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Abstract. We study the convergence speed of distributed iterative algorithms for the consensus and
averaging problems, with emphasis on the latter. We first consider the case of a fixed
communication topology. We show that a simple adaptation of a consensus algorithm leads
to an averaging algorithm. We prove lower bounds on the worst-case convergence time for
various classes of linear, time-invariant, distributed consensus methods, and provide an
algorithm that essentially matches those lower bounds. We then consider the case of a
time-varying topology, and provide a polynomial-time averaging algorithm.
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1. Introduction. Given a set of autonomous agents—which may be sensors,
nodes of a communication network, cars, or unmanned aerial vehicles—with each
agent i having a real-valued initial opinion xi(0), the distributed averaging problem
asks for a distributed algorithm that the agents can use to compute the average of
their opinions in the presence of severely restricted and time-varying communication
capabilities. A solution to the averaging problem can be obtained, under suitable
assumptions, by iterative algorithms of the form

xi(t+ 1) =
∑
j

aij(t)xj(t),(1.1)

if, at each time t, the matrix A(t) formed by the coefficients aij(t) is doubly stochas-
tic. In a less demanding variant of the distributed averaging problem, known as the
consensus problem, it is only required that the agents converge to a common opinion
which is a convex combination of the initial opinions. In this case, the matrices A(t)
only need to be stochastic (as opposed to doubly stochastic). The subject of this
paper is the design and analysis of averaging and consensus algorithms of the form
(1.1), or of closely related forms, with a focus on the resulting convergence rates.
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748 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

Distributed averaging and consensus algorithms are often useful as subroutines
in more complicated network coordination problems. Although each agent may have
access to different local information, the agents can fuse this information to agree on
a collective decision (e.g., on a common direction of motion, on the time to execute a
move, etc.). For this reason, such algorithms have historically appeared in many and
diverse areas, such as parallel computation [57, 58, 5], control theory [35, 49], and com-
munication networks [44, 41]. Recently, these problems have attracted considerable at-
tention [35, 41, 7, 23, 44, 12, 28, 46, 45, 26, 29, 18, 3, 14, 10, 11, 2, 21, 15, 42, 13, 16, 17],
motivated by new contexts and open problems in communications, sensor networks,
and networked control theory. In the remainder of this section, we discuss some rep-
resentative motivating applications, without attempting to exhaust the vast relevant
literature.

1.1. Distributed Optimization. We illustrate here the use of distributed con-
sensus and averaging algorithms in distributed optimization.

Consider a stochastic gradient algorithm for minimizing a smooth convex function
f of a single variable:

y(t+ 1) = y(t)− γ(t)
(
f ′(y(t)) + w(t)

)
,

where γ(t) is a positive stepsize, f ′ stands for the derivative of f , and w(t) is a
zero mean noise term, independently drawn at each time t. In a distributed version,
each processor i obtains an independent noisy measurement of f ′(y(t)) and updates
according to

xi(t) = y(t)− γi(t)
(
f ′(y(t)) + wi(t)

)
.

Before proceeding to the next iteration, the processors can run a consensus algorithm
of the form (1.1) to reconcile their different values xi(t) and agree on a common value
y(t + 1), which is a convex combination

∑
i πi(t)xi(t) of the values xi(t). The net

effect is an update of the form

y(t+ 1) = y(t)−
∑
i

γi(t)πi(t)
(
f ′(y(t)) + wi(t)

)
.

This net update retains the desirable property of moving in a direction of cost decrease
(in expectation), while reducing the effect of the noise (because the noise terms wi(t)
are averaged). In a more attractive version, introduced in [57, 58], which avoids
excessive delay between consecutive updates of y, the execution of the consensus
algorithm is interleaved with the stochastic gradient updates, resulting in an algorithm
of the form

xi(t+ 1) =
∑
j

aij(t)xj(t)− γi(t)
(
f ′(xi(t)) + wi(t)).

As long as the consensus algorithm converges in a time scale faster than the time
scale of the stochastic gradient updates (the latter being determined by the stepsizes
γi(t)), this interleaved algorithm retains the desirable convergence properties of single-
processor stochastic gradient algorithms [57, 58].

An alternative setting involves a separable cost function of the form

F (y) =
∑
i

fi(y),
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where the functions fi are convex, but not necessarily differentiable. Suppose that
the form of the function fi is known only by processor i. For example, fi could
represent a statistical loss function associated with data collected locally at sensor i.
Alternatively, fi could correspond to the loss function associated with a subblock of
data in a large-scale machine learning problem.

In order to carry out a subgradient update, we can have each processor compute
a local subgradient f ′

i , and then use an averaging algorithm to average these local
subgradients. Similar to our earlier development, one can consider interleaving an
averaging algorithm with the subgradient updates to obtain an algorithm of the form
[48]

xi(t+ 1) =
∑
j

aij(t)xj(t)− γi(t)f
′
i(xi(t)).

(See [24] for related methods.)
Because the gradient of F gives equal weight to each of the local cost functions

fi, the coefficients aij(t) must conform to an averaging algorithm (consensus will not
suffice) and the stepsizes γi(t) must be the same for all i. Under these conditions and
some additional assumptions, the interleaved algorithm retains the desirable conver-
gence properties of single-processor subgradient algorithms [48]. We note that the
available convergence time estimates for distributed subgradient methods [48, 24, 54]
typically involve two contributions: one reflecting the convergence time of a central-
ized subgradient algorithm, and one reflecting the convergence time of the underlying
averaging algorithm. This suggests that even if the convergence time of an averag-
ing algorithm is studied in isolation, it has an immediate bearing on the distributed
optimization setting.

1.2. Additional Motivating Problems.

Formation Control. Consider a collection of UAVs or other types of vehicles
that wish to maintain a formation in the face of random disturbances. Every once in
a while, a pair of vehicles succeeds in getting an accurate measurement of their relative
positions. What is desired is a protocol for taking actions (e.g., changing positions)
based on these measurements, so that over time, as more and more measurements
arrive, the vehicles arrange themselves according to the desired formation.

Distributed averaging updates can be used to design such protocols. This is
because averaging updates cope well with time-varying connectivity and intermittent
measurements. For more details, we refer the reader to Chapter 2 of [51] for an
exposition of some ideas originating in [49].

Coverage Control. Coverage control is the problem of optimally positioning a set
of robots to monitor an area. A typical case involves a polygon-shaped area along with
robots that can measure distances to the boundary as well as to each other. Based on
these distances, it is desirable to construct controllers which cover the entire area, yet
assign as little area as possible to each robot. A common addition to this setup involves
associating a number f(x) to each point x in the polygon, representing the importance
of monitoring this point. The robots then optimize a corresponding objective function
that weighs regions according to the importance of the points in them.

It turns out that averaging algorithms are very useful in designing distributed
controllers for such systems. We refer the reader to [29] for the connection between
distributed controllers and averaging over a certain class of graphs defined by Voronoi
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diagrams. A similar approach was adopted in [56]. Note also the extension to nonuni-
form coverage in [37].

Clock Synchronization. A collection of clocks that are constantly drifting apart
would like to maintain a common time to the extent that this is possible. Various
pairs of clocks can measure noisy versions of the time offsets between them. This
is a common scenario, because clocks drift randomly depending on various factors
within their environment (e.g., temperature), and also because clocks often have a
(nonzero) drift relative to the “true” time. In this context, maintaining a common
time is important for a number of estimation problems (for example, in direction of
arrival problems).

This problem has a natural similarity to averaging, except that one does not care
about getting the average right; just reaching consensus is enough. On the other
hand, the constantly evolving clock times present a challenge. A natural approach,
explored in some of the recent literature, is to adopt averaging techniques to work in
this setting. We refer the reader to [38, 55, 4, 27].

Reputation Management in Ad Hoc Networks. It is often the case that the
nodes of a wireless multihop network are not controlled by a single authority or
do not have a common objective. Selfish behavior among nodes (e.g., refusing to
forward traffic meant for others) is possible, and some mechanism is needed to enforce
cooperation. One way to detect selfish behavior is reputation management; i.e., each
node forms an opinion by observing the behavior of its neighbors. One is then faced
with the problem of combining these different opinions into a single globally available
reputation measure for each node. The use of distributed consensus algorithms for
doing this was explored in [41], where a variation of the algorithm (1.1) was used as
a basis for an empirical investigation.

