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Abstract
In radiation therapy, intensity maps involving margins have long been used to
counteract the effects of dose blurring arising from motion. More recently,
intensity maps with increased intensity near the edge of the tumour (edge
enhancements) have been studied to evaluate their ability to offset similar
effects that affect tumour coverage. In this paper, we present a mathematical
methodology to derive margin and edge-enhanced intensity maps that aim to
provide tumour coverage while delivering minimum total dose. We show that
if the tumour is at most about twice as large as the standard deviation of the
blurring distribution, the optimal intensity map is a pure scaling increase of the
static intensity map without any margins or edge enhancements. Otherwise, if
the tumour size is roughly twice (or more) the standard deviation of motion,
then margins and edge enhancements are preferred, and we present formulae
to calculate the exact dimensions of these intensity maps. Furthermore, we
extend our analysis to include scenarios where the parameters of the motion
distribution are not known with certainty, but rather can take any value in some
range. In these cases, we derive a similar threshold to determine the structure
of an optimal margin intensity map.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of margins has long been studied and implemented in practice as a technique to
mitigate the effects of any phenomenon that may degrade treatment quality in radiation
therapy. Margins have been employed to combat everything from setup uncertainty to motion
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to imaging artefacts (International Commission on Radiation Units and Measurements 1999).
Their ubiquity in treatment planning is a testament to their effectiveness, relative ease of
implementation, but also lack of dominant substitutes. Due to the inherent trade-off in using a
margin (increased likelihood of tumour coverage versus increased dose to the healthy tissue),
the question of minimizing the size of the margin while maintaining its efficacy is of great
interest. While many empirical studies have focused on applying margins to clinical cases
and proposed methods to reduce the size of the margin, others have taken a more theoretical
approach to analysing margins and produced rules of thumb to govern their design (Balter
et al 1995, Goitein 1985, Ekberg et al 1998, Roach et al 1994, van Herk et al 2000). In
particular, the seminal work presented in van Herk et al (2000) generated a significant leap in
the understanding and design of margins. One of the goals of this paper will be to introduce
a new method of determining optimal margins in the face of (known) motion, and produce
rules of thumb that tell us when to use a margin and exactly what size it should be. We will
focus on parameters specific to an individual such as tumour size and standard deviation of
motion in order to deterministically derive tailored margins. We will characterize optimal
margin intensity maps (i.e. the derived margin width) in the presence of motion with a known
distribution. Through our analysis, we will also address the question of when it may be
advantageous to simply increase the intensity of the static beam without a margin expansion.
Our effort to derive optimal margins is similar to calculating ideal spatial dose distributions
(Sir et al 2006), though our mathematical formulations are different.

The concept of an ‘edge-enhanced’ intensity map was first introduced and studied in
the context of mitigating the effects of beam penumbra (Biggs and Shipley 1986, Lind et al
1993, Mohan et al 1996, Dirkx et al 1997, Brugmans et al 1999, Sharpe et al 2000). More
recently, edge-enhanced intensity maps have been used to combat the effects of motion when
the distribution is known (Lof et al 1995, Unkelbach and Oelfke 2004, Trofimov et al 2005)
and when the distribution is unknown (Chan et al 2006, Bortfeld et al 2008). Edge-enhanced
intensity maps are characterized by areas of high intensity at the edge of the tumour, coupled
with lower, uniform intensity in the interior of the tumour. In the face of motion uncertainty,
edge enhancements were optimized to be a specific combination of intensity modulation and
intensity homogeneity that allowed the intensity map to effectively balance the competing
requirements of dose minimization and tumour coverage (Bortfeld et al 2008). Though these
edge-enhanced intensity maps have become more prevalent in the literature through empirical
studies, there has been no analytical characterization of their ‘optimal’ size. Therefore, the
second aim of this paper is to provide the first such characterization (i.e. specify the derived
height and width of the edge enhancements); along the lines of the analysis we will conduct
for optimal margin sizes and known motion.

The third topic we will address is the topic of robustness and motion uncertainty. It is
important to understand the effects of motion when we do not have a complete characterization
of its distribution since wrongly assuming the reproducibility of a specific motion trajectory
can cause serious dosimetric errors (Sheng et al 2006). This is what we refer to as ‘motion
uncertainty’. It is well understood that motion may have a large impact on treatment quality
(Bortfeld et al 2002, Goitein 2004, Webb 2006), but much analysis and experimentation often
hinges on the knowledge of said motion (Zhang et al 2004, Trofimov et al 2005, Unkelbach
and Oelfke 2004). If the motion is perfectly reproducible, periodic or known with certainty, we
do not consider it a source of uncertainty. That is not to say that it does not have the potential
to seriously degrade the quality of a treatment. We simply separate into two situations the
cases where we assume a known motion distribution and its associated parameters, and those
cases where the exact motion distribution is not completely specified a priori (i.e. motion
uncertainty). Therefore, the third aim of this paper is to extend our optimal margin analysis
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from the realm of known motion to motion uncertainty. More precisely, we will explore the
sensitivity of solutions to motion uncertainty and demonstrate that optimized margins can
easily be derived to mitigate this uncertainty.

The rest of the paper is organized as follows. In section 2, we describe the problem
geometries to be analysed, the structural characteristics of margin and edge-enhanced intensity
maps, the type of motion and motion uncertainty under consideration, and the mathematical
formulations used to derive the optimal intensity maps. In section 3, we will address the
following three questions.

(i) What is the analytical structure of an optimal margin intensity map in the presence of
motion with a known distribution (also, when is a positive margin better than simply
increasing the intensity, with no margin expansion)?

