we say that a set of policies (0

is optimal (respectively, M-optimal) for the surrogate model
if inf&∈(0

V &
t!T "x#= V ∗

t!T "x# for every state x (respectively,
for every monotonic state x). The next step is to relate the
main model to the surrogate model. This is done in the
following proposition.

Proposition 4.2. (a) J &
t!T "x# " V &

t!T "x# for all &, t, T ,
and x.
(b) Under a monotonic policy &, J &

t!T "x# = V &
t!T "x# for

every monotonic state x.
(c) J ∗

t!T "x#= V ∗
t!T "x# for every monotonic state x.

(d) The set of monotonic policies is M-optimal for the
surrogate model.

Proof. (a) The only difference between the main model
and the surrogate model arises when there are available
units in location 1 and available customers in position 1,
but some of them do not move to location 0 and posi-
tion 0 under the surrogate model because their indices do
not match. Therefore, under the same policy, the surrogate
model can never incur a lower cost, but can incur a higher
cost if the above-described situation happens.
(b) Starting from a monotonic state, and under a mono-

tonic policy, the dynamics and costs of the main model and

the surrogate model are identical because the units arrive
at location 1 in increasing sequence, implying that the sit-
uation described in part (a) cannot happen.
(c)–(d) These follow from Proposition 4.1 and

parts (a)–(b) of this proposition. Indeed, if (m is the class
of monotonic policies, we have

V ∗
t!T "x#" inf

&∈(m

V &
t! T "x#= inf

&∈(m

J &
t! T "x#

= inf
&∈(

J &
t! T "x#= J ∗

t! T "x#" V ∗
t!T "x#

for every monotonic state x. #

Because the surrogate model is decomposable, it consists
of a series of subproblems as in §2, with corresponding
optimal cost-to-go functions Ĵ ∗

t!T "s! z
i!yi#. From now on,

whenever we refer to a “subproblem,” we will mean this
single-unit, single-customer subproblem.

Proposition 4.3. The set of decoupled policies is optimal
for the surrogate model. Furthermore,

J ∗
t!T "x#= V ∗

t!T "x#=
'
∑

i=1

Ĵ ∗
t!T "s! z

i!yi#

for every t and every monotonic state x.

Proof. The system under the surrogate model is decom-
posable, and Lemma 2.1 implies the optimality of decou-
pled policies. #

The rest of the proof will proceed as follows. We will
first show that there exists a decoupled policy for the sur-
rogate model that is optimal and also monotonic. Using
parts (b) and (c) of Proposition 4.2, this will imply that
this same policy is M-optimal for the main model. We will
make use of the following definition.

Definition 4.1. For any k, s ∈ S, z ∈ Z, y ∈ Y , let
+U ∗
k "s! z!y#⊂ -0!1. be the set of all decisions that are opti-

mal for a subproblem if it is found at state (s! z!y) at time
t = T −k, that is, k time steps before the end of the horizon.

The next lemma establishes that if an optimal subprob-
lem policy releases a certain unit when the position of
the corresponding customer is y, then it is also optimal
(in the subproblem) to release the unit when the position of
the corresponding customer is smaller than y. This is intu-
itive because as the customer comes closer, there is more
urgency to move the unit towards stage 1.

Lemma 4.1. For every "k! s! z!y#, with z ∈ A′, if
+U ∗
k "s! z!y#= -1., then 1 ∈ +U ∗

k "s! z!y
′# for every y′ < y.

Proof. Let z ∈A′. Suppose that there exist some (k! s! z!y)
and (k! s! z!y′), with y′ < y, such that +U ∗

k "s! z!y# = -1.
and +U ∗

k "s! z!y
′# = -0.. Let t = T − k. Consider a mono-

tonic state xt for the surrogate model such that "zit!y
i
t# =

"z!y#, "zjt !y
j
t # = "z!y′#, and J ∗

t!T "xt# < '. Note that
because y′ < y, we must have j < i. Then, according to
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Lemma 2.1(3), the decision ut under any optimal policy for
the surrogate model must satisfy ui

t = 1 and uj
t = 0. This

means that the higher-indexed unit i will move ahead of
unit j , and the new state will not be monotonic. Therefore,
a monotonic policy cannot be M-optimal for the surrogate
model, which contradicts Proposition 4.2(d). #

Proposition 4.4. The set of monotonic and decoupled
policies is optimal for the surrogate model and M-optimal
for the main model.

