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Radiation therapy is subject to uncertainties that need to be accounted for when determining a suitable treatment plan
for a cancer patient. For lung and liver tumors, the presence of breathing motion during treatment is a challenge to the
effective and reliable delivery of the radiation. In this paper, we build a model of motion uncertainty using probability
density functions that describe breathing motion, and provide a robust formulation of the problem of optimizing intensity-
modulated radiation therapy. We populate our model with real patient data and measure the robustness of the resulting
solutions on a clinical lung example. Our robust framework generalizes current mathematical programming formulations
that account for motion, and gives insight into the trade-off between sparing the healthy tissues and ensuring that the tumor
receives sufficient dose. For comparison, we also compute solutions to a nominal (no uncertainty) and margin (worst-case)
formulation. In our experiments, we found that the nominal solution typically underdosed the tumor in the unacceptable
range of 6% to 11%, whereas the robust solution underdosed by only 1% to 2% in the worst case. In addition, the robust
solution reduced the total dose delivered to the main organ-at-risk (the left lung) by roughly 11% on average, as compared
to the margin solution.
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1. Introduction
For the year 2006, the American Cancer Society (2006)
estimated that there would be roughly 1.4 million new cases
of cancer and 550,000 cancer deaths in the United States.
Overall, cancer accounts for roughly 25% of all deaths in
the United States. Even in comparison to other cancers,
lung cancer stands out as particularly deadly and difficult to
treat. Although the incidence of lung cancer is falling due
to the decreasing prevalence of smoking, it is still by far
the leading cause of cancer-related death in both men and
women, accounting for roughly 29% of all cancer deaths. It
outpaces the second leading causes of cancer death, which
are prostate/colorectal cancer for men and breast cancer for
women, by a factor of roughly three and two, respectively.
As we will describe below, we will use some unique char-
acteristics of tumors in the lung as motivation for our work.
Over half of all cancer patients receive radiation ther-

apy at some point during their treatment. We will focus on

the case of external beam radiation therapy, where a linear
accelerator mounted on a rotating gantry is used to treat
a patient with high-energy photon beams. A photon beam
deposits energy as it passes through tissue, damaging not
only the tumor cells but also the healthy tissue in front of
and behind the tumor. For this reason, radiation is delivered
from many different angles so that each individual beam
will deliver a small amount of dose to the healthy cells in
its path, whereas the overlapping region will be an area of
high dose, centered on the tumor.
The process for this type of treatment often starts with

a planning session in which data on the internal anatomy
are acquired. Using these data, along with objectives and
constraints (or sometimes just rough guidelines) provided
by a physician, a treatment planner determines a suitable
treatment with the help of a software system. Once the
treatment plan is approved, it is typically delivered on a
daily basis (five days a week) over the course of several
weeks (typically four to six). During this time, imaging
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data are rarely reacquired, partly because tumor response
to radiation is often substantially delayed.
In recent years, an advanced technique known as

intensity-modulated radiation therapy (IMRT) has garnered
much research and clinical attention, and is now in clinical
use at most radiation oncology centers in the United States
(Mell et al. 2005). We can think of IMRT as partitioning
each beam into a large set of “beamlets” (e.g., 5 mm× 5
mm in size), which have individually adjustable intensi-
ties. The flexibility to deliver intensity that is nonuniform
across the beam can enhance the conformity of the dose
to the tumor and the sparing of healthy tissue, especially
for complex shapes of the target volume (IMRT Collabo-
rative Working Group 2001, Webb 2003, Bortfeld 2006).
The calculation of the “intensity maps” for each beam is
generally accomplished with “inverse” treatment-planning
systems that employ optimization approaches in which the
intensities of the individual beamlets are the variables. The
delivery of intensity-modulated beams has been accom-
plished in a number of ways, but the multileaf collimator
(MLC) is the most commonly used apparatus (IMRT Col-
laborative Working Group 2001).
In this paper, we consider IMRT treatment planning

under uncertainty. IMRT is generally more vulnerable to
uncertainties because of the steeper dose gradients (how
quickly the dose falls off from areas of high dose to areas of
low dose) it is able to produce. There are many sources of
uncertainty that need to be taken into account in the course
of the treatment-planning process. The segmentation of the
tumor and the critical structures based on medical images is
inherently uncertain and error prone. Furthermore, patient-
positioning uncertainties are relevant because the patient
needs to be set up in the same position every day over the
course of the treatment. Motion effects constitute another
class of uncertainty. In particular, there are two types of
motion: interfraction and intrafraction motion. Interfraction
motion refers to motion between treatment sessions (also
known as “fractions”). An example of this type of motion
comes from the variations in the location of a prostate
tumor due to differences in rectal and bladder filling from
day to day. Intrafraction motion refers to motion that occurs
during a treatment session, such as breathing motion.
We draw motivation from lung cancer, and we will focus

on breathing motion as the source of uncertainty. As a
patient breathes during treatment, a tumor in the lung will
be moving (possibly irregularly), and we would like to find
a method that reliably delivers a sufficient amount of dose
to the tumor, while sparing the healthy tissue as much as
possible. Langen and Jones (2001) give a detailed review
on the topic of motion in radiation therapy. The dosimet-
ric effects of respiratory motion in IMRT were studied by
Bortfeld et al. (2004). It was found that, to first order, the
effects can be described as a “blurring” of the spatial dose
distribution. In particular, steep dose gradients are washed
out due to the motion, whereas secondary effects such as
interplay between breathing motion and the motion of the

delivery device (MLC) can often be neglected. An impor-
tant consequence of dose blurring due to motion is that,
without compensation, motion leads to regions of under-
dose (“cold spots”) near the edge of the target volume.
Mathematically, the dose-blurring effect can be modeled as
a convolution of the static spatial dose distribution with
a probability density function (p.d.f.) that describes the
motion (Lujan et al. 1999, Engelsman et al. 2005, Bortfeld
et al. 2002). This p.d.f. specifies the relative amount of time
the tumor (and other tissue) spends in different locations
or, in an alternative interpretation that we will use in this
paper, the relative amount of time spent in different phases
of the breathing cycle.
A number of strategies have been proposed to reduce the

effects of motion (see Keall et al. 2006 for a comprehen-
sive review). The methods fall into two main categories:
(i) reduction of the amplitude of the motion relative to
the treatment device (e.g., breath hold, gating, tumor track-
ing), and (ii) reduction of the dosimetric consequences of
the motion. The former methods can be somewhat unreli-
able and difficult for the patient to tolerate (breath hold),
technologically demanding (gating and tracking), or may
prolong the treatment time (breath hold and gating). The
most common method, which belongs to the latter category
(ii), is the use of a margin, which is an expanded region
around the nominal position of the tumor in which we
are confident the tumor will remain. Then, by treating this
margin area with a high uniform dose, we ensure that the
tumor receives a sufficient amount of dose, no matter how
it moves within this margin. Of course, the main disadvan-
tage of using a margin is that the healthy tissue surrounding
the tumor will receive more dose than necessary. We can
think of the use of a margin as a worst-case approach, in
which we use some bounds on the motion, but assume no
additional information on how the tumor will move within
these bounds. We show later that the margin is indeed the
correct approach in this case, and define more precisely the
worst case that the margin is protecting against.
A recent development that also belongs to category