(ii) How does the analytical structure of a margin intensity map change to compensate for
motion with an unknown distribution (also, how sensitive are treatment plans to motion
uncertainty)?

(iii) What is the analytical structure of an optimal edge-enhanced intensity map in the presence
of motion with a known distribution (also, when are edge enhancements better than
margins or simply increasing the intensity)?

Last, we synthesize our findings in section 4. Portions of this work are derived from Chan
(2007), where the mathematical proofs that are omitted from this paper may be found.

2. Methods

In this paper, we focus on one-dimensional geometries, though an extension to three
dimensions is summarized in appendix C and described in full detail in Chan (2007). Initially,
the one-dimensional tumour is subjected to motion following a one-dimensional Gaussian
distribution with known mean and standard deviation. The first objective is to design static
intensity maps (restricted in structure to margin and edge-enhanced intensity maps) that
simultaneously ensure tumour coverage, while minimizing the total dose delivered. Then, we
extend our analysis to consider motion uncertainty, where the mean and standard deviation of
the Gaussian are not known with certainty, but lie in intervals representing a range of possible
parameter values. As a result, the structures of the optimal static intensity maps are revised to
take into account the parameter uncertainty.

In the next few subsections, we specify the geometries considered, introduce mathematical
notation that will be used throughout the remainder of this paper and present the optimization
formulations that will be used to derive both kinds of optimal intensity maps.

2.1. Problem setup

We consider a one-dimensional tumour of length t, centred at the origin that requires one unit of
dose (uniformly) throughout. This geometry is used primarily to build intuition and motivate
further analyses on this topic. The tumour is subjected to Gaussian motion with mean µ and
standard deviation σ . The motivation for this motion model is multi-fold. First, motion that is
not Gaussian by nature (e.g. breathing motion) has been observed to converge to a Gaussian
distribution if baseline corrections are not made (Engelsman et al 2005). Second, random setup
uncertainty is a type of motion that has been shown to follow a Gaussian distribution (Schewe
et al 1996). Third, extensions of this analysis to multiple sources of uncertainty will be aided by
assuming a Gaussian distribution since many errors with arbitrary distributions will converge
to a Gaussian. In fact, one could interpret the two Gaussian parameters as incorporating two
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different types of uncertainty: σ for random errors and µ for systematic errors. Fourth, a
practical consideration is that a Gaussian has attractive analytical properties that facilitate the
subsequent analysis. While we have focused on one-dimensional Gaussian motion, extensions
to multiple dimensions (especially with radial symmetry) are logical follow-ons. We will use
φ to denote the standard normal (Gaussian) probability density function (PDF) and # to denote
its cumulative distribution function (CDF):

φ(x) = 1√
2π

e−x2/2, #(x) =
∫ x

−∞
φ(z) dz. (1)

In the case of motion uncertainty, we assume that the uncertain mean, µ̃, lies in the interval
[µ,µ] and similarly, σ̃ lies in the interval [σ , σ ]. While the true mean and standard deviation
can be anywhere in their respective intervals (and therefore unknown a priori), the endpoints
of these intervals are assumed to be known. Therefore, the determination of intensity maps
that ensure tumour coverage needs to account for all possible means and standard deviations
in these intervals. It is important to make the distinction between ‘motion’ versus ‘motion
uncertainty’ here. In the first case, the mean and standard deviation of the Gaussian are known
a priori, so while there is motion present, it does not necessarily imply uncertainty (only that
we must appropriately account for this motion). On the other hand, motion uncertainty implies
that there is some specific aspect of the motion that is unknown to us and only can be learned
upon treatment (or retrospectively). We may assume that the motion belongs to a certain
family of distributions and that its parameters are within some general bounds, but the exact
values of these parameters are unknown during the treatment design phase. Therefore, not only
must we account for the motion, we must also account for all of the different possible motion
distributions that may be realized for different realizations of the underlying parameters.

Finally, we ignore the effects of geometric and radiation penumbrae. While this
assumption is mainly for the sake of analytical convenience, it is not particularly restrictive.
First, the dosimetric effects of geometric penumbra tend to be negligible and dominated by
those of the radiation penumbra (Thomas 1994). Furthermore, both effects can be modelled
using Gaussian distributions (Ulmer and Harder 1995). Since the sum of Gaussian random
variables is Gaussian (Bertsekas and Tsitsiklis 2002), we may assume that the Gaussian
motion distribution used in this paper also accounts for the effects of these other penumbrae;
this is another benefit of modelling the motion as a Gaussian. Even though we only focus on
motion, the results presented in this paper can be interpreted as including multiple penumbrae
by simply decomposing the Gaussian standard deviation into its component parts: separate
terms for motion, geometric penumbra, and radiation penumbra. Therefore, references to
the standard deviation of motion can be thought of as the standard deviation of the blurring
distribution (that might be comprised of all three penumbra effects).

Now, let us define the two families of intensity maps to which we will restrict our search
of optimal solutions: margins and edge enhancements.