Proof. Let us fix t, s, and z. Let k= T − t be the number
of remaining time steps. If z0A′, we let *'t"s! z!y#= 1 for
all y. (These are clearly optimal decisions.) Now suppose
that z ∈A′. We consider three cases.
(a) If there are infinitely many y for which

+U ∗
k "s! z!y#= -1., then by Lemma 4.1, 1 ∈ +U ∗

k "s! z!y# for
every y, and we let *'t"s! z!y#= 1 for all y.
(b) If there is no y for which +U ∗

k "s! z!y#= -1., we let
*'t"s! z!y#= 0 for all y.
(c) If there is a largest y for which +U ∗

k "s! z!y#= -1., call
it y∗, then we have 0 ∈ +U ∗

k "s! z!y# for every y > y∗, and by
Lemma 4.1, we have 1 ∈ +U ∗

k "s! z!y# for every y < y∗. We
then let *'t"s! z!y#= 1 if and only if y " y∗.
The above-described procedure is repeated for every t, s,

and z. This results in functions *'t that satisfy *'t"s! z!y# ∈+U ∗
k "s! z!y# for all (t! s! z!y). According to Lemma 2.1(3),

choosing the decision according to *'t for each unit at each
time step constitutes an optimal (and also decoupled) policy
for the surrogate model. Furthermore, by our construction,
*'t"s! z!y# is a monotonically nonincreasing function of y.
It follows that this decoupled policy that we constructed is
also a monotonic policy, thus establishing the existence of
a monotonic and decoupled policy that is optimal for the
surrogate model. By parts (b) and (c) of Proposition 4.2,
this policy is M-optimal for the main model. #

The fact that an optimal policy - *'t. for the subprob-
lem can be chosen so that it is nonincreasing in y can
also be established using a traditional inductive argument,
based on the dynamic programming recursion for the sub-
problem. For example, Achy-Brou (2001) studies the recur-
sion for the infinite-horizon single-unit single-customer
problem with deterministic lead times and i.i.d. demands,
and provides a (somewhat lengthy) algebraic derivation.
In contrast, the proof given here relies only on qualitative
arguments.

Theorem 4.1. The set of state-dependent echelon base-
stock policies is optimal for the main model.

Proof. Propositions 3.1 and 4.4 imply that state-dependent
echelon base-stock policies are M-optimal. If such policies
are optimal starting from a monotonic state, they are also
optimal starting from a nonmonotonic state because all
units are identical and the number of units released under a
state-dependent echelon base-stock policy does not depend
on the labels of particular units, but on the number of units
in different locations. #

Note that the base-stock levels Sv"z−1#
t "s# = y∗t "s! z#− 1

are readily determined once an optimal subproblem policy
and the corresponding sets +U ∗

k "s! z!y# for the single-unit,
single-customer subproblem are available.

5. Infinite-Horizon Analysis
This section provides the main results for the case where
the planning horizon is infinite. The proofs and some sup-
porting results can be found in the online appendix that is
available as part of the online version at http://or.journal.
informs.org. We study both the expected total discounted
cost criterion and the average cost per unit time criterion.
We start with the part of the analysis that is common to
both criteria.
In the infinite-horizon setting, we focus on stationary

policies. A stationary policy is one of the form ('!'! $ $ $),
with '% X $→U , so that the decision at each time is a func-
tion of the current state but not of the current time. We
refer to a stationary policy of this type as policy ' and let
0 denote the set of all stationary policies.
Similarly, for the subproblems, we refer to a stationary

policy of the form ( *'! *'! $ $ $), with *'% S × Z × Y $→ +U ,
as policy *'. Given a fixed discount factor * ∈ +0!1,, let
Ĵ *'
'"s! z!y# and Ĵ ∗

'"s! z!y# be the infinite-horizon expected
total discounted cost of policy *' and the corresponding
optimal cost, respectively. Let Ĵ *'

T "s! z!y# be the expected
total discounted cost of using the stationary policy *' in a
subproblem over a finite horizon of length T . We will still
use the definitions introduced in §§2 and 3.2, which have
obvious extensions to the infinite-horizon case.

Definition 5.1. For any s ∈ S, z ∈Z, y ∈ Y , let +U ∗
'"s! z!y#

⊂ -0!1. be the set of all decisions that are optimal if an
(infinite-horizon) subproblem is found at state (s! z!y).