Social Network Models. All the contexts discussed so far are in the spirit of engi-
neering system design: an algorithm is constructed to accomplish a certain objective.
In a philosophically different but mathematically similar line of research, consensus
algorithms of the form (1.1) are used as stylized models of opinion formation and
updating in social networks. This type of research was initiated by DeGroot [20] who
proposed a time-invariant version of (1.1) as a model of the merging of expert opin-
ions. A number of recent works has taken this line of analysis further by analyzing
how the graph-theoretic structure of social networks and the detailed features of the
update rule affect the outcome. In particular, the seminal paper [31] introduced a
popular and mathematically appealing model of opinion fragmentation. The paper
[22] explored applications of these types of models to a variety of situations in poli-
tics, and the related work [1] quantified the extent to which “stubborn” agents (who
maintain fixed opinions) could influence the opinions of other agents. Finally, [30]
studied the effectiveness of social networks at aggregating distributed information in
terms of certain graph-theoretic properties.

1.3. Summary and Contributions. Our general objective is to characterize the
worst-case convergence time of various averaging algorithms, as a function of the
number n of agents, and to understand their fundamental limitations by providing
lower bounds on the convergence time.

We now outline the remainder of this paper and preview its main contributions. In
section 2, we provide some background material by reviewing the agreement algorithm
of [57, 58] for the distributed consensus problem. In sections 3–8, we consider the case
of fixed graphs. In section 3, we discuss three different ways in which the agreement
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algorithm can provide a solution to the averaging problem. In particular, we show
how an averaging algorithm can be constructed based on two parallel executions of the
agreement algorithm. In section 4, we define the notions of convergence rate and con-
vergence time, and we provide a variational characterization of the convergence rate.

In section 5, we use results from [36] to show that the worst-case convergence time
of an averaging algorithm introduced in section 3 is essentially Θ(n3).1 In section 6,
we show that for one of our methods the convergence rate can be made arbitrarily fast.
On the other hand, under an additional restriction that reflects numerical stability
considerations, we show that the convergence time of a certain class of algorithms (and
by extension of a certain class of averaging algorithms) is Ω(n2), in the worst case.
We also provide a simple method (based on executing the agreement algorithm on a
spanning tree) whose convergence time essentially matches the Ω(n2) lower bound.
In section 7, we discuss briefly particular methods that employ doubly stochastic
matrices and their potential drawbacks.

Then, in section 8, we turn our attention to the case of dynamic topologies. For
the agreement algorithm, we show that its convergence time for the case of non-
symmetric topologies can be exponentially large in the worst case. On the other
hand, for the case of symmetric topologies, we provide a new averaging algorithm
(and, therefore, an agreement algorithm as well) whose convergence time is O(n3).
To the best of our knowledge, none of the previously available consensus or averaging
algorithms had a similar guarantee of polynomial-time convergence in the presence of
dynamically changing topologies. In section 9, we report on some numerical experi-
ments illustrating the advantages of two of our algorithms. Section 10 contains some
brief concluding remarks.

2. The Agreement Algorithm. The “agreement algorithm” is an iterative pro-
cedure for the solution of the distributed consensus problem. It was introduced in [20]
for the time-invariant case and in [57, 58] for the case of “asynchronous” and time-
varying environments. We briefly review this algorithm and summarize the available
convergence results.

Consider a set N = {1, 2, . . . , n} of nodes. Each node i starts with a scalar
value xi(0); the vector with the values of all nodes at time t is denoted by x(t) =
(x1(t), . . . , xn(t)). The agreement algorithm updates x(t) according to the equation
x(t+ 1) = A(t)x(t), or

xi(t+ 1) =

n∑
j=1

aij(t)xj(t),

where A(t) is a nonnegative matrix with entries aij(t). The row-sums of A(t) are
equal to 1, so that A(t) is a stochastic matrix. In particular, xi(t + 1) is a weighted
average of the values xj(t) held by the nodes at time t.

We next state some conditions under which the agreement algorithm is guaranteed
to converge.

Assumption 2.1. There exists a positive constant α such that
(a) aii(t) ≥ α for all i, t;
(b) aij(t) ∈ {0} ∪ [α, 1] for all i, j, t;
(c)
∑n

j=1 aij(t) = 1 for all i, t.

1Let f and g be two positive functions on the positive integers. We write f(n) = O(g(n))
(respectively, f(n) = Ω(g(n))) if there exists a positive constant c and some n0 such that f(n) ≤ cg(n)
(respectively, f(n) ≥ cg(n)) for all n ≥ n0. If f(n) = O(g(n)) and f(n) = Ω(g(n)) both hold, we
write f(n) = Θ(g(n)).
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Intuitively, whenever aij(t) > 0, node j communicates its current value xj(t) to
node i. Each node i updates its own value by forming a weighted average of its own
value and the values it has just received from other nodes. We represent the sequence
of communications between nodes by a sequence G(t) = (N , E(t)) of directed graphs,
where (j, i) ∈ E(t) if and only if aij(t) > 0. Note that (i, i) ∈ E(t) for all t, and this
condition will remain in effect throughout the paper.

Our next assumption requires that, following an arbitrary time t and for any i, j,
there is a sequence of communications through which node i will influence (directly
or indirectly) the value held by node j.

Assumption 2.2 (connectivity). For every t ≥ 0, the graph (N ,∪s≥tE(s)) is
strongly connected.

Assumption 2.2 by itself is not sufficient to guarantee consensus (see Exercise 3.1
on page 517 of [5]). This motivates the following stronger version.

Assumption 2.3 (bounded interconnectivity times). There is some B such that,
for all k, the graph

(N , E(kB)∪E(kB+1)∪· · ·∪E((k+1)B−1)) is strongly connected.
We note various special cases of possible interest.
Time-invariant model. In this model, introduced by DeGroot [20], the set of arcs

E(t) is the same for all t; furthermore, the matrix A(t) is the same for all t. In this case,
we are dealing with the iteration x := Ax, whereA is a stochastic matrix; in particular,
x(t) = Atx(0). Under Assumptions 2.1 and 2.2, A is the transition probability matrix
of an irreducible and aperiodic Markov chain. Thus, At converges to a matrix, all
of whose rows are equal to the (positive) vector π = (π1, . . . , πn) of steady-state
probabilities of the Markov chain. Accordingly, we have limt→∞ xi(t) =

∑n
i=1 πixi(0).

Bidirectional model. In this case, we have (i, j) ∈ E(t) if and only if (j, i) ∈ E(t),
and we say that the graph G is symmetric. Intuitively, whenever i communicates with
j, there is a simultaneous communication from j to i.

Equal-neighbor model. Here,

aij(t) =

{
1/di(t) if j ∈ Ni(t),
0 if j /∈ Ni(t),

where Ni(t) = {j | (j, i) ∈ E(t)} is the set of nodes j (including i) whose value is
taken into account by i at time t, and di(t) is its cardinality. This model is a linear
version of a model considered by Vicsek et al. [59]. Note that here the constant α of
Assumption 2.1 can be taken to be 1/n.

Theorem 2.4. Under Assumptions 2.1 and 2.3, the agreement algorithm guar-
antees asymptotic consensus; that is, there exists some c (depending on x(0) and on
the sequence of graphs G(·)) such that limt→∞ xi(t) = c for all i.

Theorem 2.4 is presented in [58] and proved in [57], in a more general setting that
allows for communication delays, under a slightly stronger version of Assumption 2.3;
see also Chapter 7 of [5] and [58, 6] for extensions to the cases of communication
delays and probabilistic dropping of packets. The above version of Assumption 2.3
was introduced in [35]. Under the additional assumption of a bidirectional model, the
bounded interconnectivity time assumption is unnecessary, as established in [39, 9]
for the bidirectional equal-neighbor model and in [32, 46] for the general case.

3. Averaging with the Agreement Algorithm in Fixed Networks. In this sec-
tion, as well as in sections 4–8, we assume that the network topology is fixed, i.e.,
G(t) = G for all t, and known. We consider the time-invariant version, x := Ax, of
the agreement algorithm and discuss various ways in which it can be used to solve
the averaging problem. We show that an iteration x := Ax that solves the consen-
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sus problem can be used in a simple manner to provide a solution to the averaging
problem as well.

3.1. Using a Doubly Stochastic Matrix. As remarked in section 2, with the
time-invariant agreement algorithm x := Ax, we have

lim
t→∞xi(t) =

n∑
i=1

πixi(0) ∀ i,(3.1)

where πi is the steady-state probability of node i in the Markov chain associated with
the stochastic matrix A. It follows that we obtain a solution to the averaging problem
if and only if πi = 1/n for every i. Since π is a left eigenvector of A, with eigenvalue
equal to 1, this requirement translates into the property 1TA = 1T , where 1 is the
vector with all components equal to 1. Equivalently, the matrix A needs to be doubly
stochastic. A particular choice of a doubly stochastic matrix has been proposed in
[50] (see also [29]); this is discussed further in sections 7 and 9.