2.2. Margin intensity maps

In the absence of motion, the optimal intensity map is a ‘square wave’ with a height of
one, length of t, and centred on the tumour—that is, it replicates the shape of the tumour
exactly. In the presence of motion, the dose delivered is blurred (Bortfeld et al 2004), which
mathematically corresponds to a convolution of the motion probability density function (PDF)
with the static delivered intensity map (Lujan et al 1999, Engelsman et al 2005, Bortfeld
et al 2002). In our setup, when the square wave intensity map is convolved with a Gaussian,
the resulting function has a height strictly less than one (due to the fact that the Gaussian
integrates to one and is positive on the entire real line), which means that the tumour is being
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Figure 1. Dose delivered using a margin plus intensity scaling.

underdosed. There are two options to improve tumour coverage. One possibility is simply
to deliver more than one unit of dose in the initial intensity map. The other possibility is to
add a positive, isotropic margin around the tumour. Note that in the second case, a positive
scaling (increase) of the intensity will still be required to achieve coverage (again, due to the
convolution with the Gaussian). Our goal is to find a margin intensity map that minimizes the
total dose delivered while ensuring that sufficient dose is delivered to the tumour even after
the intensity map is convolved with a Gaussian PDF. As part of this analysis, we will determine
precisely when an optimal intensity map should have no margin (and simply scale the initial
intensity map of length t) versus when an optimal intensity map should have a positive margin.
Figure 1 illustrates the dose blurring, margin and intensity scaling concepts.

Let us now precisely define some notation and the concept of a margin intensity map. A
margin intensity map has an isotropic margin of width m ! 0 around an intensity map with
the same width as the tumour, resulting in an intensity map of width t + 2m. Formally, we
define a static intensity map with a margin of size m, centred at the origin, to be

δm(x) =
{

1, x ∈ [−t/2 − m, t/2 + m],

0, otherwise.
(2)

Furthermore, we define dm(y;µ, σ ) to be the dose delivered to point y, when a static intensity
map with margin size m is convolved with a Gaussian PDF with mean µ and standard deviation
σ . Hence,

dm(y;µ, σ ) = #

(
y + t/2 + m − µ

σ

)
− #

(
y − t/2 − m − µ

σ

)
. (3)
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Intuitively, an optimal intensity map should be centred on the tumour, so without loss of
generality, we assume that µ = 0 so that the tumour, the intensity map and the delivered dose
profile are all centred at the origin.

With a margin of size m, the total dose delivered before scaling the intensity map is t +2m.
Let γ be a variable that defines the multiplicative factor by which the total intensity map is
scaled. We then have the following mathematical formulation of the problem of finding an
intensity map that ensures tumour coverage at lowest total dosage:

minimize
m,γ

γ (t + 2m)

subject to γ dm(y; 0, σ ) ! 1, ∀ y ∈ [−t/2, t/2],

m, γ ! 0.

(4)

For a given margin size m, we define γ ∗
m to be the optimal (minimal) scaling factor. Note

that γ should be as small as possible while ensuring that the constraint in (4) is satisfied; this
implies that at some point y in the tumour, the constraint should hold with equality. Given
the symmetry and unimodal natures of both the tumour and the Gaussian, the lowest point of
dose in the tumour after convolution will be at its edge (at y = t/2 or y = −t/2). As long as
the edge of the tumour receives enough dose, the entire tumour will receive enough dose. By
inserting y = t/2 or y = −t/2 into the constraint in (4) and changing it to an equality, we get
the following equation for γ ∗

m:

γ ∗
m = 1

#
(

t+m
σ

)
− #

(−m
σ

) = 1
#

(
m
σ

)
− #

(−t−m
σ

) . (5)

Using the equation for γ ∗
m, formulation (4) can be simplified to

minimize
m

f (m)

subject to m ! 0,
(6)

where

f (m) := γ ∗
m(t + 2m) = t + 2m

#
(

t+m
σ

)
− #

(−m
σ

) . (7)

The function f (m) describes the total dose delivered by an intensity map that ensures
tumour coverage, as a function of m. Our goal is to derive an optimal margin size (optimal
value for m, from which the optimal scaling factor γ ∗ will follow) for any problem instance
(a given t and σ ). Section 3.1 summarizes the results of our analysis.

2.3. Margins under uncertainty

In the case of motion uncertainty, we have an uncertain mean, µ̃, and standard deviation σ̃ , that
may lie anywhere in the range [µ,µ] and [σ , σ ], respectively. These intervals characterize the
range of possible realizations of the uncertain parameters. As in formulation (4), our objective
is to minimize the total dose delivered while ensuring tumour coverage. However, with an
uncertain mean and standard deviation, we wish to ensure tumour coverage under any possible
realization of µ̃ and σ̃ . An intensity map that guarantees tumour coverage while minimizing
total dose in this situation will be called an optimal ‘robust’ solution.

The quantity µ̃ can be dealt with in a straightforward manner. The requirement of
tumour coverage for all µ̃ ∈ [µ,µ] is equivalent to requiring tumour coverage for a tumour
that is µ − µ units larger than t. Thus, we centre the beam at (µ + µ)/2, shift the origin
of our coordinate system to this location and define the ‘effective tumour’ as the interval
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[−t/2 − (µ − µ)/2, t/2 + (µ − µ)/2]. The effective tumour is the minimal region that needs
to be irradiated to the desired dose level.

With µ̃ accounted for, let us pose our robust optimization problem as
minimize

m,γ
γ (t + 2m)

subject to γ dm(y; 0, σ̃ ) ! 1, ∀ y ∈ {effective tumour}, ∀ σ̃ ∈ [σ , σ ],

m, γ ! 0.