(ii) is that of “4D” optimization, which aims at undoing
(deconvolving) the blurring effect of the motion. The basic
idea is to hit the tumor edges harder (with higher intensi-
ties), and thus compensate for the blurring effect and pos-
sible dose cold spots (Trofimov et al. 2005, Zhang et al.
2004). These recent studies showed promising results, but
relied on the assumption that the breathing motion real-
ized during every treatment fraction was exactly the same
as the one that was exhibited during the planning session.
Hence, this approach assumes “perfect information” or “no
uncertainty” on the motion p.d.f., and is appropriate if we
can be certain that the patient will breathe in the same
predictable way during each fraction. On the other hand,
Sheng et al. (2006) showed that the quality of the resulting
dose distribution can be seriously degraded if this assump-
tion is violated. The subject of changes in respiratory pat-
terns between treatment simulation and treatment delivery
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was the very first in a list of topics recommended for further
research in a recent report on the management of respira-
tory motion in radiation oncology by a group of experts
from the American Association of Physicists in Medicine
(Keall et al. 2006).
Our work in this paper strives to generalize and improve

upon previous studies by relaxing the rather strong assump-
tion of highly regular and reproducible breathing. In par-
ticular, we develop a model of uncertainty in the motion
p.d.f., and incorporate it into a robust optimization frame-
work that can produce treatment plans that are robust to this
uncertainty—that is, plans that are guaranteed to be feasible
under any realization of the uncertainty. Recent research
has indeed highlighted the topic of robustness in radiation
therapy optimization (Baum et al. 2006, Unkelbach and
Oelfke 2004). The combination of the need for more rig-
orous optimization approaches to deal with clinical uncer-
tainties, together with advances in deriving tractable robust
counterparts for uncertain mathematical programs, has led
to a fair amount of recent interest in the use of robust
optimization methods in radiation therapy treatment plan-
ning (Chu et al. 2005, Ólafsson and Wright 2006). Some
of our ideas on this subject were sketched in Chan et al.
(2006), which included preliminary results on artificial,
one-dimensional problems. More generally, the topic of
(not necessarily robust) optimization in radiation therapy
has received a lot of recent attention from the optimization
community (Romeijn et al. 2006, Ferris et al. 2003, Lee
et al. 2003, Preciado-Walters et al. 2004, Holder 2003).
This paper is organized into two major parts. In the first

part, we develop a general approach to robust IMRT treat-
ment planning in the presence of motion uncertainty, and
provide a full discussion of the associated mathematical
formulations. In particular, in §2, we present a model of
uncertainty, and in §3, we develop our robust formulation.
In the second part of this paper, we apply our approach
to real patient data. In §4, we describe our patient data
set and a method for incorporating the information in this
data set into our formulation. In §5, we illustrate the results
obtained from our robust formulation, and compare them to
the results from the margin and motion p.d.f. approaches.
We conclude in §6 with some discussion and final remarks.

2. Model of Uncertainty
The presence of motion during radiation delivery spreads
out the dose to areas surrounding the target region. To com-
pensate for this blurring effect, the “motion p.d.f.” approach
aims to produce a dose distribution that when convolved
with the assumed p.d.f. recovers the desired distribution.
Naturally, this method relies on a priori knowledge of what
the motion p.d.f. will be during treatment. If the realized
motion is quite different from what was assumed, then con-
volving the realized motion p.d.f. with a dose distribution
optimized for a different p.d.f. is likely to result in an unac-
ceptable dose distribution with hot and cold spots. This

motivates the need for an approach that can mitigate the
uncertainty in the p.d.f. to be realized during treatment.
Our framework involves a finite set X, which corre-

sponds to the set of possible phases of the breathing cycle.
A !motion" p.d.f. is defined as a nonnegative real function
f # X → !, such that

∑
x∈X f !x"= 1. Our starting point is

a nominal p.d.f., denoted by p, that is constructed on the
basis of data taken during the planning session. Regard-
ing the actual p.d.f., p̃, to be realized during treatment, we
assume that it can differ from the nominal p.d.f., p, on a
subset U of the domain X, and satisfies

p!x"− p!x"! p̃!x"! p!x"+ p̄!x" ∀x ∈U $

where the functions p and p̄ provide bounds on the dif-
ference between the nominal and the realized p.d.f. dur-
ing treatment. Without loss of generality, we assume that
p − p " 0 and p + p̄ ! 1. Thus, the set PU , of possible
realized p.d.f.s, called the uncertainty set, is defined as

PU =
{
p̃∈!!X!# p̃!x"∈ %p!x"− p!x"$p!x"+p̄!x"& ∀x∈U '

p̃!x"=p!x" ∀x∈X\U '
∑

x∈X
p̃!x"=1

}
( (1)

Note that the set U is somewhat redundant because it can
be accounted for by setting p̄!x"= p!x"= 0 for x ∈X\U ,
but we will keep it for clarity of exposition. We will refer
to the upper and lower bounds on p̃ as error bars.
A treatment plan will be said to be robust if all of

the constraints in our subsequent formulation are satisfied
(cf. §3), no matter which p.d.f. from the set PU is realized.
Thus, PU is to be interpreted as the set of all p.d.f.s that
we are protecting against in our optimization. If one views
this approach as being overly conservative (because it per-
mits certain implausible, highly oscillatory p.d.f.s), one can
introduce simple (linear) “smoothness” constraints into the
definition of PU , such as

!p̃!x"− p̃!y"!! ) if !x− y!! *$

for suitable )$*> 0.
One of the main challenges here is to keep the set PU

large enough so that we can protect against realistic varia-
tions that the patient may exhibit, without losing all infor-
mation about the patient’s particular breathing patterns, and
just delivering a margin. The practical construction of this
set from real data is discussed in §4.1.