3.2. The Scaled Agreement Algorithm. Suppose that the graph G is fixed a
priori and that there is a system designer or other central authority who chooses a
stochastic matrix A offline, computes the associated steady-state probability vector
(assumed unique and positive), and disseminates the value of nπi to each node i.

Suppose next that the nodes execute the agreement algorithm x := Ax using the
matrix A, but with the initial value xi(0) of each node i replaced by

xi(0) =
xi(0)

nπi
.(3.2)

Then the value xi(t) of each node i converges to

lim
t→∞xi(t) =

n∑
i=1

πixi(0) =
1

n

n∑
i=1

xi(0),

and we therefore have a valid averaging algorithm. This establishes that any (time-
invariant) agreement algorithm for the consensus problem translates into an algorithm
for the averaging problem as well. The following are two possible drawbacks of the
scheme we have just described:

(a) If some of the nπi are very small, then some of the initial xi(0) will be very
large, which can lead to numerical difficulties [33].

(b) The algorithm requires some central coordination in order to choose A and
compute π.

The algorithm provided in the next subsection provides a remedy for both of the
above drawbacks.

3.3. Using Two Parallel Passes of the Agreement Algorithm. Given a fixed
graph G, let A be the matrix that corresponds to the time-invariant, equal-neighbor,
bidirectional model (see section 2 for definitions); in particular, if (i, j) ∈ E , then
(j, i) ∈ E , and aij = 1/di, where di is the cardinality of Ni. Under Assumptions
2.1 and 2.2, the stochastic matrix A is irreducible and aperiodic (because aii > 0 for
every i). Let E =

∑n
i=1 di. It is easily verified that the vector π with components

πi = di/E satisfies πT = πTA and is therefore equal to the vector of steady-state
probabilities of the associated Markov chain.

The following averaging algorithm employs two parallel runs of the agreement
algorithm, with different, but locally determined, initial values.
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Algorithm 3.1.

(a) Each node i sets yi(0) = 1/di and zi(0) = xi(0)/di.
(b) The nodes run the agreement algorithms y(t+1) = Ay(t) and z(t+1) = Az(t).
(c) Each node sets xi(t) = zi(t)/yi(t).
We have

lim
t→∞ yi(t) =

n∑
i=1

πiyi(0) =
n∑

i=1

di
E

· 1
di
=

n

E

and

lim
t→∞ zi(t) =

n∑
i=1

πizi(0) =

n∑
i=1

di
E

· xi(0)

di
=
1

E

n∑
i=1

xi(0).

This implies that

lim
t→∞xi(t) =

1

n

n∑
i=1

xi(0);

i.e., we have a valid averaging algorithm. Note that the iteration y := Ay need not
be repeated if the network remains unchanged and the averaging algorithm is to be
executed again with different initial opinions. Finally, if n and E are known by all
nodes, the iteration y := Ay is unnecessary, and we could just set yi(t) = n/E.

4. Definition of the Convergence Rate and the Convergence Time. The con-
vergence rate of any of the algorithms discussed in section 3 is determined by the
convergence rate of the matrix powers At. In this section, we give a definition of the
convergence rate (and convergence time) and provide a tool for bounding the con-
vergence rate. As should be apparent from the discussion in section 3, there is no
reason to restrict to doubly stochastic matrices, or even to nonnegative matrices. We
therefore start by specifying the class of matrices that we will be interested in.

Consider a matrix A with the following property: For every x(0), the sequence
generated by letting x(t+1) = Ax(t) converges to c1 for some scalar c. Such a matrix
corresponds to a legitimate agreement algorithm and can be employed in the scheme
of section 3.2 to obtain an averaging algorithm, as long as 1 is a simple eigenvalue of
A, so that there exists a unique corresponding left eigenvector, denoted by π, which
we assume to have nonzero entries. Because of the convergence property assumed
above, all other eigenvalues must have magnitude less than 1. Note, however, that we
allow A to have some negative entries.

Suppose that A has the above properties. Let 1 = λ1, λ2, . . . , λn, be the eigenval-
ues of A, sorted in order of decreasing magnitude. We also let X be the set of vectors
of the form c1, i.e., with equal components. Given such a matrix A, we define its
convergence rate, ρ, by

ρ = sup
x(0)/∈X

lim
t→∞

( ‖x(t)− x∗‖2
‖x(0)− x∗‖2

)1/t

,(4.1)

where x∗ stands for limt→∞ x(t).
We also define the convergence time, Tn(ε), by

Tn(ε) = min

{
τ :

‖x(t)− x∗‖∞
‖x(0)− x∗‖∞ ≤ ε ∀ t ≥ τ, ∀ x(0) /∈ X

}
.
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Although we use the infinity norm to define the convergence time, bounds for other
norms can be easily obtained from our subsequent results, by using the equivalence
of norms.

Under the above assumptions, a result from [60] states that

ρ = max{|λ2|, |λn|}.
To study ρ, therefore, we must develop techniques to bound the eigenvalues of the
matrix A. To this end, we will be using the following result from [36]. We present
here a slightly more general version and include a proof for completeness.

Theorem 4.1. Consider an n × n matrix A, and let λ1, λ2, . . . , λn be its eigen-
values sorted in order of decreasing magnitude. Suppose that the following conditions
hold:

(a) We have λ1 = 1 and A1 = 1.
(b) There exists a positive vector π such that πTA = πT .
(c) For every i and j, we have πiaij = πjaji.

Let

S =

{
x

∣∣∣∣∣
n∑

i=1

πixi = 0,
n∑

i=1

πix
2
i = 1

}
.

Then all eigenvalues of A are real and

λ2 = 1− 1

2
min
x∈S

n∑
i=1

n∑
j=1

πiaij(xi − xj)
2.(4.2)

In particular, for any vector y that satisfies
∑n

i=1 πiyi = 0, we have

λ2 ≥ 1−
∑n

i=1

∑n
j=1 πiaij(yi − yj)

2

2
∑n

i=1 πiy2i
.(4.3)

Proof. Let D be a diagonal matrix whose ith diagonal entry is πi. Condition (c)
yields DA = ATD. We define the inner product 〈·, ·〉π by 〈x, y〉π = xTDy. We then
have

〈x,Ay〉π = xTDAy = xTATDy = 〈Ax, y〉π .
Therefore, A is self-adjoint with respect to this inner product, which implies that A
has real eigenvalues.

Since the largest eigenvalue is 1, with an eigenvector of 1, we use the variational
characterization of the eigenvalues of a self-adjoint matrix [34] to obtain

λ2 = max
x∈S

〈x,Ax〉π

= max
x∈S

n∑
i=1

n∑
j=1

πiaijxixj

=
1

2
max
x∈S

n∑
i=1

n∑
j=1

πiaij(x
2
i + x2

j − (xi − xj)
2).

For x ∈ S, we have, using the assumption πiaij = πjaji,

n∑
i=1

n∑
j=1

πiaij(x
2
i + x2

j) = 2

n∑
i=1

n∑
j=1

πiaijx
2
i = 2

n∑
i=1

πix
2
i = 2〈x, x〉π = 2,
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which yields

λ2 = 1− 1

2
min
x∈S

n∑
i=1

n∑
j=1

πiaij(xi − xj)
2.

Finally, (4.3) follows from (4.2) by considering the vector

xi = yi

/√√√√( n∑
j=1

πjy
2
j

)
.

Note that the bound in (4.3) does not change if we replace the vector y with αy
for any α �= 0.

5. Convergence Time for the Equal-Neighbor, Time-Invariant, Bidirectional
Model. For the equal-neighbor, time-invariant, bidirectional model, tight bounds on
the convergence rate were derived in [36].

Theorem 5.1 (see [36]). Consider the equal-neighbor, time-invariant, bidirec-
tional model on a connected graph with n nodes. The convergence rate satisfies

ρ ≤ 1− γ1n
−3,

where γ1 is a constant independent of n or the particular graph. Moreover, there exists
some γ2 > 0 such that, for every positive integer n, there exists an n-node connected
symmetric graph for which

ρ ≥ 1− γ2n
−3.

Theorem 5.1 is proved in [36] for the case of symmetric graphs without self-arcs.
It is not hard to check that essentially the same proof holds when self-arcs are present,
the only difference being in the values of the constants γ1 and γ2. This is intuitive
because the effect of the self-arcs is essentially a “slowing down” of the associated
Markov chain by a factor of at most 2, and therefore the convergence rate should stay
the same.