The next lemma relates the finite- and infinite-horizon
versions of the single-unit, single-customer subproblem.

Lemma 5.1. For any fixed * ∈ +0!1,, and any s, z, y, we
have

lim
T→'

Ĵ ∗
T "s! z!y#= Ĵ ∗

'"s! z!y#$

Proposition 5.1. There exists an optimal policy *'∗ for
the infinite-horizon single-unit, single-customer subproblem
such that *'∗"s! z!y# is a monotonically nonincreasing func-
tion of y.

We now establish that under any optimal subproblem
policy, including the optimal subproblem policy *'∗ from
Proposition 5.1, a unit is never released when the position
of the corresponding customer is above a certain thresh-
old. This result is used in the analysis of the average cost
case, but is also instrumental in establishing bounds on the
running time of the algorithms to be presented in §6.
Without loss of generality, we assume that at the actual

stages, the holding cost rates are strictly increasing in the
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direction of physical flow. (It is well known that optimal
policies for systems where the holding costs are not in-
creasing can be found by studying a related system where
they are.) This assumption will remain in effect for the
remainder of the paper.

Lemma 5.2. There exists a positive integer Ymax with
the following property% If y > Ymax and z ∈ A′, then
+U ∗
t "s! z!y#= +U ∗

'"s! z!y#= -0. for all t and s.

Proposition 5.2. Let '∗ be the stationary, decoupled pol-
icy for the main model that uses the optimal subproblem
policy *'∗ of Proposition 5.1 for each unit-customer pair.
Then there exists a stationary state-dependent echelon
base-stock policy that agrees with '∗ at every monotonic
state.

We have so far constructed a stationary monotonic and
decoupled policy '∗. This policy is constructed as a limit of
optimal policies for the corresponding finite-horizon prob-
lems. It should then be no surprise that '∗ is optimal for
the infinite-horizon problem. However, some careful limit-
ing arguments are needed to make this rigorous. This is the
subject of the rest of this section.

5.1. Discounted Cost Criterion

In this subsection, we focus on the infinite-horizon
expected total discounted cost. In particular, the cost of a
stationary policy ', starting from an initial state x =
-s! "z1!y1#! "z2!y2#! $ $ $., is defined as

J '
'"x#= lim

T→'
E

{T−1
∑

t=0

*t · g"xt!'"xt##
∣
∣
∣x0 = x

}

!

where * ∈ +0!1,. The infinite-horizon optimal cost is
defined by

J ∗
'"x#= inf

'∈0
J '
'"x#$

We say that a set of policies 00 is optimal "respectively,
M-optimal# for the main model if

inf
'∈00

J '
'"x#= J ∗

'"x#

for all states x (respectively, for all monotonic states x).
A stationary policy can be used over any time horizon,

finite or infinite. Let J '
T "x# be the expected total discounted

cost of using the stationary policy ' during a finite planning
horizon of length T , starting with the initial state x0 = x.
We then have

J '
'"x#= lim

T→'
J '
T "x#$

Recall that J ∗
T "x# is defined as the optimal expected cost

with a planning horizon from time 0 until time T , given
that x0 = x. Therefore, J ∗

T "x# " J '
T "x# for any stationary

policy '.

By Proposition 4.3, we have

J ∗
T "x#=

'
∑

i=1

Ĵ ∗
T "s! z

i!yi#

for any monotonic state x. Hence, for every monotonic
state x, we have

J ∗
'"x#= inf

'∈0
lim
T→'

J '
T "x#

! lim
T→'

inf
'∈0

J '
T "x#

! lim
T→'

J ∗
T "x#

= lim
T→'

'
∑

i=1

Ĵ ∗
T "s! z

i!yi#

=
'
∑

i=1

lim
T→'

Ĵ ∗
T "s! z

i!yi#

=
'
∑

i=1

Ĵ ∗
'"s! z

i!yi#!

where the interchange of the limit and the summation is
warranted by the monotone convergence theorem because
the functions Ĵ ∗

T are nonnegative and monotonically nonde-
creasing in T .
The above inequality provides a lower bound for the

optimal cost. Now consider the decoupled policy '∗ from
Proposition 5.2, which uses an optimal subproblem pol-
icy *'∗ for each unit-customer pair. The cost of '∗ is

J '∗
' "x#=

'
∑

i=1

Ĵ *'∗
' "s! zi!yi#=

'
∑

i=1

Ĵ ∗
'"s! z

i!yi#$

For a monotonic state x, this is equal to the lower bound,
which establishes the M-optimality of '∗ for the main
model. This fact leads to the following main result of this
section.