3. Formulations
This section introduces the different formulations that will
be investigated. In our formulations, the goal is to mini-
mize the total dose delivered, while ensuring that the tumor
receives an adequate dose. In §3.1, we start with the basic
problem of finding the optimal intensities of the beamlets
in the IMRT planning problem when there is no motion and
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no uncertainty. We then continue with a nominal formula-
tion (a linear program) that takes into account a nominal
motion p.d.f. In §3.2, we present a robust formulation in
which the possible tumor motion is modeled by an uncer-
tainty set PU , and demonstrate that it can also be cast as
a linear program. Finally, in §3.3, we describe the classi-
cal margin approach and explore its relation to our robust
formulation.

3.1. Nominal Formulation

We assume that the treatment will be delivered using beam-
lets belonging to a given set ", and we let wb be the weight
or intensity of beamlet b (related to the amount of time the
beamlet is “on”). We are interested in a phantom, repre-
sented by a set # of voxels. A voxel is a small volume-
element used to represent a specific location in the patient.
A phantom is a physical model of the human body or any
of its parts, and here it is synonymous with the set of voxels
that represent the tumor and all healthy tissue. Let $ be the
set of voxels in the tumor, and let % be the set of voxels in
the normal (nontumor) tissue. Furthermore, let m$ = !$ !,
n= !"!, and mU = !U !. Let Dv$b be the dose that voxel v
receives per unit of intensity of beamlet b, and let +v be the
prescribed dose that voxel v should receive. The following
formulation aims at minimizing the total delivered dose, in
the absence of motion, and will be referred to as the basic
problem:

minimize
w

∑

v∈#

∑

b∈"
Dv$bwb

subject to
∑

b∈"
Dv$bwb " +v ∀v ∈$ $

wb " 0 ∀b ∈"(

(2)

In practice, the prescribed dose is often uniform over the
tumor, in which case we have +v = + for all v ∈$ .
The next step is to incorporate motion (but not yet

motion uncertainty) into (2), using the nominal p.d.f., p,
described in §2. In the presence of motion, we need to fix
some nominal reference frame in relation to which the vox-
els will be moving. For example, this reference frame could
correspond to the position of the internal anatomy when
a patient is in the full exhale phase of breathing. We also
need to adjust the “matrix” D to account for the motion.
For that purpose, we create a “matrix” ,, with compo-
nents ,v$x$b that describe the dose delivered to voxel v,
when the anatomy is in breathing phase x, per unit intensity
of beamlet b. Without loss of generality, we can assume
that the nominal reference frame corresponds to breathing
phase 0 and the position of the anatomy in the basic prob-
lem (i.e., in the absence of motion). Hence, ,v$x$b =Dv$b

when x= 0. With this picture in mind, p!x" is the proba-
bility that the patient is in breathing phase x. This defini-
tion facilitates the incorporation of nonrigid-body motion
into the problem formulation because ,v$x$b is computed
for snapshots of the anatomy in each phase (as opposed to

extrapolating based on rigid-body motion). Note that rigid-
body motion can be cast as a special case of this defini-
tion, where x corresponds to displacement from a nominal
position so that, again, x = 0 corresponds to the nominal
position.
Adjusting for motion, as described by the nominal p.d.f.,

we obtain the following nominal problem:

minimize
w

∑

v∈#

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"

∑

x∈X
,v$x$bp!x"wb " +v ∀v ∈$ $

wb " 0 ∀b ∈"(

(3)

This formulation is a straightforward extension of (2), in
which the coefficients Dv$b are replaced with
∑

x∈X
,v$x$bp!x"

to account for the motion as described by p. Note that the
p.d.f. used in the objective function and constraints does
not correspond to just one fraction, but refers to the average
p.d.f. over the entire course of treatment. Although it is true
that during one fraction we do not expect the dose delivered
to be well approximated by the expression in the objective
function, we do expect convergence of the delivered dose
to the expected delivered dose (represented by the p.d.f. p)
after many treatment fractions (Bortfeld et al. 2002).
Formulation (3) is the appropriate formulation when

there is “perfect information,” in the sense that the
breathing-induced motion is accurately represented by p.
However, if we use this formulation and the patient breathes
according to a different p.d.f., the lower-bound constraints
on the tumor dose are likely to be violated. This moti-
vates the inclusion of the model of uncertainty, as described
in §2, into formulation (3).

3.2. Robust Formulation

In the presence of uncertainty, we want the tumor to
receive the required dose no matter which p.d.f. within
the uncertainty set is realized during treatment. This desire
is captured by requiring the lower-bound constraint in
formulation (3) to be satisfied when p is replaced by p̃ for
every p̃ ∈ PU . This leads to the following robust problem:

minimize
w

∑

v∈#

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"

∑

x∈X
,v$x$bp̃!x"wb " +v

∀v ∈$ $ ∀ p̃ ∈ PU $

wb " 0 ∀b ∈"(

(4)

Note that the uncertainty is in the p.d.f., and not in the
, matrix. This corresponds to the assumption that the pos-
sible geometrical configurations of the anatomy (i.e., path
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of the motion trajectory), due to motion, do not change
between treatment planning and treatment delivery, but that
the fraction of time spent in each configuration (i.e., breath-
ing phase or location on the trajectory) is uncertain.
Furthermore, note that the uncertainty in p is accounted

for in the constraints, but not in the objective. To gain
some understanding of the implications, note that one could
just minimize the total dose delivered to the anatomy in a
particular phase x. However, the choice of x would have
been arbitrary and subjective. Instead, our goal is to use
a reasonable objective function that approximates well the
total dose delivered to the healthy tissue. By using p in the
objective, we are essentially averaging the dose delivered
over the various phases because this objective function is
a convex combination of the corresponding objective func-
tions associated with individual phases. Different p in the
objective will indeed redistribute the dose between voxels,
but will not change the integral dose appreciably because
all p.d.f.s integrate to one.
There are other types of objective functions that would

require accounting for the uncertainty in the p.d.f. For
example, if we are interested in an objective such as min-
imizing the maximum dose delivered to the healthy tis-
sue, % , we should replace the objective with an auxiliary
variable z, and introduce to formulation (4) additional con-
straints of the form

z"
∑

b∈"

∑

x∈X
,v$x $bp̃!x"wb ∀v ∈% $ ∀ p̃ ∈ PU ( (5)

These constraints have essentially the same structure as
the lower-bound constraints in the robust problem, and the
analysis provided in the rest of this section (i.e., the deriva-
tion of a finite LP) still applies to formulation (4) aug-
mented with constraints (5).
Formulation (4) is not a linear program due to the infi-

nite number of constraints. In what follows, we transform
(4) into an equivalent linear program, and also develop
some insights on its structure. The proof is straightforward
and is omitted.