Using some additional results on random walks, Theorem 5.1 leads to a tight
bound (within a logarithmic factor) on the convergence time.

Corollary 5.2. The convergence time for the equal-neighbor, time-invariant,
bidirectional model on a connected graph on n nodes satisfies2

Tn(ε) = O(n3 log(n/ε)).

Furthermore, for every positive integer n, there exists an n-node connected graph for
which

Tn(ε) = Ω(n
3 log(1/ε)).

Proof. The matrix A is the transition probability matrix for a random walk on
the given graph, where, given the current state i, the next state is equally likely to be

2Throughout, log will stand for the base-2 logarithm.
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any of its neighbors (including i itself). Let pij(t) be the (i, j)th entry of the matrix
At. It is known (see Theorem 5.1 of [43]) that3

|pij(t)− πj | ≤
√

dj
di

ρt.(5.1)

Since 1 ≤ di and dj ≤ n, we have

|pij(t)− πj | ≤
√

nρt

for all i, j, and t. Using Theorem 5.1, we obtain

|pij(t)− πj | ≤
√

n(1 − n−3)t.(5.2)

This implies that by taking t = cn3 log(n/ε), where c is a sufficiently large absolute
constant, we will have |pij(τ)− πj | ≤ ε/n for all i, j, and τ ≥ t.

Let A∗ = limt→∞ At, and let x∗ = limt→∞ Atx(0). Note that A∗x(0) = x∗ =
Atx∗ = A∗x∗ for all t. Then, with t chosen as above,

‖x(t)− x∗‖∞ = ‖At(x(0) − x∗)‖∞
= ‖(At −A∗)(x(0) − x∗)‖∞
≤ ‖At −A∗‖1 · ‖x(0)− x∗‖∞
≤ ε‖x(0)− x∗‖∞.

This establishes the upper bound on Tn(ε).
For the lower bound, note that for every (i, j) ∈ E , we have πiaij = (di/E)(1/di) =

1/E, so that condition (c) in Theorem 4.1 is satisfied. It follows that A has real
eigenvalues. Let x(0) be a (real) eigenvector of A corresponding to the eigenvalue
with magnitude ρ. Then ‖x(t)‖∞ = ‖Atx(0)‖∞ = ρt‖x(0)‖∞, which converges to
zero, i.e., x∗ = 0. We then have

‖x(t)− x∗‖∞
‖x(0)− x∗‖∞ = ρt.

By the second part of Theorem 5.1, there exists a graph for which ρ ≥ 1 − γn−3,
leading to the inequality Tn(ε) ≥ cn3 log(1/ε) for some absolute constant c.

The Ω(n3) convergence time of this algorithm is not particularly attractive. In
the next section, we explore possible improvements in the convergence time by using
different choices for the matrix A.

6. Convergence Time for the Scaled Agreement Algorithm. In this section,
we consider the scaled agreement algorithm introduced in section 3.2. As in [60], we
assume the presence of a system designer who chooses the matrix A so as to obtain a
favorable convergence rate, subject to the condition aij = 0 whenever (i, j) /∈ E . The
latter condition is meant to represent the network topology through which the nodes
are allowed to communicate. Our goal is to characterize the best possible convergence
rate guarantee. We will see that the convergence rate can be brought arbitrarily
close to zero. However, if we impose a certain “numerical stability” requirement, the

3Theorem 5.1 of [43] is proved for symmetric graphs without self-arcs. However, the proof does
not use the absence of self-arcs, and when they are present the same proof yields the same result.
We refer the reader to the derivation in [43, section 3.1] for details.
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convergence time becomes Ω(n2 log(1/ε)) for a worst-case choice of the underlying
graph. Furthermore, this worst-case lower bound applies even if we allow for matrices
A in a much larger class than that considered in [60]. Finally, we will show that a
convergence time of O(n2 log(n/ε)) can be guaranteed in a simple manner, using a
spanning tree.

6.1. Favorable but Impractical Convergence Rates. In this section, we show
that given a connected symmetric directed graph G = (N , E), there is an elementary
way of choosing a stochastic matrix A for which ρ is arbitrarily close to zero.

We say that a directed graph is a bidirectional spanning tree if (a) it is symmetric,
(b) it contains all self-arcs (i, i), and (c) if we were to delete the self-arcs, ignore the
orientation of the arcs, and remove duplicate arcs, we would be left with a spanning
tree.

Without loss of generality, we assume that G is a bidirectional spanning tree;
since G is symmetric and connected, this amounts to deleting some of its arcs or,
equivalently, setting aij = 0 for all deleted arcs (i, j).

Pick an arbitrary node, denoted by r, and designate it as the root. Consider an
arc (i, j) and suppose that j lies on the path from i to the root. Let aij = 1 and
aji = 0. Finally, let arr = 1, and let aii = 0 for i �= r. This corresponds to a Markov

chain in which the state moves deterministically toward the root. We have A
t
= er1

T

for all t ≥ n, where ei is the ith basis vector. It follows that ρ = 0 and Tn(ε) ≤ n− 1.
However, this matrix A is not useful because the corresponding vector of steady-state
probabilities has mostly zero entries, which prohibits the scaling discussed in section
3.2. Nevertheless, this is easily remedied by perturbing the matrix A as follows. For
every (i, j) ∈ E with i �= j and aij = 0, let aij = δ, where δ is a small positive
constant. Similarly, let us set all the self-coefficients (except the one at the root) to
δ, i.e., aii = δ for all i �= r. Finally, for every i, there exists a unique j for which
aij = 1. For any such pair (i, j), we set aij = 1 −∑n

k=1 aik (which is nonnegative
as long as δ is chosen small enough). We have thus constructed a new matrix Aδ

which corresponds to a Markov chain whose transition diagram is a bidirectional
spanning tree. Since the convergence rate ρ is an eigenvalue of the iteration matrix,
and eigenvalues are continuous functions of matrix elements, we see that, for the
matrix Aδ, the convergence rate ρ can be made as small as desired by choosing δ
sufficiently small. Finally, since Aδ is a positive matrix, the corresponding vector of
steady-state probabilities is positive.

To summarize, by choosing δ suitably small, we can choose a (stochastic) matrix
Aδ with an arbitrarily favorable convergence rate that allows the application of the
scaled agreement algorithm of section 3.2. It can be shown that the convergence
time is linear in the following sense: For every ε, there exists some δ such that,
for the matrix Aδ, the corresponding convergence time, denoted by Tn(ε; δ), satisfies
Tn(ε; δ) ≤ n. Indeed, this is an easy consequence of the facts limδ→0(A

n
δ − A

n
) = 0

and Tn(ε
′; 0) ≤ n− 1 for every ε′ > 0.

However, we note that as n gets larger, nπi may approach 0 at the nonroot nodes,
exponentially fast. The implementation of the scaling in (3.2) will involve division
by a number which quickly approaches 0, possibly leading to numerical difficulties.
Thus, the resulting averaging algorithm may be undesirable. Setting averaging aside,
the agreement algorithm based on Aδ, with δ small, is also undesirable; i.e., despite
its favorable convergence rate, the final value on which consensus is reached is ap-
proximately equal to the initial value xr(0) of the root node. Such a “dictatorial”
solution runs contrary to the motivation behind consensus algorithms.
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6.2. A Lower Bound. In order to avoid the numerical issues raised above, we
will now impose a condition on the dominant (and positive) left eigenvector π of the
matrix A. We require

nπi ≥ 1

C
∀ i,(6.1)

where C is a given constant with C ≥ 1. This condition ensures that nπi does not
approach 0 as n gets large, so that the initial conditions in the scaled agreement
algorithm of section 3.2 are well behaved. Furthermore, in the context of consensus
algorithms, condition (6.1) has an appealing interpretation: it requires that the initial
value xi(0) of every node i have a nonnegligible impact on the final value limt→∞ xk(t)
on which consensus is reached.4 We will now show that, under the additional condition
(6.1), there are graphs for which the convergence time is Ω(n2 log(1/ε)). The graph
that we employ is a line graph, with arc set E = {(i, j) | |i− j| ≤ 1}.

Theorem 6.1. Consider an n×n matrix A such that aij = 0 whenever |i−j| > 1.
Let λ1, λ2, . . . be its eigenvalues in order of decreasing modulus. Suppose that λ1 = 1
and A1 = 1. Furthermore, suppose that there exists a vector π satisfying (6.1) such
that πTA = πT . Then there exist absolute constants c1 and c2 such that

ρ ≥ 1− c1
C

n2

and

Tn(ε) ≥ c2
n2

C
log

(
1

ε

)
.