Theorem 5.1. The set of state-dependent echelon base-
stock policies is optimal for the main model under the
infinite-horizon discounted cost criterion.

5.2. Average Cost Criterion

In this subsection, we study the average cost per unit time
criterion. The average cost of a policy ', starting from an
initial state x= -s! "z1!y1#! "z2!y2#! $ $ $., is defined as

1'"x#= lim sup
T→'

1
T
E

{T−1
∑

t=0

g"xt!'"xt##
∣
∣
∣x0 = x

}

= lim sup
T→'

1
T
J '
T "x#$

The optimal average cost is defined as

1∗"x#= inf
'∈0

1'"x#$

As before, a set of policies 00 is said to be optimal (respec-
tively, M-optimal) for the main model if

inf
'∈00

1'"x#= 1∗"x#

for every state x (respectively, for all monotonic states x).
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For any monotonic state x, we have

1∗"x#= inf
'∈0

lim sup
T→'

1
T
J '
T "x#

! lim sup
T→'

1
T

inf
'∈0

J '
T "x#

! lim sup
T→'

1
T
J ∗
T "x#
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The right-hand side of the above inequality is a lower
bound on the optimal infinite-horizon average cost. We
show (in the online appendix) that the monotonic and de-
coupled policy '∗ from Proposition 5.2 achieves this lower
bound, and is therefore M-optimal. This leads to our main
result of this section.

Theorem 5.2. The set of state-dependent echelon base-
stock policies is optimal for the main model under the
infinite-horizon average cost criterion.

We close this section by providing a characterization of
the infinite-horizon average cost. Let d̄ be the expected
demand per unit time, in steady state. In particular,

d̄=
∑

s∈S
lim
t→'

P"st = s#E+dt ! st = s,$

Note that the limits defining the steady-state probabilities
limt→' P"st = s# exist and are independent of s0 because
we have assumed that st is irreducible and aperiodic.
Except for finitely many customers, the expected cost

incurred by successive customers is of the form Ĵ ∗
'"s!N +

1!y# for ever-increasing values of y. Over a time interval of
length T , about d̄ ·T customers are expected to arrive, sug-
gesting that the average cost per unit time is of the form d̄ ·
limy→' Ĵ ∗

'"s!N +1!y#. The proposition that follows shows
that the above limit exists and that the above intuition is
correct. We will need, however, a minor assumption on
the nature of the demand process. We say that the demand
process -dt. is of the lattice type if there exists an inte-
ger 2> 1 such that for every s, the conditional distribution
of dt , given st = s, is concentrated on the integer multiples
of 2. Otherwise, we say that -dt. is of the nonlattice type.

Proposition 5.3. Suppose that the demand process is of
the nonlattice type. Then,
(a) There exists a constant C, such that

lim
y→'

Ĵ ∗
'"s!N + 1!y#=C ∀ s ∈ S$

(b) For every state x such that the number of units in
locations other than N + 1 is finite, we have

1∗"x#=Cd̄$

In particular, the optimal average cost is the same for all
such initial states.

6. Algorithmic Issues
In the preceding sections, we have shown that state-depen-
dent echelon base-stock policies are optimal. In this section,
we develop algorithms for determining optimal echelon
base-stock levels. The proofs of the results in this section
can be found in the online appendix.
While proving the optimality of state-dependent eche-

lon base-stock policies, we established the existence of a
monotonic and decoupled policy, which is optimal for the
surrogate model and M-optimal for the main model. This
policy releases units from an actual stage z ∈ A′ if and
only if the position of the corresponding customer is less
than or equal to a threshold y∗t "s! z# and agrees with a
state-dependent echelon base-stock policy with base-stock
levels Sv"z−1#"s# = y∗t "s! z# − 1 at every monotonic state.
This state-dependent echelon base-stock policy is optimal
for the main model. This means that by solving the single-
unit, single-customer subproblem that underlies the mono-
tonic and decoupled policy, we can find the threshold levels
y∗t "s! z#, and thereby the optimal base-stock levels. Hence,
besides providing a simple proof technique, the decompo-
sition of the problem into single-unit, single-customer sub-
problems gives rise to efficient algorithms as well. Instead
of applying a dynamic programming algorithm on the lar-
ger problem involving all units and customers, we can cal-
culate optimal base-stock levels by simply computing an
optimal policy for a subproblem involving a single unit-
customer pair.