Proposition 1. Formulation (4) is equivalent to

minimize
w

∑

v∈#

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"

∑

x∈X
,v$x$bp!x"wb +-v!w"" +v

∀v ∈$ $

wb " 0 ∀b ∈"$

(6)

where

-v!w"=min
p̂

∑

b∈"

∑

x∈U
,v$x$bp̂!x"wb

subject to
∑

x∈U
p̂!x"= 0$

− p!x"! p̂!x"! p̄!x" ∀x ∈U (

(7)

The quantity -v!w" arises because we are protecting
against worst-case (in terms of underdosing the tumor)
motion within our uncertainty set PU . Next, we investigate
the structure of the solution of problem (7).

Proposition 2. Let

dv$x!w" #=
∑

b∈"
,v$x$bwb(

For any v and w, we introduce an ordering x!1"$ ( ( ( $
x!mU " of the elements of X such that dv$x!1"!w" ! · · · !
dv$x!mU "!w". The optimal value of (7) is equal to

-v!w"=−
∑

b∈"

∑

j>j∗
!,v$x!j"$b −,v$x!j∗"$b" p!x!j""wb

−
∑

b∈"

∑

j<j∗
!,v$x!j∗"$b −,v$x!j"$b"p̄!x!j""wb$ (8)

where j∗ satisfies the inequalities

∑

j"j∗
p!x!j""−

∑

j<j∗
p̄!x!j""" 0$

∑

j"j∗+1

p!x!j""−
∑

j<j∗+1

p̄!x!j""< 0(

The expression for -v!w" in (8) gives insight into the
structure of the robust dose distribution generated by the
solution to the robust formulation (4). Let w be an optimal
solution to the nominal problem and consider the resulting
dose delivered

∑

b∈"
Dv$bwb$

not to a particular anatomical voxel, but to the point in
space where voxel v resides in its nominal position; this
is the static dose distribution. Naturally, there may be
regions of high static dose and regions of low static dose.
Now imagine that a particular voxel v moves within this
dose distribution, due to breathing motion. The solution
w assumes that v will move according to the nominal p,
“acquiring” just the right amount of dose from both the
high- and low-dose regions of the static dose distribution.
However, if v moves according to a different p.d.f., we must
protect against the scenario where v spends more time in
the low-dose locations and less time in the high-dose loca-
tions than nominally assumed. By protecting against this
situation, which is exactly what -v!w" represents in (8), we
are ensuring feasibility over the entire uncertainty set. Prac-
tically, a robust dose distribution will be smoother (fewer
peaks and valleys), as compared to a nominal dose dis-
tribution, to ensure that voxels that move according to a
different p.d.f. still receive enough dose.
To create a tractable formulation that is equivalent to (4),

we need the following proposition, which is essentially a
theorem of the alternative.
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Proposition 3. For a given v and z, we have -v!w"" z if
and only if there exists qv and rv such that
∑

x∈U
p!x"qv −

∑

x∈U
rv$x −

∑

b∈"

∑

x∈U
,v$x$b p!x"wb " z$

!(
¯
x"+ p!x""qv − rv$x

!
∑

b∈"
,v$x$b!p̄!x"+ p!x""wb ∀x ∈U $

qv free$

rv$x " 0 ∀x ∈U (

(9)

Proof. The dual of (7) is

maximize
qv$ rv$ sv

∑

x∈U
p̄!x"rv$x +

∑

x∈U
p!x"sv$x

subject to qv + rv$x + sv$x =
∑

b∈"
,v$x$bwb ∀x ∈U $

qv free$

rv$x ! 0 ∀x ∈U $

sv$x " 0 ∀x ∈U (

(10)

Using the equality constraint to eliminate the sv$x variables,
and replacing the variables rv$x with −rv$x/!p̄!x"+ p!x"",
we arrive at an equivalent formulation

maximize
qv$ rv$

∑

x∈U
p!x"qv −

∑

x∈U
rv$x −

∑

b∈"

∑

x∈U
,v$x$b p!x"wb

subject to !p̄!x"+ p!x""qv − rv$x

!
∑

b∈"
,v$x$b!p̄!x"+ p!x""wb ∀x∈U $

qv free$

rv$x " 0 ∀x ∈U (

(11)

Because formulation (7) is feasible, the result follows from
strong duality of linear programming. #
We now use the above proposition to transform (4) into

a linear program.

Theorem 1. Formulation (6) is equivalent to the following
linear program:

minimize
w$q$ r

∑

v∈#

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"

∑

x∈X
,v$x$bp!x"wb −

∑

b

∑

x∈U
,v$x$b p!x"wb

+
∑

x∈U
p!x"qv −

∑

x∈U
rv$x " +v ∀v ∈$ $

!p̄!x"+ p!x""qv − rv$x

!
∑

b

,v$x$b!p̄!x"+ p!x""wb

∀v ∈$ $∀x ∈U $

qv free ∀v ∈$ $

rv$x " 0 ∀v ∈$ $∀x ∈U $

wb " 0 ∀b ∈"(

(12)

Formulation (12) provides us with a linear program that
takes into account the uncertainty set in a tractable manner.
By adjusting the size of the uncertainty set in our model, we
will affect the conservativeness of the resulting robust solu-
tion. We observe that whereas the nominal formulation (3)
has m$ constraints and n variables, the robust formula-
tion (12) has m$mU +m$ constraints and m$mU +m$ +n
variables. Although the problem now has a larger size, it is
still a linear program and, therefore, tractable for realistic
values of mU and m$ . See §5 for the exact problem sizes
and running times of our experiments.