Proof. If the entries of A were all nonnegative, we would be dealing with a birth-
death Markov chain. Such a chain is reversible, i.e., satisfies the detailed balance
equations πiaij = πjaji (condition (c) in Theorem 4.1). In fact, the derivation of the
detailed balance equations does not make use of nonnegativity; thus, detailed balance
holds in our case as well.

Without loss of generality, we can assume that
∑n

i=1 πi = 1. For i = 1, . . . , n,
let yi = i − β, where β is chosen so that

∑n
i=1 πiyi = 0. We will make use of the

inequality (4.3). Since aij = 0 whenever |i− j| > 1, we have
n∑

i=1

n∑
j=1

πiaij(yi − yj)
2 ≤

n∑
i=1

n∑
j=1

πiaij = 1.(6.2)

Furthermore,

n∑
i=1

πiy
2
i ≥ 1

nC

n∑
i=1

y2i =
1

nC

n∑
i=1

(i− β)2 ≥ 1

nC

n∑
i=1

(
i− n+ 1

2

)2
≥ n2−1
12C

.(6.3)

The next-to-last inequality above is an instance of the general inequality E[(X−β)2] ≥
var(X) applied to a discrete uniform random variable X . The last inequality follows
from the well-known fact var(X) = (n2 − 1)/12. Using inequalities (4.3) and (6.2)–
(6.3), we obtain the desired bound on λ2 and, therefore, on ρ.

4In the case where A is the transition matrix of a reversible Markov chain, there is an additional
interpretation. A reversible Markov chain may be viewed as a random walk on an undirected graph
with edge-weights. Defining the degree of a vertex as the sum total of the weights incident upon it,
the condition nπi ≥ C is equivalent to requiring that each degree be lower bounded by a constant
times the average degree.
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For the bound on Tn(ε), we let x(0) be a (real) eigenvector of A associated with
the eigenvalue λ2, and proceed as in the end of the proof of Corollary 5.2.

Remark. Note that if the matrix A is as in the previous theorem, it is possible
for the iteration x(t + 1) = Ax(t) to not converge at all. Indeed, nothing in the
argument precludes the possibility that the smallest eigenvalue is −1, for example.
Furthermore, the graph could also be disconnected, and convergence to consensus
could fail. In both cases, the lower bounds of the theorem—derived by bounding the
second largest eigenvalue—still hold, as the convergence rate and time are infinite.

6.3. Convergence Time for Spanning Trees. We finally show that an O(n2)
convergence time guarantee is easily obtained by restricting to a spanning tree.

Theorem 6.2. Consider the equal-neighbor, time-invariant, bidirectional model
on a bidirectional spanning tree. We have

ρ ≤ 1− 1

3n2

and

Tn(ε) = O
(
n2 log(n/ε)

)
.

Proof. In this context, we have πi = di/E, where

E =

n∑
i=1

di = 2(n− 1) + n < 3n.(6.4)

(The factor of 2 arises because we have arcs in both directions; the additional term
n corresponds to the self-arcs.) As in the proof of Theorem 6.1, the detailed balance
conditions πaij = πjaji hold, and we can apply Theorem 4.1. Note that (4.2) can be
rewritten in the form

λ2 = 1− 1

2
min∑n

i dixi=0,
∑n

i dix2
i=1

∑
(i,j)∈E

(xi − xj)
2.(6.5)

We use the methods of [36] to show that for trees, λ2 can be upper bounded by
1 − 1/3n2. Indeed, suppose that x satisfies

∑n
i dixi = 0 and

∑n
i dix

2
i = 1, and let

xmax be a component of x such that |xmax| = maxi |xi|. Then, using (6.4),

1 =
∑
i

dix
2
i ≤ 3nx2

max,

and it follows that |xmax| ≥ 1/
√
3n. Without loss of generality, assume that xmax > 0

(otherwise, replace each xi by −xi). Since
∑

i dixi = 0, there exists some i for which
xi < 0; let us denote such a negative xi by xneg. Then

1√
3n

≤ xmax − xneg = (xmax − xk1) + (xk1 − xk2) + · · ·+ (xkr−1 − xneg),(6.6)

where k1, k2, . . . , kr−1 are the nodes on the path from xmax to xneg. By the Cauchy–
Schwarz inequality,

1

3n
≤ n

2

∑
(i,j)∈E

(xi − xj)
2.(6.7)
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(The factor of 1/2 in the right-hand side arises because the sum includes both terms
(xki − xki+1)

2 and (xki+1 − xki)
2.) Thus,

∑
(i,j)∈E

(xi − xj)
2 ≥ 2

3n2
,

which proves the bound for the second largest eigenvalue.
For the smallest eigenvalue, recall that aii ≥ 1/n for every i. It follows that

the matrix A is of the form (I/n) + Q, where I is the identity matrix and Q is a
nonnegative matrix whose row sums are equal to 1− 1/n. Thus, all of the eigenvalues
of Q have magnitude bounded above by 1 − 1/n, which implies that the smallest
eigenvalue of Q is bounded below by −1 + 1/n. We conclude that λn, the smallest
eigenvalue of (I/n) +Q, satisfies

λn ≥ −1 + 2

n
≥ −1 + 2

n3
.

For the bound on the convergence time, we proceed as in the proof of Corollary
5.2. Let pij(t) be the (i, j)th entry of A

t. Then

|pij(t)− πj | ≤
√

n

(
1− 1

3
n−2

)t

.

For a suitable absolute constant c and for t ≥ cn2 log(n/ε), we obtain |pij(t)−π(j)| ≤
ε/n. The rest of the proof of Corollary 5.2 holds unchanged.

In light of the preceding theorem, we propose the following simple heuristic, with
worst-case convergence time O(n2 log(n/ε)), as an alternative to a more elaborate
design of the matrix A.

Algorithm 6.3. We are given a symmetric graph G. We delete enough arcs to
turn G into a bidirectional spanning tree and then carry out the equal-neighbor, time-
invariant, bidirectional consensus algorithm, with initial value xi(0)/nπi at node i.

We note that this heuristic satisfies the desired condition (6.1) with C = 1/3.
Indeed, E < 3n and di ≥ 1, so that nπi = ndi/E ≥ 1/3. Let us also remark that
the O(n2 log(n/ε)) bound (Theorem 6.2) on the convergence time of this heuristic is
essentially tight (within a factor of logn). Indeed, if the given graph is a line graph,
then with our heuristic we have nπi = ndi/E ≥ 1/2, and Theorem 6.1 provides an
Ω(n2 log(1/ε)) lower bound.

7. Convergence Time When Using a Doubly Stochastic Matrix. We provide
here a brief comparison of our methods with the following two methods proposed in
the literature that rely on doubly stochastic matrices. Recall that doubly stochastic
matrices give rise directly to an averaging algorithm, without the need for scaling the
initial values.

(a) Reference [60] considers the case where the graph G is given and studies the
problem of choosing a doubly stochastic matrix A for which the convergence
rate ρ is smallest. In order to obtain a tractable (semidefinite programming)
formulation, this reference imposes the further restriction that A be sym-
metric. For a doubly stochastic matrix, we have πi = 1/n for all i, so that
condition (6.1) holds with C = 1. According to Theorem 6.1, there exists a
sequence of graphs for which we have Tn(ε) = Ω(n

2 log(1/ε)). We conclude
that, despite the sophistication of this method, its worst-case guarantee is no
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better (ignoring the logn factor) than the simple heuristic we have proposed
(Algorithm 6.3). On the other hand, for particular graphs, the design method
of [60] may yield better convergence times.

(b) The following method was proposed in [50]. The nodes first agree on some
value ε ∈ (0, 1/maxi di). (This is easily accomplished in a distributed man-
ner.) Then the nodes iterate according to the equation

xi(t+ 1) = (1− εdi)xi(t) + ε

n∑
j∈N (i)\{i}

xj(t).(7.1)

Assuming a connected graph, the iteration converges to consensus (this is a
special case of Theorem 2.4). Furthermore, this iteration preserves the sum∑n

i=1 xi(t). Equivalently, the corresponding matrix A is doubly stochastic,
as is required in order to have an averaging algorithm.
This algorithm has the disadvantage of uniformly small stepsizes. If many of
the nodes have degrees of the order of n, there is no significant theoretical
difference between this approach and our Algorithm 3.1, as both have effective
stepsizes of order 1/n. On the other hand, if only a few nodes have large
degrees, then the algorithm in [50] will force all the nodes to take small steps.
This drawback is avoided by our Algorithms 3.1 (section 3.3) and 6.3 (section
6.3). A comparison of the method of [50] with Algorithm 3.1 is carried out,
through simulation experiments, in section 9.