6.1. Subproblem Formulation

The subproblem to be solved is as follows. Given a single
unit and a single customer, the goal is to move the unit
through the serial system in a way that minimizes the ex-
pected total holding costs and backorder costs. There are
uncertainties associated with both the time it takes for
a released unit to move from a stage to another (lead-
time) and with the way the position of the corresponding
customer changes (based on the sequence of demand
realizations).
We assume that lead times for the overall system fol-

low the extension of Kaplan’s stochastic lead-time model
given in §3. Recall that in that model, at each time period t,
there is a random variable /m

t that determines which out-
standing orders will arrive at stage m. More precisely, a
unit will arrive at its destination at time t + 1 if and only
if it was released /m

t or more time units ago. Let /t =
"/1

t ! /
2
t ! $ $ $ ! /

M
t # be the vector of lead-time variables asso-

ciated with the various stages. The statistics of /t are given
in terms of a conditional probability distribution, given the
state st of the modulating Markov chain:

P"/m
t = q ! st = s#! q = 1! $ $ $ ! lm! s ∈ S! m= 1! $ $ $ !M $

An alternative way of describing the statistics of the lead-
time model is to give the distribution of the time it takes for
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a unit to reach its destination, conditional on the state of the
modulating Markov chain when released. Given the distri-
bution of the lead-time random variables /t , it is possible to
calculate this actual lead-time distribution, and vice versa.
As stated in §3, we assume that if the unit is in transit, the

holding cost rate that is charged is the rate of the destination
echelon. In addition, we assume that the sequence of events
within a period is as follows. First, the unit may arrive at
its destination stage if it was released previously (depending
on the previous period’s lead-time random variable). The
resulting new state is determined and observed. Then, the
decision of whether or not to release the unit in this period
is made. Finally, the demand and other random variables are
realized, and holding and/or backorder costs are charged.
Let (st! zt!yt) be the state of the subproblem at time t,

where st is the state of the modulating Markov chain at
time t, zt is the location of the unit at the beginning of
period t (after the move of the previous period is com-
pleted), and yt is the position of the customer at the begin-
ning of period t.
Let ut ∈ -0!1. be the control variable at time t, where

ut =
{

1! if the unit is released from its current location,

0! if the unit is kept at its current location.

Of course, this decision can have an effect only if the loca-
tion corresponds to an actual stage. Otherwise, we still allow
a choice of zero or one for ut; however, this choice has no
bearing on the evolution of the system or the costs charged.
The location of a unit was defined in §3.1 and indicates
whether the unit is at an actual stage, or in transit between
two actual stages for a specific number of periods, or has
been given to a customer (location 0). Recall that A was
defined to be the set of locations corresponding to actual
stages in the original system, including the outside supplier
(location N + 1), and A′ is the same set with location 1
omitted.
The evolution of the system is affected by a vector wt =

"dt! rt! s̄t# of random variables, whose components are as
follows:

dt: demand at time t. It has a distribution conditional on
the state of the modulating Markov chain. Let D be
the largest possible demand in a period. (Let D ='
if the support of the demand distribution is infinite.)

rt: affects the evolution only when the unit is in transit.
This random variable takes on the value one if the unit
will reach its destination (i.e., moves to v"zt − 1#), or
zero if it will stay in transit3 (i.e., moves to zt − 1).
Its distribution depends on zt and st . Given the proba-
bility distribution (conditioned on st) of the lead-time
random vector /t = "/1

t ! /
2
t ! $ $ $ ! /

M
t #, the conditional

probability distribution of rt given (st! zt) can easily
be calculated.

s̄t: a random variable determining the state of the modu-
lating Markov chain in the next period, i.e., st+1 = s̄t .