(8)

Problem (8) appears to have a very similar structure to problem (4). In fact it turns out that
they have the same structure when suitable adjustments are made for the uncertainty in the
mean and standard deviation. In particular, problem (8) is equivalent to

minimize
m

t+2m

#( t+m
σ

)−#
(

−m
σ

)

subject to m ! 0,
(9)

where t = t + µ − µ. In other words, if we replace t with t + µ − µ (the size of the effective
tumour) and σ with σ (the maximal standard deviation in its range), all of the results and
intuition derived for the ‘no uncertainty’ case hold. To understand how we get formulation
(9), consider the dose delivered function accounting for the effective tumour, margin of size
m and σ̃ :

dm(y; 0, σ̃ ) = #

(
y + t/2 + m + (µ − µ)/2

σ̃

)
− #

(
y − t/2 − m − (µ − µ)/2

σ̃

)
. (10)

To determine γ ∗
m, we follow the same argument as in section 2.2. For any σ̃ , the lowest dose

delivered to the effective tumour will occur at its edge. Since larger values of σ̃ increase
the spread of dose or dose blurring (the function d decreases with increasing σ̃ ), we need to
protect against the largest value of σ̃ , namely, σ . Therefore, plugging y = t/2 + (µ − µ)/2
and σ̃ = σ into the equation for dm(y; 0, σ̃ ), setting its reciprocal equal to γ and replacing γ

in the objective function of formulation (8), we arrive at the equivalent formulation (9). Our
goal is to derive an optimal margin size (optimal value for m) for any problem instance of
the robust problem (a given t, [µ,µ] and [σ , σ ]). Section 3.2 summarizes the results of our
analysis.

2.4. Edge-enhanced intensity maps

Edge enhancements differ from margins in that they provide the flexibility to scale the intensity
delivered around the edge of the tumour without modifying the intensity near the middle of
the tumour. We adopt a stylized model of edge enhancements where the increased intensity
delivered at the edge of the tumour is uniform across the increase (a rectangular ‘horn’).
An edge-enhanced intensity map retains the margin variable m, but adds a variable l that
describes the width of the part of the edge enhancement that extends into the tumour. Finally,
there is a variable h that describes the height of the edge enhancements above the desired
dose level. Note the difference between h and γ from the margin intensity map. Variable h
is an additive amount above the required dose level, whereas γ was a multiplicative factor
that scales the entire intensity map (for example, h = 1 means that the maximum height of
the edge-enhanced intensity map is 2, whereas γ = 1 means that the maximum height of the
margin intensity map is 1). Due to the symmetry of the Gaussian distribution, we only consider
symmetric intensity maps; however, it would be possible to construct a non-symmetric edge-
enhanced intensity map if the motion distribution was skewed in a certain direction (a skewed
motion distribution and non-symmetric edge enhancements were observed in Chan et al
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Figure 2. An edge-enhanced intensity map.

(2006)). Figure 2 illustrates the relevant variables associated with an edge-enhanced intensity
map.

As before, we assume that the beam of radiation is centred on the tumour, and both are
centred at the origin. We define the static edge-enhanced intensity map, δm,l,h(x), to be

δm,l,h(x) =






1, x ∈ (−t/2 + l, t/2 − l),

1 + h, x ∈ [−t/2 − m,−t/2 + l] ∪ [t/2 − l, t/2 + m],
0, otherwise.

(11)

We constrain l to be at most t/2, since the two edge enhancements would overlap if l > t/2.
Furthermore, note that the special case where l = t/2 is exactly the margin problem from
the previous subsection (except for the slight difference in interpretation between h and γ

mentioned earlier).
Convolving δm,l,h(x) with a Gaussian PDF with mean µ and standard deviation σ , we

write the delivered dose dm,l,h(y;µ, σ ), as a function of y, as

dm,l,h(y;µ, σ ) = (1 + h)#

(
y + t/2 + m − µ

σ

)
− h#

(
y + t/2 − l − µ

σ

)

+ h#

(
y − t/2 + l − µ

σ

)
− (1 + h)#

(
y − t/2 − m − µ

σ

)
. (12)

The total dose delivered is simply the area under the edge-enhanced intensity map, which is
f (m, l, h) := 2(m + l)(1 + h) + t − 2l = t + 2m + 2(m + l)h. Hence, we can formulate the
problem as follows:
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minimize
m,l,h

t + 2m + 2(m + l)h

subject to dm,l,h(y; 0, σ ) ! 1, ∀ y ∈ [−t/2, t/2],

l " t/2,

m, l, h ! 0.

(13)

Similar to how γ ∗ was written as a function of m in the margin case, the optimal value of
h can be written as a function of m and l. This relies on the fact that the edge of the tumour
is the most susceptible to being underdosed. The validity of this statement is not obvious;
it might seem possible for an edge-enhanced intensity map to ensure sufficient dose to the
tumour’s edge but not its centre. But we can prove that as long as the edge of the tumour
receives enough dose, the middle of the tumour is guaranteed to also receive enough, for any
edge-enhanced intensity map. Conversely, if the middle of the tumour is underdosed, then
the edge of the tumour will also be underdosed. These statements require a formal proof,
which is given in Chan (2007). After expressing h in terms of m and l, and after simplifying
formulation (13), we arrive at

minimize
m,l

f (m, l)

subject to m ! 0, 0 " l " t/2,
(14)

where

f (m, l) := t + 2m + 2(m + l)
1 − #

(
t+m
σ

)
+ #

(−m
σ

)

#
(

t+m
σ

)
− #

(−m
σ

)
− #

(
t−l
σ

)
+ #

(
l
σ

) . (15)

As an aside, recall that setting l = t/2 recovers the margin problem. We can check this easily
by noting that

f (m, t/2) = t +
2m

(
1 − #

(
t/2
σ

)
+ #

(
t/2
σ

))
+ t

(
1 − #

(
t+m
σ

)
+ #

(−m
σ

))

#
(

t+m
σ

)
− #

(−m
σ

)
− #

(
t/2
σ

)
+ #

(
t/2
σ

) (16)

= t + 2m

#
(

t+m
σ

)
− #

(−m
σ

) , (17)

which is the same as the objective function in the margin problem.
Our goal is to derive an optimal edge-enhanced intensity map (optimal values for m, l and

h) for any problem instance (a given t and σ ). In section 3.3, we will demonstrate our solution
to this optimization problem and its implications.