8. Averaging with Dynamic Topologies. In this section, we turn our attention
to the more challenging case where communications are bidirectional but the net-
work topology changes dynamically. Averaging algorithms for such a context were
considered previously in [44, 45].

As should be clear from the previous sections, consensus and averaging algorithms
are intimately linked, with the agreement algorithm often providing a foundation for
the development of an averaging algorithm. For this reason, we start by investi-
gating the worst-case performance of the agreement algorithm in a dynamic environ-
ment. Unfortunately, as shown in section 8.1, its convergence time is not polynomially
bounded, in general. Motivated by this negative result, we approach the averaging
problem differently: we introduce an averaging algorithm based on “load balancing”
ideas (section 8.2) and prove a polynomial upper bound on its convergence time (sec-
tion 8.3).

8.1. Nonpolynomial Convergence Time for the Agreement Algorithm. We
begin by formally defining the notion of “convergence time” for the agreement al-
gorithm on dynamic graph sequences. Given a sequence of graphs G(t) on n nodes
such that Assumption 2.3 of section 2 is satisfied for some B > 0, and an initial con-
dition x(0), we define the convergence time TG(·)(x(0), ε) (for this particular graph
sequence and initial condition) as the first time t after which each node is within an
ε-neighborhood of the final consensus, i.e., ‖x(tτ)− lims→∞ x(s)‖∞ ≤ ε for all τ ≥ t.
We then define the (worst-case) convergence time, Tn(B, ε), as the maximum value
of TG(·)(x(0), ε) over all graph sequences G(·) on n nodes that satisfy Assumption 2.3
for that particular B, and over all initial conditions that satisfy ‖x(0)‖∞ ≤ 1.

We focus our attention on the equal-neighbor version of the agreement algorithm.
The result that follows shows that its convergence time is not bounded by a polynomial
in n and B. In particular, if B is proportional to n, the convergence time increases
faster than an exponential in n. We note that the upper bound in Theorem 8.1 is



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 763

2 3 n/2

1

n

n/2+1 n/2+2 n-1

2 3 n/2

1

n

n/2+1 n/2+2 n-1

Fig. 8.1 The diagram on the left is the graph G(0). The diagram on the right is the graph G(t) at
times t = 1, . . . , B − 2. Self-arcs are not drawn but should be assumed present at every
node.

not a new result, but we include it for completeness and for comparison with the
lower bound, together with a comment on its proof. Similar upper bounds were also
provided recently in [12], under slightly different assumptions on the graph sequence
G(·).

Theorem 8.1. For the equal-neighbor agreement algorithm, there exist positive
constants c1 and c2 such that, for every n, B, and 1 > ε > 0,

c1nB
(n − 1

2

)B−1

log
1

ε
≤ Tn(B, ε) ≤ c2BnnB log

1

ε
.(8.1)

Remark. It is possible to exhibit a sequence of symmetric graphs such that the
equal-neighbor agreement algorithm takes an exponentially long time in n to converge.
Such an example was communicated to the authors by Cao [8]. An exposition of that
example as well as a simple proof of the exponentially large convergence time can be
found in [53].

Proof. The upper bound follows by inspecting the proof of convergence of the
agreement algorithm with the constant α of Assumption 2.1 set to 1/n (cf. [57, 6]).

We now prove the lower bound by exhibiting a sequence of graphs G(t) and an ini-
tial vector x(0), with ‖x(0)‖∞ ≤ 1, for which TG(·)(x(0), ε) ≥ c1nB(n/2)

B−1 log(1/ε).
We assume that n is even and n ≥ 4. The initial condition x(0) is defined as xi(0) = 1
for i = 1, . . . , n/2 and xi(0) = −1 for i = n/2 + 1, . . . , n.

(i) The graph G(0), used for the first iteration, is shown on the left-hand side of
Figure 8.1.

(ii) For t = 1, . . . , B− 2, we perform an equal-neighbor iteration, each time using
the graph G(t) shown on the right-hand side of Figure 8.1.

(iii) Finally, at time B − 1, the graph G(B − 1) consists of the complete graph
over the nodes {1, . . . , n/2} and the complete graph over the nodes {n/2 +
1, . . . , n}.

(iv) This sequence of B graphs is then repeated, i.e., G(t+ kB) = G(t) for every
positive integer k.

It is easily seen that this sequence of graphs satisfies Assumption 2.3 and that con-
vergence to consensus is guaranteed.
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At the end of the first iteration, we have xi(1) = xi(0) for i �= 1, n, and

x1(1) =
(n/2)− 1
(n/2) + 1

= 1− 4

n+ 2
, xn(1) = −x1(1).(8.2)

Consider now the evolution of x1(t) for t = 1, . . . , B− 2, and let α(t) = 1−x1(t). We
have

x1(t+ 1) =
1 · (1− α(t)) + (n/2− 1) · 1

n/2
= 1− (2/n)α(t),

so that α(t+1) = 2α(t)/n. From (8.2), α(1) = 4/(n+2), which implies that α(B−1) =
(2/n)B−2, or

x1(B − 1) = 1− 4

n+ 2

( 2
n

)B−2

.

By symmetry,

xn(B − 1) = −1 + 4

n+ 2

( 2
n

)B−2

.

Finally, at time B − 1, we iterate on the complete graph over nodes {1, . . . , n/2}
and the complete graph over nodes {n/2 + 1, . . . , n}. For i = 2, . . . , n/2, we have
xi(B − 1) = 1, and we obtain

xi(B − 1) =
1 ·
(n

2
− 1
)
+ 1− 4

n+ 2

( 2
n

)B−2

n/2
= 1− 4

n+ 2

( 2
n

)B−1

.

Similarly, for i = (n/2) + 1, . . . , n, we obtain

xi(B − 1) = −1 + 4

n+ 2

( 2
n

)B−2

.

Thus,

|maxi xi(B)−mini xi(B)|
|maxi xi(0)−mini xi(0)| = 1−

4

n+ 2
·
( 2
n

)B−1

.

Moreover, because x(B) is simply a scaled version of x(0), it is clear that by repeating
this sequence of graphs, we will have

|maxi xi(kB)−mini xi(kB)|
|maxi xi(0)−mini xi(0)| =

(
1− 4

n+ 2
·
( 2
n

)B−1)k
.

This readily implies that

TG(·)(x(0), ε) = Ω
(
nB
(n

2

)B−1

log
1

ε

)
.

If n is odd, then n′ = n − 1 is even. We apply the same initial condition and
graph sequence as above to nodes {1, . . . , n′}. As for the additional node xn, we let
xn(0) = 0 and make extra connections by connecting node n to nodes 1 and n′ at
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time 0 with a bidirectional link. By repeating the analysis above, it can be verified
that

TG(·)(x(0), ε) = Ω
(
nB
(n − 1

2

)B−1

log
1

ε

)
.

This concludes the proof.
Both the upper and lower bounds in Theorem 8.1 display exponential growth of

the convergence time as a function of B. It is unclear, however, which of the two
terms, nB or nnB, better captures the behavior of Tn(B, ε).

8.2. Polynomial-Time Averaging in Dynamic Topologies. The algorithm we
present here is a variation of an old load-balancing algorithm (see [19] and Chapter
7.3 of [5]). Intuitively, a collection of processors with different initial loads try to
equalize their respective loads. As some of the highly loaded processors send some of
their loads to their less loaded neighbors, the loads at different nodes tend to become
equal. Similarly, at each step of our algorithm, each node offers some of its value to
its neighbors and accepts or rejects such offers from its neighbors. Once an offer from
i to j to send δ has been accepted, the updates xi := xi − δ and xj := xj + δ are
executed.

We assume a time-varying sequence of graphs G(t). We make only the following
two assumptions on G(·): symmetry and bounded interconnectivity times (see section
2 for definitions). The symmetry assumption is natural if we consider, for example,
communication between two nodes to be feasible whenever the nodes are within a
certain distance of each other. The assumption of bounded interconnectivity times
is necessary for an upper bound on the convergence time to exist (otherwise, we
could insert infinitely many empty graphs G(t), in which case convergence would be
arbitrarily slow for any algorithm).

We next describe formally the steps that each node carries out at each time t.
For definiteness, we refer to the node executing the steps below as node A. Moreover,
the instructions below sometimes refer to the “neighbors” of node A; this always
means nodes other than A that are neighbors at time t, when the step is being
executed (since G(t) can change with t, the set of neighbors of A can also change).
LetNi(t) = {j �= i : (i, j) ∈ E(t)}. Note that this is a little different from the definition
of Ni(t) in earlier sections, in that i is no longer considered to be a neighbor of itself.