The dynamics of the system are stationary. Costs are
incurred until the state becomes (s!0!0) for some s, or
until the end of the horizon is reached. States of the form
(s! z!0) with z > 0, or (s!0!y) with y > 0 are impossible
(“degenerate”) because if the unit is given to a customer,
the customer should have received a unit and vice versa. We
assume that the initial state is not degenerate, and we will
define the system dynamics so that no degenerate state will
ever be reached. The state of the system in the next period
is given by a mapping f̂ "st! zt!yt!ut!wt#= "st+1! zt+1!yt+1#
as follows:
1. The dynamics of the modulating Markov chain:

st+1 = s̄t for every t.
2. The evolution of the location of the unit: For every t,

zt+1 =

























0! if zt = 0,

1− "yt=1! if zt = 1,

"zt − 1# · "1− rt#+ v"zt − 1# · rt!
if zt ! 2 and zt 0A,

"zt − ut# · "1− rt#+ v"zt − ut# · rt!
if zt ! 2 and zt ∈A,

where we use the notation "B to denote the indicator func-
tion of an event B, that is,

"B =
{

1! if B occurs,

0! otherwise.

3. The evolution of the position of the customer: For
every t,

yt+1 =





















yt −dt! if yt −dt ! 1 and yt > 1,

1! if yt −dt < 1 and yt > 1,

1− "zt=1! if yt = 1,

0! if yt = 0.

The one-period costs are stationary and are defined by

ĝ"st! zt!yt!ut#

= ĥzt
"1− "zt=1 · "yt=1#+ b · "yt=1 · "1− "zt=1#+ ĉzt · ut$ (3)

We define ĥN+1 = 0, ĥ0 = 0, and ĉ0 = 0, and set ĥi and ĉi
to be the appropriate holding cost rate and order cost rate,
respectively, for location i. The holding cost rate for units
in artificial locations is assumed to be the rate associated
with the downstream actual stage. Order costs for locations
other than the actual stages are set to zero. Then, the first
term of (3) gives the holding cost, the second term gives
the backorder cost, and the third term gives the ordering
cost.
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6.2. Finite-Horizon Algorithm

We use dynamic programming to compute optimal policies
for the subproblem. In particular, the algorithm described
below carries out the standard Bellman recursion until
all the optimal base-stock levels are determined. It finds
threshold levels y∗t "s! z# for every location corresponding
to an actual stage of the system (except for location 1),
such that it is optimal to release a unit from that particular
location if and only if the position of the corresponding cus-
tomer is less than or equal to the threshold. The base-stock
level of a location v"z− 1# (the location corresponding to
the next actual stage after z) is then determined from this
threshold.

Input and Output of the Finite-Horizon Algorithm
"FHA#:
Input:
1. One-period cost function ĝ"s! z!y!u# for every

(s! z!y!u).
2. System dynamics function f̂ "s! z!y!u!w# for every

(s! z!y!u!w).
3. Conditional probability distribution of wt = "dt! rt! s̄t#

given (st! zt). (The same distribution for all t.)
4. List of locations corresponding to actual stages, A;

time horizon T .
Output: Threshold values y∗t "s! z# for every s, t,

and z ∈A′.

Initialization of the Finite-Horizon Algorithm "FHA#:

Ĵ ∗
T "s! z!y#= Ĵ ∗

t "s!0!0#= 0 ∀ s! z! y! t!
y∗t "s! z#=−' and Kt"s! z#= 0 ∀ s! z ∈A′! t!

y = 0$

The algorithm goes through progressively increasing val-
ues of y until all the base-stock levels are determined.
In particular, the largest value of y considered by the
algorithm is the largest optimal base-stock level over all
stages, exogenous states, and time periods. To keep track
of which base-stock levels are determined, we use the indi-
cator variables Kt"s! z#. At the beginning of the algorithm,
Kt"s! z#= 0 for all t, s, and z ∈A′, indicating that none of
the base-stock levels is determined yet. During the course
of the algorithm, we let Kt"s! z#= 1, after the threshold
level for location z (and therefore the base-stock level for
the actual stage corresponding to location v"z − 1#) and
exogenous state s at time t is determined.
Let

Vt"s! z!y!u#= ĝ"s! z!y!u#+E+Ĵ ∗
t+1"f̂ "s! z!y!u!w##,$

Recursion of the Finite-Horizon Algorithm "FHA#:
while (Kt"s! z#= 0 for some s, z ∈A′, and t) do
y = y+ 1
for t = T − 1! $ $ $ !0,
for z= 1! $ $ $ !N + 1!

for s = 1! $ $ $ ! !S!,
if z ∈A′ and Kt"s! z#= 0 then

Ĵ ∗
t "s! z!y#=minu∈-0!1. Vt"s! z!y!u#
+U ∗
T−t"s!z!y#=-u!u∈argminu∈-0!1.Vt"s!z!y!u#.