3. Results

The analytical results presented in the upcoming sections were derived by analysing the
structure of the dose deposition functions f (m) (for margins) and f (m, l) (for edge
enhancements). Complete details of the mathematical analyses conducted can be found
in Chan (2007). All computational results were derived using simple function minimization
routines in the ‘Optimization Toolbox’ in Matlab.

3.1. Optimal margins

3.1.1. Analytical results. For every value of t and σ , there is a unique margin size m∗

that minimizes the total dose delivered function f (m). The ratio t/σ is all that is needed to
determine the structure of the optimal margin size. If t/σ " u∗ ≈ 2.28, then the optimal
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Figure 3. The ratio of the optimal margin size to σ and optimal scale factor as a function of the
ratio of the tumour size to σ for a 1D tumour.

margin size is m∗ = 0. If t/σ > u∗, then the optimal margin size is positive and can be
determined by solving a nonlinear equation derived from the optimality condition f ′(m) = 0:

2

(∫ m+t
σ

−m
σ

1
2σ

e− x2
2 dx

)

− t + 2m

σ
√

2π

(
e− (m+t)2

2σ2 + e− m2

2σ2

)
= 0. (18)

It is important to note that the threshold u∗ is a fundamental constant derived in our analysis
and is independent of all the problem parameters. Its exact value is only affected by our
assumption that the underlying motion distribution is Gaussian. Different distributions may
result in different thresholds.

Figure 3 depicts the relationships between the optimal margin size, corresponding scaling
factor and the tumour size. As the tumour size increases, the optimal margin size increases
and the intensity scaling decreases. Adding a larger margin reduces the underdose to the
tumour and, therefore, reduces the intensity scaling needed to guarantee tumour coverage.
Note that in practical situations where the extent of the motion cannot be arbitrarily large, an
optimal solution could involve a positive margin without any intensity scaling (γ ∗

m∗ = 1). In
our framework, this situation appears (approximately) when the standard deviation is much
smaller than the size of the tumour, in which case the intensity scaling approaches 1. We
provide an example in appendix B to show that the optimal intensity map may involve a
margin with no scaling of the intensity, when the motion PDF is positive only over a bounded
domain.

3.1.2. Implications. Our structural results establish that if the tumour size is not more than
2.28 times the standard deviation of the motion (t/σ " 2.28), then the optimal margin size
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is 0. With a margin size of zero, tumour coverage is achieved purely through a positive scaling
of the intensity. This result has a very intuitive interpretation. For small tumours, adding a
margin around the tumour is less desirable than simply increasing the intensity of the static
intensity map because a margin would be contributing a lot of dose relative to the size of the
tumour. If t/σ < 2.28, then we can think of the tumour as being roughly of the same size as the
magnitude of the motion, which for realistic amplitudes, implies that the tumour is small. For
example, if the standard deviation of the motion amplitude is 0.5 cm, then t/σ < 2.28 implies
that the tumour is roughly 1 cm or smaller. On the other hand, if t/σ > 2.28, the motion can
be thought of as relatively small compared to the size of the tumour, and therefore, adding a
small margin around the tumour will only contribute a small increase in the dose delivered
to the healthy tissue, relative to the dose delivered to cover the tumour itself. Furthermore,
the nonlinear equation (18) is easy to solve numerically, which makes computing the optimal
margin size straightforward.

3.2. Optimal margins under motion uncertainty

3.2.1. A motivational example. We provide motivation by illustrating the negative effects
of motion uncertainty when intensity maps are not robust. Consider a tumour spanning the
interval [−1, 1], µ̃ ∈ [−1/2, 1/2] and σ̃ ∈ [1/2, 3/2]. If we ignore or are unaware of
the uncertainty and simply assume that µ = 0 and σ = 1 are fixed, then t/σ = 2 < u∗

and the optimal intensity map would have m∗ = 0 and γ ∗
m∗ = (#(2) − #(0))−1. However,

suppose that there is a shift in the mean and increased dose blurring during treatment so that
the realized mean is at 1/2 and the realized standard deviation is 3/2. Then, the dose at the
edge of the tumour (y = 3/2) would be

γ ∗
m∗d(y; 1/2, 3/2)|y=3/2 ≈ 0.856, (19)

which corresponds to an underdose of almost 15%. While simplified, this example is meant
to convey the importance of accounting for uncertainty in the parameters of the motion
distribution. It may be possible to use heuristics to generate robust intensity maps, but we will
see an example later on that further argues for the need of a rigorous robust methodology.

3.2.2. Analytical results. The uncertainty in the mean and standard deviation changes the
structure of f (m) slightly, but the general principle described in section 3.1.1 holds. Instead of
using the statistic t/σ , the relevant quantity is t/σ , where t = t +µ−µ. With this modification,
the results mirror the ‘no uncertainty’ case. If t/σ " u∗, then the optimal margin size is 0 and
tumour coverage at minimal dose is achieved purely through a positive scaling of the intensity.
If t/σ > u∗, then the optimal margin size is positive and can be determined by solving (18),
with all instances of t and σ replaced by t and σ , respectively. The relationship between the
optimal margin size, scaling factor and tumour size is exactly as shown in figure 3, except
with t and σ in place of t and σ , respectively.