3.3. Margin Formulation

Independent from the development of our robust method-
ology, one can formulate the problem of ensuring enough
dose to the tumor in the absolute worst case, without any
information on the motion except for bounds on the ampli-
tude. This type of formulation is what we will call a margin
formulation. This name comes from the medical physics
community, where a margin (an expansion of the irradi-
ated area) is used to account for uncertainty and ensure that
the tumor receives a sufficient dose. It is important to note
that other studies aimed at calculating optimal margin sizes
(van Herk et al. 2000, Engelsman et al. 2005) implicitly
assume some distribution for an unknown p.d.f. This results
in smaller margin sizes and less conservative solutions as
compared to the margin approach described here, which
aims to deliver a uniform dose to the tumor in the absence
of a particular distribution for the p.d.f. In this section, we
illustrate the connection between the margin concept and
our robust formulation.
The robust formulation proposed in the previous section

allows us to control the robustness of our solution depend-
ing on the amount of uncertainty present. In one extreme,
one assumes perfect knowledge of the motion p.d.f., which
is equivalent to the nominal formulation. At the oppo-
site extreme, one assumes that there is no information on
the motion (other than the possible range or amplitude
of motion, which is captured by the set X), and protects
against the absolute worst case, which is exactly the margin
approach. Intuitively, we expect to be able to replicate these
formulations by using the robust formulation with an appro-
priate uncertainty set. We will show that the robust formu-
lation builds a bridge between these two extreme solutions
and gives us the flexibility to craft solutions anywhere in
between.
First, we need to more precisely define a margin. In fact,

there are two types of margins to consider: a dosimetric
margin and a geometric margin. The difference between
these two concepts reflects the difference between using
anatomical voxels to account for the tumor and other struc-
tures versus voxels that are fixed in space (based on a
coordinate system independent of the patient). A dosimet-
ric margin is the minimal (in terms of total dose delivered)
dose distribution that, when added voxel by voxel to the
nominal dose distribution, delivers a sufficient amount of
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dose to the tumor throughout each phase of the breathing
cycle. A geometric margin (similar to an internal target vol-
ume (ITV) in the medical physics literature) is constructed
by taking the union of the tumor voxels throughout the
breathing cycle, and subtracting away the nominal tumor
voxels (the voxels representing the tumor in its nominal
position). In practice, however, the dosimetric margin is the
more meaningful concept because it is able to account for
the fact that the motion itself may affect the dose delivered
to a point in space. For example, as a result of motion,
the beam of radiation may pass through ribs or different
amounts of air in the lung, which would affect the dose
delivered. Hence, we focus solely on the dosimetric margin
in this paper, whereas in Chan et al. (2006) the focus was
on a geometric margin because the problem had a simpli-
fied one-dimensional geometry.
We can write the dosimetric margin problem as

minimize
w

∑

v∈#

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"
,v$x$bwb " +v ∀v ∈$ $ ∀x ∈X$

wb " 0 ∀b ∈"(

(13)

This formulation ensures that every voxel in the tumor
receives a sufficient dose throughout the entire breathing
cycle. As mentioned before, the dose to the tumor is typi-
cally desired to be uniform, in which case we have +v = +
for all v ∈$ .
By considering the function of the model of uncertainty,

it should be intuitive that the “smallest” uncertainty set
replicates the nominal formulation situation, whereas the
“largest” uncertainty set would give rise to a margin-like
solution. The next proposition makes this intuition con-
crete, illustrating the fact that the robust formulation is a
generalization of the margin and nominal formulations (the
proof can be found in the appendix).

Proposition 4. If U = ( (or equivalently, p̄ = p = 0),
then the robust formulation is equivalent to the nominal
formulation. Alternatively, if U = X, p̄ = 1 − p, p = p,
and +v = + for all v ∈ $ , then the robust formulation is
equivalent to the dosimetric margin formulation.

We can think of the solution of the nominal formula-
tion as the most risky because it takes at face value the
information contained in the motion p.d.f. A solution to
the margin formulation is the most conservative because it
must protect against the largest uncertainty set. By using
the robust formulation with an uncertainty set appropriate
for the patient at hand, the solution will automatically be
driven toward a margin solution if the uncertainty set is
big, a nominal solution if the uncertainty set is small, or
something in between otherwise.
The robust formulation also provides some insight into

why using a margin may be a poor method in many
cases. The margin solution is only optimal when U = X$

p̄= 1− p, and p= p; that is, only if there is a possibility
that the tumor will spend 100% of its time in any phase of
the breathing cycle. This is especially dubious for extreme
phases of the breathing cycle such as inhale and exhale.
Thus, by gathering information on a patient’s breathing and
associated uncertainty set, we should always be able to
improve upon a margin solution.

4. Patient Data and P.D.F.s
Probability density function data are not immediately avail-
able from the planning session, but must be mined from
other data that are collected. One type of data that is col-
lected for patients with significant motion is data that track
the movement of the tumor. The best way to obtain data on
internal motion is to implant a marker into the tumor and
continuously image the patient, tracking the motion of the
marker. Often, though, this method is not used due to pos-
sible complications associated with the implantation proce-
dure or the inability of the facility to carry it out. A far
less invasive alternative involves the use of an external
marker placed on the patient’s abdomen. By recording the
motion of this external marker, we obtain information about
the patient’s breathing pattern and corresponding internal
motion. Then, by estimating anatomical amplitudes through
imaging, we can use this external data as a surrogate for
internal motion data.
The patient data used in this study were acquired at the

Massachusetts General Hospital. We used Varian’s (Varian
Medical Systems, Inc., Palo Alto, CA) real-time posi-
tion management (RPM) system to gather data from five
patients by recording their breathing patterns in every treat-
ment fraction over the course of their entire treatments.
RPM data are recorded by an infrared camera mounted in
the treatment room, tracking the movement of an optical
marker placed on the chest or abdomen of the patient. This
camera records the respiratory motion of the patient by
observing the up and down motion of the marker block.
Much research has focused on correlating the external sig-
nal to internal motion (Vedam et al. 2003, Gierga et al.
2005, Tsunashima et al. 2004), and we will assume, as
many studies have shown to be the case, that the inter-
nal and external movement are highly correlated. In reality,
there are uncertainties that need to be taken into account
when using this method, but this is outside the scope of
this paper. Ideally, internal motion data would be used
instead of this external data. Accordingly, we develop our
framework with the understanding that future advances in
medical imaging will greatly enhance the accuracy and
availability of anatomical motion tracking, and will give us
data that are indeed representative of internal motion.
The recent advance of breathing-correlated “4D” com-

puted tomography imaging (Pan et al. 2004, Low et al.
2003, Keall et al. 2004) in combination with deformable
image registration (McInerney and Terzopoulos 1996,
Brock et al. 2003, Lu et al. 2004) has made it possible
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to visualize tissue motion trajectories within the scanned
4D-CT volume of a patient, and could in principle provide
an alternative to RPM data. However, although 4D-CT data
are a useful tool to study the spatial variability of motion,
they do not reflect temporal variability, which has a stronger
influence on the delivery outcome. Furthermore, we do not
acquire this internal data for each treatment fraction due to
time and resource constraints. Therefore, we focus on RPM
data because they are easily obtained on different days and
can be used to estimate the variability in breathing from
fraction to fraction.
The amplitude of an RPM trace is not representative of