Algorithm 8.2. If NA(t) is empty, node A does nothing at time t. Otherwise,
node A carries out the following steps:

1. Node A broadcasts its current value xA to all of its neighbors (every j with
j ∈ NA(t)).

2. Node A finds a neighboring node B with the smallest value: xB = min{xj :
j ∈ NA(t)}. If xA ≤ xB , then node A does nothing further at this step. If
xB < xA, then node A makes an offer of (xA − xB)/2 to node B.

3. If node A does not receive any offers, it does nothing further at this step.
Otherwise, it sends an acceptance to the sender of the largest offer and a
rejection to all the other senders. It updates the value of xA by adding the
value of the accepted offer.

4. If an acceptance arrives for the offer made by node A, node A updates xA by
subtracting the value of the offer.

For concreteness, we use xi(t) to denote the value possessed by node i at the
beginning of the steps described above. Accordingly, the value possessed by node i at
the end of the above steps will be xi(t + 1). The algorithm we have specified clearly
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keeps the value of
∑n

i=1 xi(t) constant. Furthermore, it is a valid averaging algorithm,
as stated in Theorem 8.3 below. We do not provide a separate proof, because this
result follows from the convergence time bounds in the next subsection.

Theorem 8.3. Suppose that each G(t) is symmetric and that Assumption 2.3
(bounded interconnectivity times) holds. Then limt→∞ xi(t) =

1
n

∑n
k=1 xk(0) for all i.

8.3. Convergence Time. We introduce the following potential function that
quantifies the distance of the state x(t) of the agents from the desired limit:

V (t) =

∥∥∥∥∥x(t)− 1

n

n∑
i=1

xi(0)1

∥∥∥∥∥
2

2

.

Intuitively, V (t) measures the variance of the values at the different nodes. Given
a sequence of graphs G(t) on n nodes and an initial vector x(0), we define the con-
vergence time TG(·)(x(0), ε) as the first time t after which V (·) remains smaller than
εV (0):

TG(·)(x(0), ε) = min
{
t | V (τ) ≤ εV (0) ∀ τ ≥ t

}
.

We then define the (worst-case) convergence time, Tn(B, ε), as the maximum value
of TG(·)(x(0), ε) over all graph sequences G(·) on n nodes that satisfy Assumption 2.3
for that particular B and over all initial conditions x(0).

Theorem 8.4. There exists a constant c > 0 such that, for every n and every
ε ∈ (0, 1), we have

Tn(B, ε) ≤ cBn3 log
1

ε
.(8.3)

Remark. In later work [47] after this paper originally appeared, we proved the
stronger result

Tn(B, ε) ≤ cBn2 log
1

ε
.

(The algorithm in [47] has some minor differences, but the same analysis applies to
the algorithm as presented here.) Moreover, our subsequent paper [52] proved that for
a natural class of update rules (namely, those for which x(t+1) is a smooth function
of x(t)), it is possible to establish the lower bound

Tn(1, ε) ≥ n2

30
log

1

ε
.

Proof. The proof is structured as follows. Without loss of generality, we assume
that

∑n
i=1 xi(0) = 0; this is possible because adding a constant to each xi does not

change the sizes of the offers or the acceptance decisions. We will show that V (t) is
nonincreasing in t and that

V ((k + 1)B) ≤
(
1− 1

2n3

)
V (kB)(8.4)

for every nonnegative integer k. These two claims readily imply the desired result. To
see this, note that if V (t) decreases by a factor of 1− (1/2n3) every B steps, then it
decreases by a Θ(1) factor in Bn3 steps. It follows that the time until V (t) becomes
less than εV (0) is O(Bn3 log(1/ε)). Finally, since V (t) is nonincreasing, V (t) stays
below εV (0) thereafter.
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We first show that V (t) is nonincreasing. We argue that while rejected offers
clearly do not change V (t), each accepted offer at time t results in a decrease of
V (t + 1). While this would be straightforward to establish if there were a single
accepted offer, a more complicated argument is needed to account for the possibility
of multiple offers being simultaneously accepted. We will show that we can view the
changes at time t as a result of a series of sequentially accepted offers, each of which
results in a smaller value of V .

Let us focus on a particular time t. We order the nodes from smallest to largest,
so that x1(t) ≤ x2(t) ≤ · · · ≤ xn(t), breaking ties arbitrarily. Let Ai(t) be the size of
the offer accepted by node i at time t (if any). If the node accepted no offers at time
t, set Ai(t) = 0. Furthermore, if Ai(t) > 0, let Ai(t) be the index of the node whose
offer node i accepted.

Let us now break time t into n periods. The ith period involves the updates caused
by node i accepting an offer from nodeAi(t). In particular, node i performs the update
xi(t) := xi(t)+Ai(t) and node Ai(t) performs the update xAi(t)(t) := xAi(t)(t)−Ai(t).

We note that every offer accepted at time t appears in some period in the above
sequence. We next argue that each offer decreases V . This will complete the proof
that V (t) is nonincreasing in t.

Let us suppose that, in the ith period, node i accepts an offer from node Ai(t),
which for simplicity we will denote by j. Because nodes only send offers to lower-
valued nodes, the inequality xj > xi must hold at the beginning of time t, before
time period 1. We claim that this inequality continues to hold when the ith time
period is reached. Indeed, xj is unchanged during periods 1, . . . , i − 1 (it can only
send one offer, which was to xi; and if it receives any offers, their effects will occur in
period j, which is after period i). Moreover, while the value of xi may have changed
in periods 1, . . . , i− 1, it cannot have increased (since i is not allowed to accept more
than one offer at any given time t). Therefore, the inequality xj > xi still holds at
the beginning of the ith period.

During the ith period, a certain positive amount is transferred from node j to
node i. Since the transfer takes place from a higher-valued node to a lower-valued
one, it is easily checked that the value of x2

i + x2
j (which is the contribution of these

two nodes to V ) is reduced. To summarize, we have shown that we can serialize the
offers accepted at time t in such a way that each accepted offer causes a reduction in
V . It follows that V (t) is nonincreasing.

We will now argue that at some time t in the interval 0, 1, . . . , B−1, there will be
some update (acceptance of an offer) that reduces V (t) by at least V (0)/2n3. Without
loss of generality, we assume maxi |xi(0)| = 1, so that all the values lie in the interval
[−1,+1]. It follows that V (0) ≤ n.

Since
∑n

i=1 xi(0) = 0, it follows that mini xi(0) ≤ 0. Hence, the largest gap
between any two consecutive xi(0) must be at least 1/n. Thus, there exist some
numbers a and b with b − a ≥ 1/n, and the set of nodes can be partitioned into two
disjoint subsets S− and S+ such that xi(0) ≤ a for all i ∈ S−, and xi(0) ≥ b for
all i ∈ S+. By Assumption 2.3, the graph with arcs

⋃
s=0,...,B−1 E(s) is connected.

Thus, there exists a first time τ ∈ {0, 1, . . . , B−1} at which there is a communication
between some node i ∈ S− and some node j ∈ S+, resulting in an offer from j to i.
Up until that time, nodes in S− have not interacted with nodes in S+. It follows that
xk(τ) ≤ a for all k ∈ S− and xk(τ) ≥ b for all k ∈ S+. In particular, xi(τ) ≤ a and
xj(τ) ≥ b. There are two possibilities: either i accepts the offer from j, or i accepts
some higher offer from some other node in S+. In either case, we conclude that there
is a first time τ ≤ B − 1 at which a node in S− accepts an offer from a node in S+.
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Let us use plain xi and xj for the values at nodes i and j, respectively, at the
beginning of period i of time τ . At the end of that period, the value at both nodes is
equal to (xi + xj)/2. Thus, the Lyapunov function V decreases by

x2
i + x2

j − 2
(xi + xj

2

)2
=
1

2
(xi − xj)

2 ≥ 1

2
(b− a)2 ≥ 1

2n2
.

At every other time and period, V is nonincreasing, as shown earlier. Thus, using the
inequality V (0) ≤ n,

V (B) ≤ V (0)− 1

2n2
≤ V (0)

(
1− 1

2n3

)
.

By repeating this argument over the interval kB, . . . , (k+1)B, instead of the interval
0, . . . , B, we establish (8.4), which concludes the proof.

Remark. The thesis [51] provides a variation of this averaging scheme with the
additional property that every node averages with at most one neighbor per round.
Averaging algorithms with this property were explored in [40].