3.2.3. Implications. These results formalize an underlying relationship between robustness
and the type of uncertainty. Loosely speaking, µ̃ and σ̃ are competing with each other to affect
the robust solution. Uncertainty in µ̃ increases the area that requires radiation (effectively
increasing the size of the tumour), while the largest possible value of σ̃ affects the spread in
the realized dose distribution (effectively increasing the minimum dose requirement). Thus,
it seems that a margin is an appropriate compensatory tool for dealing with uncertainty in µ̃,
while increasing the intensity of the beam can offset an increased σ̃ . The relationship between
the ratio t/σ and u∗ ≈ 2.28 solidifies this intuition. If the uncertainty in µ̃ is large, then t will
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be large, and it is more likely that the optimal robust solution will consist of a positive margin
(i.e. when t/σ > u∗). On the other hand, if σ is large, then it is more likely that the optimal
robust solution will be a pure intensity scaling with no positive margin (i.e. when t/σ < u∗).
Our intuition here is similar to that from the nominal (no uncertainty) case, but now we are
incorporating uncertainty in µ̃ and the largest value of σ̃ into the ratio.

3.2.4. A robust example. We close this section by demonstrating that the optimal robust
solution from formulation (9) provides better dose minimization than a particular, intuitive
heuristic procedure. In principle, one way to generate a robust solution would be to
solve the nominal (no uncertainty) problem (4) for every realization of µ̃ and σ̃ , and then
take the ‘union’ of the resulting solutions. A robust solution generated from this method
would be the smallest intensity map that contains the intensity maps corresponding to the
solution of the nominal problem (4) for every realization of µ̃ and σ̃ . While this method
produces an intensity map that ensures tumour coverage, this intensity map will deliver more
total dose than is necessary, as we show next.

Let t = 2, µ̃ ∈ [−1/2, 1/2] and σ̃ = σ = 1 (no uncertainty in σ for simplicity). Since
t/σ < u∗, the solution to problem (4) will be a pure intensity scaling, whereas the robust
solution will involve a positive margin (since t/σ = 3 > u∗). Solving the robust problem
(9) with t = 3 results in a robust solution, R1, with a margin of size m∗

R1 = 0.539 and an
intensity scaling factor of 1.418. Thus, the total dose delivered by the robust solution, R1, is
γ ∗

m∗(t + 2m∗) = 1.418(3 + 2 · 0.539) = 5.785.
The optimal solution for the nominal problem is m∗

N = 0 with an intensity scaling factor
of 2.095. The heuristic robust intensity map, R2, generated from these nominal solutions is

δR2(y) =
{

2.095, y ∈ [−t/2 + µ − m∗
N, t/2 + µ + m∗

N ] = [−1.5, 1.5],
0, otherwise,

(20)

which leads to a total delivered dose of 2 · 1.5 · 2.095 = 6.286—roughly a 9% increase in total
dose delivered as compared to the robust solution R1.

In this example, while t is small relative to σ , the uncertainty in µ̃ forces the effective
tumour size over the threshold u∗ (i.e. t > u∗ > t). Thus, the heuristic robust intensity map
(i.e. union of nominal intensity maps) is a union of purely scaled intensity maps, whereas the
optimal robust intensity map involves a positive margin with a smaller scaling factor. The
example shows that there can be relatively significant gains in terms of dose minimization
by using the optimal robust solution from an appropriately formulated mathematical problem
(formulation (9)), as opposed to generating a robust solution using a heuristic procedure
involving only solutions of the no-uncertainty version of the problem.

3.3. Optimal edge enhancements

3.3.1. Analytical results. As in the margin problem, we discovered that the optimal edge-
enhanced intensity map structure bifurcates into two cases, based on the ratio t/σ and its
relationship to a constant û ≈ 2.11. If t/σ " û, then m∗ = 0 and l∗ = t/2. In other words,
the optimal solution involves a positive intensity scaling with no margin or edge enhancements.
If t/σ > û, then the optimal solution has edge enhancements but no margin: m∗ = 0 and
l∗ ∈ (0, t/2). In this case, l∗ can be determined by solving a nonlinear equation derived from
the optimality condition ∂f (m, l)/∂l = 0, with m = 0:
∫ t

σ

0

1√
2π

e− x2
2 dx −

∫ t−l
σ

l
σ

1√
2π

e− x2
2 dx − l

σ
√

2π

(
e− (t−l)2

2σ2 + e− l2

2σ2

)
= 0. (21)
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Figure 4. Optimal parameters of an edge-enhanced intensity map as a function of the ratio of the
tumour size to σ for a 1D tumour.

Figures 4(a) and (b) show l∗/σ and h∗ as a function of t/σ , respectively. Figure 4(a) shows
that l/σ scales linearly with t/σ with slope 1/2 (i.e. l∗ = t/2 and no edge enhancements)
until û, at which point l∗ < t/2 and edge enhancements emerge. It appears that l∗/σ is
quite sensitive to t/σ ; indeed, l∗/σ decreases quickly for small increases in t/σ beyond û.
Figure 4(b) shows the corresponding edge-enhancement height h∗, which is the minimum
height necessary to bring the dose at the edge of the tumour up to the requirement. Initially, as
t/σ grows, the tumour edge underdosage shrinks (think of the Gaussian as being convolved
with a square wave that is becoming wider), so h∗ follows suit. But when the ratio moves
into the edge-enhancement region, l∗ shrinks, so h∗ needs to grow in order to maintain tumour
coverage at the tumour edge.
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3.3.2. Implications. Intuitively, we should not be surprised that û < u∗. Since edge
enhancements are a generalization of margins (recall that the margin analysis is a special case
of the edge-enhancement analysis when l = t/2), we would expect the threshold for when
edge enhancements are optimal to be lower (in other words, satisfied by more possible values
of t/σ ) than the corresponding one for margins.