if +U ∗
T−t"s! z!y#= -1. then y∗t "s! z#= y

if +U ∗
T−t"s! z!y# -= -1. then Kt"s! z#= 1

else J ∗
t "s! z!y#= Vt"s! z!y!0#

next s
next z

next t
end while

Proposition 6.1. (a) FHA terminates after at most Ymax
iterations of the outer (while) loop.
(b) Let y∗t "s! z# be determined through FHA. A state-

dependent echelon base-stock policy with base-stock level
Sv"z−1#
t "s#= y∗t "s! z#−1 for each s, z ∈A′, and t, is optimal

for the main model.
(c) The complexity of FHA is O"N ·Ymax ·min-Ymax!D. ·

!S!2 · T #.
Note that FHA will terminate when the outer loop

reaches the largest base-stock level. In particular, the largest
base-stock level or any bound on its size (such as Ymax)
does not need to be known a priori. The term Ymax is used
only to give a complexity estimate. Moreover, in the com-
plexity estimate, it can be replaced by any a priori known
upper bound on the base-stock levels.
Among the inputs to the algorithm, the costs, system

dynamics, distribution of demand, and the dynamics of the
exogenous Markov chain are quite standard items. The only
input that is a little different is the probability distribution
of rt , the random variable that determines whether or not
a unit in transit will arrive to its final destination in the
current period. In practice, one is more likely to start with
an actual lead-time distribution. Assuming that the lead-
time distribution is compatible with Kaplan’s model (and
is not Markov modulated), one can easily recover a com-
patible distribution for the random variables /m

t , and from
these a compatible distribution for the random variables rt
(conditional on zt). For example, suppose that location z
corresponds to actual stage m+ 1 > 1, and that Lt is the
lead time of a unit released from location z at time t. The
probability P"/m

t = 1# is immediately determined because
it is equal to P"Lt = 1#. We then have

P"Lt = 2#= P"/m
t -= 1# · "P"/m

t+1 = 1#+P"/m
t+1 = 2##

= P"/m
t -= 1# · "P"/m

t = 1#+P"/m
t = 2##!

from which P"/m
t = 2# is determined, and we can continue

similarly. The case of Markov-modulated lead times is,
however, more complicated.

6.3. Infinite-Horizon Algorithm

We now describe an algorithm for the infinite-horizon prob-
lem. The same algorithm is used for both the discounted
cost and the average cost criteria.
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Let

V'"s! z!y!u#= ĝ"s! z!y!u#+* ·E+Ĵ ∗
'"f̂ "s! z!y!u!w##,!

where * is the discount factor (set *= 1 if the objective is
to minimize the average cost). The input to the algorithm
is the same as in the finite-horizon case (except for T ). The
output is a set of threshold values y∗'"s! z# for every s and
every z ∈A′.

Initialization of the Infinite-Horizon Algorithm "IHA#:

Ĵ ∗
'"s!0!0#= 0 ∀ s!
y∗'"s! z#=−' and K'"s! z#= 0 ∀ s! z ∈A′!

y = 0$

Recursion of the Infinite-Horizon Algorithm "IHA#:
while (K'"s! z#= 0 for some (s! z ∈A′)) do

y = y+ 1
for z= 1! $ $ $ !N + 1,
"∗# Compute Ĵ ∗

'"s! z!y# for all s
if z ∈A′ then
for s = 1! $ $ $ ! !S!

+U ∗
'"s! z!y#= -u !u ∈ argminu∈-0!1. V'"s! z!y!u#.

if +U ∗
'"s! z!y#= -1. then y∗'"s! z#= y

if +U ∗
'"s! z!y# -= -1. then K'"s! z#= 1

next s
next z

end while

Proposition 6.2. (a) IHA terminates after at most Ymax
iterations of the outer "while# loop.
(b) Let y∗'"s! z# be determined through IHA. A state-

dependent echelon base-stock policy with base-stock level
Sv"z−1#
' "s# = y∗'"s! z#− 1 for each s and z ∈ A′ is optimal

for the main model.
(c) The complexity of IHA is O"M ·Ymax · !S!3+N ·Ymax ·

min-Ymax!D. · !S!2#.
We note that the complexity estimate relies on an effi-

cient algorithm for computing Ĵ ∗
'"s! z!y# at step (*). This,

in turn, relies on the solution, for every (s! z!y), of an
optimal stopping problem with state space cardinality !S!,
to which an efficient, O"!S!3#, version of policy iteration
applies. See the online appendix for the details.
The algorithms reported in this section are fairly efficient