any particular anatomical motion because its units depend
on many external factors such as the exact position and tilt
of the marker block on the patient’s abdomen, and the dis-
tance from the block to the camera. Still, the RPM data are
useful for measuring variations in the breathing patterns.
Therefore, we scaled the average RPM amplitude for each
person to the average anatomical amplitude gathered from
4D-CT scans. Each RPM trace was used to create a sin-
gle p.d.f. by integrating over the displacement axes of the
RPM trace. This produces a function that describes the rel-
ative amount of time the tumor spends in various phases.
A detailed explanation of the generation of a p.d.f. in this
manner is described in Lujan et al. (1999).
To make these p.d.f.s useful for our optimization frame-

work, we need to aggregate the RPM data into bins that
are most appropriate for the x of our matrix ,v$x$b. That is,
we are given the matrices ,v$x$b for a fixed set of phases,
and to use any p.d.f.s generated from this process, we must
tailor the support of these p.d.f.s to match the set X of
possible phases. The finer the set X is, the more flexibility
we have to precisely specify a p.d.f. However, the set of
breathing phases X is typically small, resulting in some-
what coarse p.d.f.s.
The error bars and associated uncertainty set are gen-

erated from a family of p.d.f.s as shown in the following
section. The idea is that once we have some information
about the patient at hand, in the form of a nominal p.d.f.
from RPM data, we can use information on breathing pat-
terns from past patients to form an uncertainty set for this
patient.

4.1. Creating the Uncertainty Set from
Patient Data

The error bars in our model are formed from a fam-
ily of p.d.f.s as follows. Consider a family of p.d.f.s p0,
p1$ ( ( ( $pk obtained from patient data (e.g., according to
the method described above), where p0 #= p is the nom-
inal p.d.f. of our current patient, p1 is the nominal p.d.f.
of a past patient, and p2$ ( ( ( $pk are the p.d.f.s of the past
patient realized during his/her treatment fractions. We are
interested in finding out how this past patient deviated from
his/her nominal p.d.f. on subsequent days, and using this as
a measure of the relative deviation that our current patient
may exhibit from his/her nominal p.d.f. Of course, this

relationship needs to be tested in practice to be useful for
clinical implementation. However, the underlying assump-
tion seems reasonable, as long as we build the model of
uncertainty based on data from past patients that are appro-
priately similar to the patient at hand. What is deemed
“appropriately similar” should be studied in future work.
Let us generate error bars for this past patient as follows.

For every x ∈X,

p1!x" #= p1!x"− min
i=1$((($k

pi!x"

and

p̄1!x" #= max
i=1$((($k

pi!x"−p1!x"(

We define the relative minimum deviation below the nom-
inal p.d.f. p1 to be p1/p1, and the relative maximum devi-
ation above the nominal p.d.f. p1 as p̄1/!1−p1". Note that
the definition for the maximum takes into account the fact
that the realized p.d.f.s are bounded above by 1. Using
these quantities, we define p̄ and p for the current patient
as

p!x" #=
p1!x"

p1!x"
p!x"

and

p̄!x" #= p̄1!x"

1−p1!x"
!1−p!x""

for every x ∈X. Finally, the upper and lower error bars of
p can be written as

p!x"+ p̄!x"= p!x"+ p̄1!x"

1−p1!x"
!1−p!x""

and

p!x"− p!x"= p!x"−
p1!x"

p1!x"
p!x"$

respectively. It is straightforward to check that using these
definitions for p̄ and p, 0! p− p! p+ p̄! 1. The natural
extension of the above procedure is to use multiple patients
j = 1$ ( ( ( $m, to create p and p̄:

p!x" #= max
j=1$((($m

pj!x"

pj!x"
p!x" (14)

and

p̄!x" #= max
j=1$((($m

p̄j!x"

1−pj!x"
!1−p!x""$ (15)

where pj , p̄j , pj are indexed by patient j .
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5. Results from a Clinical Case
In this section, we present the results of using the three
formulations (nominal, robust, and dosimetric margin) on a
clinical problem, involving a tumor in the lower left lung.
Our formulations are driven by a simple model where the
major internal structures of interest are a tumor and the
surrounding healthy lung tissue, which is a common rep-
resentation of a lung cancer case. However, before imple-
menting our formulations on a clinical case, we made two
slight modifications to account for realistic considerations.
First, in the objective function, instead of minimizing the

dose delivered to the entire phantom, we minimize the total
dose delivered to the healthy tissue, % . Studies indicate
that the mean dose delivered in the lung is well correlated
with the probability of normal tissue complication associ-
ated with treatment (Theuws et al. 1998).
The other modification we made was to add upper-bound

constraints to control the dosage fluctuations within the
tumor. In particular, we constrained the maximum dose in
the tumor to be no more than 10% above the minimum
dose. Using a minimum dose of 72 Gy for the tumor meant
that the maximum dose within the tumor did not exceed
79.2 Gy. This is slightly more stringent than the current
standards, which require that the dose in the tumor be no
more than 5% below or 7% above the prescribed dose
(a gap of 12%, or 12.6% above the minimum). We found
that these modifications produced acceptable solutions, so
we did not further refine the formulation. Of course, for
very complex cases, constraints that limit the dose to cer-
tain healthy structures will be needed. These types of con-
straints can be added to our model without major revisions
of the theory we presented. The robust formulation used in
the subsequent runs is shown in (16):

minimize
w

∑

v∈%

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"

∑

x∈X
,v$x$bp̃!x"wb " +v

∀v ∈$ $ ∀ p̃ ∈ PU $
∑

b∈"

∑

x∈X
,v$x$bp̃!x"wb ! .+v

∀v ∈$ $ ∀ p̃ ∈ PU $

wb " 0 ∀b ∈"(

(16)

As mentioned above, . = 1(1 and +v = 72 for all v ∈$ .
The anatomy was discretized into voxels of size