Our results imply that either edge enhancements or pure intensity scalings demonstrate
improved dose minimization over margins for any ratio t/σ . Furthermore, when the optimal
intensity map is edge enhanced, the result that m∗ = 0 suggests that the edge enhancements
should only be present inside the tumour and not expand into the region surrounding the
tumour. By allowing the flexibility of creating edge-enhanced intensity maps, a margin will
never be preferred, and instead edge enhancements will be used if t/σ is sufficiently large.
However, realistically deliverable intensity maps will not permit arbitrarily thin and high edge
enhancements (which, as figure 4(b) suggests, is optimal when t becomes large), so at some
physical limit (which could be included into the optimization problem (14) as a lower bound on
l), margins will be used in conjunction with edge enhancements in order to create an optimal
intensity map (i.e. both m∗ > 0 and 0 < l∗ < t/2).

4. Discussion and conclusions

In this paper, we presented a new methodological approach for determining margin and edge-
enhanced intensity maps that guarantee delivery of a minimally sufficient amount of dose to
a tumour in the presence of Gaussian motion and motion uncertainty. We believe our results
can be used to guide treatment planning decisions by providing rules of thumb or recipes for
intensity map design.

In the case of margins, we found that if the ratio of the tumour size to the standard
deviation of motion is less than 2.28, then the optimal intensity map involves no margins
and is simply a pure scaling increase of the static intensity map to compensate for the dose
blurring created by motion. On the other hand, if the tumour is at least 2.28 times the size
of the standard deviation of motion, then an isotropic margin around the tumour (along with
an intensity scaling) is optimal in terms of providing tumour coverage at minimal dose. For
the latter, we derived a nonlinear equation that when solved provides the optimal size of the
margins. We also derived a formula that produces the optimal scaling factor using the optimal
margin size. These results buttress the intuition that for small tumours (e.g. less than 1 cm
in length/diameter), margins need not be used and a pure intensity scaling can be enough to
compensate for the dose blurring due to motion (e.g. σ ≈ 0.5 cm).

We provided the first ‘robust’ analysis of margin intensity maps in the presence of motion
uncertainty. We noted that the presence of motion itself is not necessarily a source of
uncertainty, but that uncertainty in the parameters (e.g. the mean and standard deviation)
of the motion distribution implies motion uncertainty. In this case, we showed that the robust
margin problem had the same structure as the nominal margin problem, and therefore the 2.28
threshold remained valid when examining a modified ratio of the effective tumour size divided
by the maximum standard deviation. By adding the magnitude of the uncertain range for the
mean to the tumour size and dividing the sum by the maximum value in the uncertain range
for the standard deviation, this ratio could be used to determine whether or not the optimal
robust margin intensity map had a positive margin or was a pure intensity scaling.

Finally, in the case of edge enhancements, we found that if the ratio of the tumour
size to standard deviation of motion is less than 2.11, then again the optimal intensity
map is a pure scaling increase of the intensity. When this ratio is larger than 2.11, edge
enhancements are optimal and we derived equations that generate the optimal values of their
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height and width. Given the added flexibility that edge enhancements afford over margins,
we found that edge enhancements or pure intensity scalings will always be preferred over
margins, though realistically deliverable intensity maps may involve a combination of edge
enhancements and margins. Edge-enhanced intensity maps could be realized in practice using,
for example, additional MLC apertures focused on the tumour edge, which would be designed
via optimization.

Logical extensions of the work presented in this paper include extending the robust
analysis to edge-enhanced intensity maps. Initial analytical and computational results are
presented in Chan (2007), but there is an opportunity for further exploration, especially in
the area of robust edge enhancements. Extensions to higher dimensions should be explored
as well. We have extended the margin analysis to three dimensions in appendix C, but the
extension to 3D edge enhancements is fertile ground for further research. Finally, explicit
consideration of the type of neighbouring healthy tissue is important. We used an objective of
minimizing total dose, which is appropriate when considering neighbouring parallel organs.
Organs that are sensitive to the maximum dose delivered (e.g. the spinal cord) would need to
be analysed differently.
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Appendix A. Derivation of the structure of the objective function f (m) in section 3.1

In this section, we give a flavour of the mathematical arguments used to justify the results in this
paper. As noted previously, all omitted proofs are provided in Chan (2007). As an example,
we focus on the derivation of the structure of f (m) and the subsequent results involving t/σ

and u∗. Recall that

f (m) := t + 2m

#
(

t+m
σ

)
− #

(−m
σ

) . (A.1)

We can show that either

(i) f (m) has a unique minimum at some m∗ > 0, or
(ii) f (m) has a unique minimum at m∗ = 0.