in terms of complexity. There is no other work that presents
optimal algorithms for a multiechelon inventory control
problem with Markov-modulated stochastic lead times and
demands, so we cannot provide a direct comparison with
existing methods. However, the decomposition of the prob-
lem into single unit-customer pairs can be applied to special
cases that have been studied before. For example, the serial
system with deterministic lead times and i.i.d. demands,
i.e., the model of Clark and Scarf (1960), is such a spe-
cial case, as is the serial system with deterministic lead
times and Markovian demands studied in Chen and Song

(2001). Gallego and Zipkin (1999) note that the algorithm
of Chen and Zheng (1994), even though originally devel-
oped for systems with constant lead times, can be used to
find the best base-stock policy4 for systems with stochas-
tic lead times similar to the ones studied in this paper
(but not Markov modulated). For all of these problems, we
are not aware of any methods that are more efficient than
the single-unit, single-customer approach. Moreover, our
approach possesses some potential advantages. First and
foremost, when the support of the demand distribution is
infinite, our algorithms do not need to resort to approx-
imations by truncating the distribution at a certain point,
whereas existing methods do. (Note that our algorithms do
not need to know the probability that the demand is greater
than the largest base-stock level, or an a priori upper bound
on the optimal base-stock levels.) Second, we provide finite
and infinite-horizon algorithms, and our infinite-horizon
algorithm can be used to compute optimal policies for
both discounted cost and average cost criteria, by simply
changing the value of the discount factor. On the contrary,
some of the more efficient algorithms for multiechelon sys-
tems (such as the algorithm of Chen and Zheng 1994) are
only applicable to infinite-horizon average cost problems.
Finally, our method is very simple to understand and to
implement, because it only involves a problem with a single
unit and a single customer.

7. Conclusions
In this paper, we have analyzed an uncapacitated serial
inventory system with Markov-modulated demands and
Markov-modulated stochastic lead times, in the absence of
order crossing. We proved that state-dependent echelon
base-stock policies are optimal for both finite and infinite-
horizon formulations. We also provided an efficient algo-
rithm to calculate the base-stock levels. All this was done
using a different approach than the standard one in the mul-
tiechelon inventory control literature, namely, the decom-
position into single unit-customer subproblems, as opposed
to a stage-by-stage decomposition.
Our approach readily extends to several variations of the

problem. For example, the holding, shortage, and cost coef-
ficients could be exogenous, Markov-modulated stochastic
processes—in particular, stochastic costs for ordering from
the external supplier—can be used to model situations
involving fluctuating market prices. Furthermore, for the
finite-horizon case, the dynamics do not need to be station-
ary. Another problem variation involves a backorder cost
that accumulates nonlinearly with time or, equivalently, a
backorder cost rate that increases with the amount of time a
customer has been waiting for a unit. This variation is eas-
ily handled as follows: Instead of having a single position
(position 1) for backlogged customers, we can have a range
of positions (no more than N such positions are needed)
that encode the length of time that a customer has been
backlogged.5
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Our approach bears more fruit than was provided in this
paper. For example, Muharremoglu (2002) shows that it can
be applied to problems with expediting options, problems
that incorporate fixed lot sizes between echelons, and to
assembly systems. In addition, we believe that this approach
can form the basis for obtaining approximate solutions to
harder problems (Achy-Brou 2001 discusses some possibil-
ities), in which the structure of the optimal policy is poten-
tially more complicated.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org.

Endnotes
1. Song and Zipkin (1996b) deal with a single-stage sys-
tem with Markov-modulated lead times and use a concept
similar to the location of a unit in this paper.
2. We allow Sv"z−1#

t "s# to take values from the set !0 ∪
-−'. ∪ -'., so that the base-stock level can either be a
nonnegative integer (the usual case), equal to ' (no inven-
tory is kept at z), or equal to −' (no units are shipped
from z when the Markov chain is in state s).
3. Recall that starting from location z and going forward,
v"z# is the first location corresponding to an actual stage
(Definition 3.2).
4. Gallego and Zipkin (1999) did not claim that base-stock
policies are optimal for such serial systems with stochastic
lead times, just that this particular algorithm would find
the optimal policy within the class of echelon base-stock
policies.
5. We thank a referee for suggesting this variation.
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