2.93 mm × 2.5 mm × 2.93 mm, resulting in a total of
110,275 voxels, 5,495 of which were in the tumor. Radia-
tion was delivered from five angles at 0) (directly anterior),
52), 104), 156), and 208), which resulted in a total of 1,625
beamlets (of size 5 mm × 5 mm). We modeled the sup-
port of the motion p.d.f.s using five phases of the breathing
cycle. Our uncertainty set allowed the value of the real-
ized p.d.f. to differ from the nominal one in every phase x,

which corresponded to setting U = X. The nominal p.d.f.
was taken from the pretreatment RPM trace of the current
patient.
We conducted a series of experiments using p.d.f. data

derived from five patients. In each experiment, the p.d.f.s
corresponding to four patients were used to construct the
uncertainty set (in the notation of Equations (14) and (15),
we have m= 4), and the p.d.f. data from the fifth patient
was used to test the resulting optimized solutions. This is
meant to simulate the realistic situation where the uncer-
tainty set may be generated from past data, whereas the
p.d.f.s realized during treatment may lie outside this uncer-
tainty set. Each experiment used a different combination of
four patients (out of the five total patients) to generate the
uncertainty set. Below, we present two cases that represent
the experiments that showed the least and most difference
between the nominal and robust solutions in terms of tumor
coverage, respectively.
For the first experiment, we used data from four patients

totaling 250 traces (multiple RPM traces are taken during
most fractions) to generate the uncertainty set according to
Equations (14) and (15). Then, to measure the quality of the
resulting optimized solutions, we used 78 p.d.f.s from the
fifth patient. We compare the performance of the nominal,
robust, and margin solutions below. The three formulations
were optimized using the barrier algorithm of CPLEX 9
on a 3 GHz computer with 3 GB of memory. Table 1 shows
the number of variables and constraints in each formulation,
along with the associated solution times.
With an optimal solution, w∗, of one of these formula-

tions in hand, we can simulate its delivery by computing

∑

b∈"

∑

x∈X
,v$x$bp̃!x"w

∗
b

for each voxel v ∈ # , where p̃ is a particular realized
p.d.f. Different p̃ in this equation lead to different delivered
dose distributions. In the case of the robust formulation,
for example, a p̃ that lies within the uncertainty set will
guarantee

∑

b∈"

∑

x∈X
,v$x$bp̃!x"w

∗
b " +v ∀v ∈$ (

A useful way of visualizing three-dimensional dose dis-
tributions is through a dose-volume histogram (DVH).
A DVH illustrates what fraction of a particular organ of
interest receives (at least) a certain level of dose. Fig-
ures 1, 2, and 3 show the DVHs corresponding to the

Table 1. Basic information regarding the three
formulations.

Nominal Robust Margin

Number of variables 1$625 67$565 1$625
Number of constraints 10$990 65$940 54$950
Solution time (in min.) 3 13 9
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Figure 1. Nominal solution DVHs for 78 realized
p.d.f.s.
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results of delivering the nominal, robust, and margin solu-
tions, respectively, for the different realizations of p̃. The
main organs of interest in this study are the tumor and
left lung (in which the tumor resides), whereas secondary
organs-at-risk (due to their relative remoteness, in this case)
are the esophagus, spinal cord, and heart. These three fig-
ures overlay the 78 DVHs (one for each realized p.d.f.) on
the same axes, resulting in blurred lines that highlight the
range of possible DVHs achievable with these realizations
of the uncertain p.d.f. The vertical line at 72 Gy in the
figures illustrates the location of the minimum dose require-
ment for the tumor. We will adopt the terminology of Chu
et al. (2005) and refer to these figures as DVH clouds. Note
that although our DVH clouds are quite narrow, the nomi-
nal solution exhibits more “blurriness” in the tumor cloud
near 70 Gy and 80 Gy. That is, there is more variabil-
ity in what fraction of the tumor receives a sufficient dose

Figure 2. Robust solution DVHs for 78 realized p.d.f.s.
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Figure 3. Margin solution DVHs for 78 realized p.d.f.s.
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(equivalently, gets underdosed) and what fraction receives
the most dose. The fact that the tumor DVH clouds for
the robust and margin solutions exhibit sharper falloffs is
indicative of their increased robustness to the uncertain
p.d.f.s. For comparison, Figure 4 plots the three solutions
for one particular realized p.d.f. on the same axes. It can be
seen that the nominal and robust solutions typically deliver
less dose than the margin solution to the healthy tissue,
especially in the left lung, which is the main organ-at-risk
here. However, the nominal solution produces an inferior
dose distribution in the tumor, increasing both the frac-
tion of the tumor that gets underdosed and overdosed, as
compared to the robust and margin solutions. Also, it is
interesting to note that although the margin solution deliv-
ers the most homogeneous dose to the tumor (as evidenced
by the tumor DVH line that is closest to vertical), it is out-
performed by the robust solution near the minimum dose
requirement. That is, the robust solution exhibits a steeper

Figure 4. The nominal, robust, and margin solution
DVHs for one realized p.d.f.
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initial dropoff in its DVH line. This is due to the fact that
the margin solution enforces tumor coverage in every phase
of the breathing cycle, whereas the robust solution pro-
vides tumor coverage averaged over the phases (based on
the family of p.d.f.s in the uncertainty set).
Numerical data from these three solutions are also sum-

marized in Table 2.
Note that the robust solution essentially ensures that

the tumor receives the required dose (only an average 1%
underdose), while significantly reducing the dose delivered
to the healthy tissue, especially to the left lung where the
integral dose delivered is reduced by roughly 11%, as com-
pared to the margin solution. In fact, less than 0.6% of the
tumor volume, on average, receives less than 72 Gy, which
makes this robust solution clinically acceptable. Although
the nominal solution performs the best in terms of dose
minimization, it also allows an unacceptable 6% average
underdose to over 4% of the tumor volume. Furthermore,
the worst-case realization of these 78 trials for the nominal
solution results in an 8% underdose (66.30 Gy), whereas
the worst-case realization for the robust solution results in
only a 1% underdose (71.23 Gy).
The results for the experiment that showed the greatest

improvement in tumor coverage of the robust solution over
the nominal solution are summarized in Table 3. In this
experiment, 276 p.d.f.s were used to generate the uncer-
tainty set, and 52 p.d.f.s were used to test the optimized
solutions.
In this experiment, note that the robust solution is able to

maintain almost 100% tumor coverage (0.13% underdose
to roughly 0.2% of the tumor) on average when tested with
the 52 p.d.f.s, whereas the nominal solution underdoses by
almost 11% on average (to roughly 6% of the tumor). It is
important to recognize that the statistics related to healthy
tissue and left lung dosage are very similar to those pre-
sented in Table 2. This is true of all the other experiments

Table 2. This table compares the nominal, robust, and
margin formulations using the average of the
78 p.d.f.s. This experiment showed the least
difference between the nominal and robust
solutions in terms of tumor coverage.