Let us define g(m) to be the denominator in the definition of f (m). Since g(m) equals
a certain area under the curve of the standard normal (Gaussian) probability density function,
it is strictly positive for m ! 0. By taking derivatives, it is easy to show that g′(m) > 0 and
g′′(m) < 0 for m ! 0. Next, we consider the first two derivatives of f (m):

f ′(m) = 2g(m) − (t + 2m)g′(m)

g2(m)
(A.2)

and

f ′′(m) = −(t + 2m)g′′(m)g2(m) − (2g(m) − (t + 2m)g′(m))2g(m)g′(m)

g4(m)
. (A.3)

Note that f (m) is continuous and differentiable. Also, f (m) > 0 for all m ! 0, and
in particular, limm→∞ f (m) = ∞. The two cases for the structure of f (m) are obtained
depending on whether or not f ′(m) has a positive root.
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If there is an m∗ > 0 that satisfies f ′(m∗) = 0, then m∗ must be a strict local minimum
because we have g′′(m) < 0 and

f ′′(m∗) = −(t + 2m∗)g′′(m∗)

g2(m∗)
> 0. (A.4)

Furthermore, such an m∗ is unique. To see why, consider the existence of another m̂ > 0 that
satisfies f ′(m̂) = 0. This m̂ must be a strict local minimum as well, but between two strict
local minimum there must be a strict local maximum due to the Intermediate Value Theorem
(with continuity of f ′(m)), which contradicts the fact that all stationary points of f (m) are
strict local minima. This covers the first possibility of the structure of f (m).

On the other hand, if there is no m > 0 such that f ′(m) = 0, then we claim f ′(m) > 0
for all m > 0. Suppose to the contrary that there exists m̂ > 0 such that f ′(m̂) < 0. Since
f ′(m) → 2 > 0 as m → ∞, f ′(m) must cross 0 at some point, implying the existence of a
solution to f ′(m) = 0 on (m̂,∞), which is a contradiction. Since f (m) is increasing, it must
be minimized at m = 0. This covers the second case.

Since f (m) → ∞ as m → ∞, the first case is equivalent to f ′(0) < 0 and the second
case is equivalent to f ′(0) ! 0. There is, therefore, a threshold that is crossed if f ′(0) = 0.
If we substitute m = 0 into the numerator of the equation for f ′(m), and substitute u = t/σ

into the subsequent equation, we get

h(u) :=
(∫ u

−u

1√
2π

e− x2
2 dx

)
− u√

2π

(
1 + e− u2

2
)

= 0. (A.5)

From here, it is straightforward to show that u∗ ≈ 2.28 is the only positive solution to this
equation (a simple plot suffices) and is a threshold that separates h(u) > 0 (for 0 < u < u∗)
from h(u) < 0 (for u > u∗).

Appendix B. Example of an optimal margin intensity map with no intensity scaling

Consider a tumour centred at the origin, occupying the interval [−1, 1]. If the motion PDF is

p(x) =
{

1, x ∈ [−1/2, 1/2],
0, otherwise,

(B.1)

and the static intensity map is

δm(x) =
{

1, x ∈ [−1 − m, 1 + m],
0, otherwise,

(B.2)

then the dose delivered as a function of the location, y, is

dm(y) :=
∫ ∞

−∞
δm(y − x)p(x) dx (B.3)

=
∫ min{y+1+m,1/2}

max{y−1−m,−1/2}
1 dx (B.4)

=






y + 3/2 + m, if y " −1/2 − m,

1, if − 1/2 − m " y " 1/2 + m,

3/2 + m − y, if y ! 1/2 + m.

(B.5)

Note that we may restrict m to be between 0 and 1/2 since we can achieve tumour coverage
with any margin of size at least 1/2 (and no intensity scaling). The minimum of dm(y) over
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Figure C1. A two-dimensional slice of the three-dimensional static intensity map.

y ∈ [−1, 1] occurs at y = ±1, and at those points, dm(−1) = dm(1) = 1/2 + m. Hence, the
minimal intensity scaling factor is

γ ∗
m = 1

1/2 + m
(B.6)

and the total dose delivered is

f (m) := 2 + 2m

1/2 + m
. (B.7)

The derivative of f (m),

f ′(m) = −1
(1/2 + m)2

, (B.8)

is negative for all m ! 0. Thus, the optimal solution is to have a positive margin of size 1/2,
and then no intensity scaling is needed.

Appendix C. Analysis of 3D margins

In this section, we provide an overview of the margin analysis extension to three dimensions.
A full analysis is available in Chan (2007). In three dimensions, we consider a spherical
tumour moving according to a 1D Gaussian. We define a 3D margin as an expansion of the
spherical static intensity map in the direction of motion, as shown in figure C1.

C.1. Optimal 3D margins

With a spherical tumour in the presence of Gaussian motion, we observed that there were
points on the surface of the tumour that would receive no dose at all if no margin was applied.
The intuition is that the equatorial ring of points perpendicular to the direction of motion
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do not receive dose from neighbouring parts of the static intensity map during convolution.
Therefore, we showed that a margin was always needed to guarantee tumour coverage. The
margin expanded the static intensity map in the direction of motion, ensuring that the ring of
points would receive a positive amount of radiation after convolution. We derived a formula
to calculate the exact margin size as a function of t and σ .

C.2. Optimal 3D margins under motion uncertainty

Uncertainty in the Gaussian parameters resulted in a problem that was similar in structure
to the 1D version. Due to the uncertainty in the mean, the effective tumour was no longer
spherical, but elongated in the direction of motion. Therefore, the problematic ring of points
from the ‘no uncertainty’ case disappeared, and the optimal 3D margin intensity map had
either a positive or zero margin, depending on the values of t and σ . We derived a complex
series of thresholds that determines whether a positive margin or no margin is optimal. We
also derived a general rule of thumb stating that if the effective tumour was long and skinny
(its length at least approximately eight times its width), then it was possible for the optimal
3D margin size to be zero. Otherwise, the optimal 3D margin would always be positive.
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