Nominal Robust Margin

Gy % Gy % Gy %

Minimum dose 67(72 94(06 71(40 99(17 72(04 100(06
delivered in tumor

Integral dose to 17(40 85(29 18(23 89(36 20(40 100(00
left lung

Integral dose to 9(04 88(98 9(44 92(91 10(16 100(00
normal tissue

Notes. The left subcolumns represent values in Gy, whereas the
right subcolumns are percentages. The first-row percentages are
relative to 72 Gy, which is the desired dose level, whereas the next
two rows are quoted as a percentage of the dose delivered by the
margin solution.

Table 3. This table compares the nominal, robust, and
margin formulations using the average of 52
p.d.f.s. This experiment showed the greatest
difference between the nominal and robust
solutions in terms of tumor coverage.

Nominal Robust Margin

Gy % Gy % Gy %

Minimum dose 64(26 89(25 71(91 99(87 72(05 100(07
delivered in tumor

Integral dose to 17(18 85(11 18(02 89(27 20(18 100(00
left lung

Integral dose to 8(99 88(92 9(39 92(89 10(11 100(00
normal tissue

Notes. The left subcolumns represent values in Gy, whereas the
right subcolumns are percentages. The first-row percentages are
relative to 72 Gy, which is the desired dose level, whereas the next
two rows are quoted as a percentage of the dose delivered by the
margin solution.

as well. Overall, these experiments suggest that, unlike
nominal solutions, robust solutions can maintain consis-
tently acceptable tumor coverage when tested with different
realized p.d.f.s, all other things being equal.
In accordance with the theory we presented, our results

suggest that the robust solution combines the dose mini-
mization capability of the nominal solution with the robust-
ness of the margin solution. Viewed another way, the robust
formulation is facilitating the trade-off between dose min-
imization and protection from uncertainty. With these two
competing objectives in mind, Figure 5 shows the relevant
data points from Table 2 to illustrate this trade-off. In fact,
by computing the optimal solution of the robust formulation
for various uncertainty sets, we may map out the Pareto
surface of robust solutions. In effect, Figure 5 provides a
rough bound on this surface using only three data points.
By creating an appropriate uncertainty set for the patient at
hand, solving the robust formulation will identify the point
on the Pareto surface that best trades off dose minimization
with uncertainty management.

Figure 5. An approximation of the Pareto surface
generated by the robust formulation.
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6. Conclusions
In this paper, we develop a robust approach to the manage-
ment of motion uncertainty in the optimization of intensity-
modulated radiation therapy treatments. We considered
uncertainty in the probability density function describing
motion and incorporated a suitable model of uncertainty
into a linear optimization problem. Because the correspond-
ing uncertainty set was a polyhedral set, the resulting robust
counterpart remained a linear program. We showed that the
robust formulation generalized current mathematical pro-
gramming approaches to IMRT optimization, and compared
the robust solution’s performance to a nominal (aggressive
solution based on complete knowledge of the underlying
motion) and margin (conservative solution based on min-
imal knowledge of the underlying motion) solution on a
clinical lung case. Our experiments showed that whereas
the nominal solution allowed anywhere between an unac-
ceptable 6% to 11% underdose in the tumor, the robust
solution consistently provided nearly the same level of
protection as the margin solution, allowing around a 1%
underdose on average. In addition, the robust solution also
managed to consistently lower the dose delivered to the left
lung (the main organ-at-risk) by almost 11% as compared
to the margin solution. Finally, we positioned our robust
approach as a method to rigorously trade off competing
objectives, and sketched the associated Pareto surface.
In our numerical implementation, we assumed that vari-

ations of the breathing phases as seen in an external
surrogate (the RPM signal) were highly correlated with
internal breathing variations. As progress is made in image-
guided treatments and more real-time data of internal
anatomy movements are available, hopefully reliance on
such an assumption will diminish. However, even image-
guided treatments will not be error-free, so the need for
robust methods to incorporate these measurements into the
treatment-planning routine will still exist. Although we
focused only on motion uncertainty in this paper, there are
clearly other sources of uncertainty that can benefit from a
similar robust approach.
Finally, we note that our approach essentially assumed

that the radiation would be delivered in “one shot” as
opposed to over many treatment fractions. By consider-
ing optimization on a day-to-day basis, it should be clear
that our current “open-loop” policy will benefit from feed-
back acquired over the course of a treatment. Therefore,
robustifying adaptive treatments based on data acquired
throughout treatment is a relevant extension of the work
presented here.

Appendix. Proofs
Proof of Proposition 2. Let / be the optimal dual vari-
able corresponding to the equality constraint in (7). Then,
there exists a p̂ that minimizes

∑
x∈U p̂!x"!dv$x!w" − /"

subject to the constraints − p!x" ! p̂!x" ! p̄!x" for all
x ∈ U , which is also an optimal solution for the original

problem (7). In such an optimal solution, p̂!x" must be
set to its lower (respectively, upper) bound − p!x" (respec-
tively, p̄!x"), for every x for which dv$x!w" >/ (respec-
tively, dv$x!w" </ ). The result follows by examining the
value of the objective function at this optimal solution. #
Proof of Proposition 4. If U =(, then PU = p and the
robust formulation is equivalent to the nominal formulation.
Next, we will prove the equivalence of the dosimetric mar-
gin formulation (13) and the robust formulation (4) with

PX =
{
p̃ ∈!!X!# 0! p̃!x"! 1 ∀x ∈X'

∑

x∈X
p̃!x"= 1

}

in place of PU and + in place of +v:

minimize
w

∑

v∈#

∑

b∈"

∑

x∈X
,v$x$bp!x"wb

subject to
∑

b∈"

∑

x∈X
,v$x$bp̃!x"wb " +

∀v ∈$ $ ∀ p̃ ∈ PX$

wb " 0 ∀b ∈"(

(17)

Let w be a feasible solution to the robust problem (17).
Pick an arbitrary x̄ ∈X and define

p∗!x"=






1 if x= x̄$

0 otherwise(

Then, for any v ∈$ ,

∑

b∈"
,v$ x̄$bwb =

∑

b∈"

∑

x∈X
,v$x$bp

∗!x"wb " +$

which demonstrates that w is feasible for the dosimetric
margin problem (13). For the converse, assume that w is
feasible for (13), and let p̃ ∈ PX . For any v ∈$ ,

∑

b∈"

∑

x∈X
,v$x$bp̃!x"wb "

∑

x∈X
+p̃!x"= +( #
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