9. Simulations. We have proposed three new algorithms for the distributed con-
sensus and averaging problems. For one of them, namely, the spanning tree heuristic
of section 6.3 (Algorithm 6.3), the theoretical performance has been characterized
completely—see Theorem 6.2 and the discussion at the end of section 6.3. In this
section, we provide simulation results for the remaining two algorithms.

9.1. Averaging in Fixed Networks with Two Passes of the Agreement Algo-
rithm. In section 3.3, we proposed a method for averaging in fixed graphs, based on
two parallel executions of the agreement algorithm (Algorithm 3.1). We speculated
in section 7 that the presence of a small number of high-degree nodes would make
the performance of our algorithm attractive relative to the algorithm of [50], which
uses a stepsize proportional to the inverse of the largest degree. (Our implementation
used a stepsize of ε = 1/2dmax.) Figure 9.1 presents simulation results for the two
algorithms.
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Fig. 9.1 On the left: Comparison of averaging algorithms on a geometric random graph. The top
line corresponds to the algorithm of [50], and the bottom line (close to the horizontal axis)
corresponds to using two parallel passes of the agreement algorithm (Algorithm 3.1). On
the right: A blow-up of the performance of the agreement algorithm.
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In each simulation, we first generate geometric random graph G(n, r) by placing
nodes randomly in [0, 1]2 and connecting two nodes if they are at most r apart. We
choose r = Θ(

√
logn/n), which is a standard choice for modeling wireless networks

(cf. [23]).
We then change the random graph G(n, r) by choosing nd nodes at random (nd =

10 in both parts of Figure 9.1) and adding edges randomly to make the degree of these
nodes linear in n; this is done by considering all possible edges incident to at least
one node in nd; each such edge is inserted independently with probability 1/3. We
run the algorithm with random starting values, uniformly distributed in [0, 1], until
the largest deviation from the mean is at most ε = 10−3.

Each outcome recorded in Figure 9.1 (for different values of n) is the average of
three runs. We conclude that for such graphs, the convergence time of the algorithm
in [50] grows considerably faster than the one proposed in this paper.

9.2. Averaging in Time-Varying Random Graphs. We report here on simula-
tions involving the load-balancing algorithm (Algorithm 8.2) on time-varying random
graphs. In contrast to our previous simulations on a static geometric graph, we test
two time-varying models.

In both models, we select our initial vector x(0) by choosing each component
independently as a uniform random variable over [0, 1]. In our first model, at each
time t, we independently generate an Erdös–Renyi [25] random graph G(t) = G(c, n)
with c = 3/4. In the second model, at each time step we independently generate
a geometric random graph with G(n, r) with r =

√
logn/n. In both models, if the

largest deviation from the mean is at most ε = 10−3, we stop; otherwise, we perform
another iteration of the load-balancing algorithm.

The results are summarized in Figure 9.2, where again each point represents the
average of three runs. We conclude that in these random models, only a sublinear
number of iterations appears to be needed.
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Fig. 9.2 On the left: Averaging in time-varying Erdös–Renyi random graphs with the load balancing
algorithm. Here, c = 3/4 at each time t. On the right: Averaging in time-varying geometric

random graphs with the load-balancing algorithm. Here, r =
√

logn/n.

10. Concluding Remarks. In this paper we have considered a variety of consen-
sus and averaging algorithms and studied their convergence rates. While our discus-
sion was focused on averaging algorithms, several of our results pertain to the closely
related consensus problem.
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For the case of a fixed topology, we showed that averaging algorithms are easy
to construct by using two parallel executions of the agreement algorithm for the
consensus problem. We also saw that a reasonable performance guarantee can be
obtained by using the equal-neighbor agreement algorithm on a spanning tree, as
opposed to a more sophisticated design.

For the case of a fixed topology, the choice of different algorithms is not a purely
mathematical issue; one must also take into account the extent to which one is able to
design the algorithm offline and provide suitable instructions to each node. After all,
if the nodes are able to set up a spanning tree, there are simple distributed algorithms,
involving two sweeps along the tree in opposite directions, with which the sum of their
initial values can be computed and disseminated [5], thus eliminating the need for an
iterative algorithm. On the other hand, in less structured environments, with the
possibility of occasional changes in the system topology, iterative algorithms can be
more resilient. For example, the equal-neighbor agreement algorithm adjusts itself
naturally when the topology changes.

In the face of a changing topology (possibly at each time step), the agreement
algorithm continues to work properly under minimal assumptions (see Theorem 2.4).
On the other hand, its worst-case convergence time may suffer severely (cf. section
8.1). Furthermore, it is not apparent how to modify the agreement algorithm and
obtain an averaging algorithm without sacrificing linearity and/or allowing some ad-
ditional memory at the nodes. In section 8, we introduced an averaging algorithm
that is nonlinear but leads to a rather favorable (and, in particular, polynomial) con-
vergence time bound. In view of the favorable performance observed in our simulation
results, it would also be interesting to characterize the average performance of this
algorithm under a probabilistic mechanism for generating the graphs G(t), similar to
the one in our simulations.

Something to notice about Algorithm 8.2 is that it requires the topology to remain
fixed during the exchange of offers and acceptances/rejections that happens at each
step. On the other hand, without such an assumption, or without introducing a much
larger memory at each node (which would allow for flooding of individual values), an
averaging algorithm may well turn out to be impossible.

REFERENCES

[1] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, Spread of (mis)information in social
networks, Games Econom. Behav., 70 (2010), pp. 194–227.

[2] D. Angeli and P.-A. Bliman, Tight estimates for convergence of some non-stationary con-
sensus algorithms, Systems Control Lett., 57 (2008), pp. 996–1004.

[3] D. Angeli and P.-A. Bliman, Convergence speed of unsteady distributed consensus: Decay
estimate along the settling spanning-trees, SIAM J. Control Optim., 48 (2009), pp. 1–32.

[4] P. Baroah, Estimation and Control with Relative Measurements: Algorithms and Scaling
Laws, Ph.D. Thesis, University of California at Santa Barbara, 2007.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice–Hall, Englewood Cliffs, NJ, 1989.

[6] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, Convergence in
multiagent coordination, consensus, and flocking, in Proceedings of the Joint 44th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC’05),
Seville, Spain, 2005, pp. 2996–3000.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE
Trans. Inform. Theory, 52 (2006), pp. 2508–2530.

[8] M. Cao, Personal communication.
[9] M. Cao, A. S. Morse, and B. D. O. Anderson, Coordination of an asynchronous, multi-agent

system via averaging, in Proceedings of the 16th International Federation of Automatic
Control World Congress (IFAC), Prague, Czech Republic, 2005.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 771

[10] M. Cao, A. S. Morse, and B. D. O. Anderson, Reaching a consensus in a dynamically
changing environment: A graphical approach, SIAM J. Control Optim., 47 (2008), pp.
575–600.

[11] M. Cao, A. S. Morse, and B. D. O. Anderson, Reaching a consensus in a dynamically
changing environment: Convergence rates, measurement delays, and asynchronous events,
SIAM J. Control Optim., 47 (2008), pp. 601–623.

[12] M. Cao, D. A. Spielman, and A. S. Morse, A lower bound on convergence of a distributed
network consensus algorithm, in Proceedings of the Joint 44th IEEE Conference on Deci-
sion and Control and European Control Conference (CDC-ECC’05), Seville, Spain, 2005,
pp. 2356–2361.

[13] R. Carli, F. Bullo, and S. Zampieri, Quantized average consensus via dynamic coding/
decoding schemes, Internat. J. Robust Nonlinear Control, 20 (2010), pp. 156–175.

[14] R. Carli, F. Fagnani, P. Frasca, T. Taylor, and S. Zampieri, Average consensus on
networks with transmission noise or quantization, in Proceedings of the European Control
Conference, Kos, Greece, 2007, pp. 1852–1857.

[15] B. Chazelle, Natural algorithms, in Proceedings of the 20th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2009, pp. 422–431.

[16] B. Chazelle, The geometry of flocking, in Proceedings of the 27th Annual Symposium on
Computational Geometry (SOCG), 2010, pp. 19–28.

[17] B. Chazelle, Analytical tools for natural algorithms, in Proceedings of the First Conference
on Innovations in Computer Science (ICS), 2010, pp. 32–41.

[18] J. Cortes, Finite-time convergent gradient flows with applications to network consensus, Au-
tomatica, 42 (2006), pp. 1993–2000.

[19] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, J. Parallel Dis-
trib. Comput., 7 (1989), pp. 279–301.

[20] M. H. DeGroot, Reaching a consensus, J. Amer. Statist. Assoc., 69 (1974), pp. 118–121.
[21] J.-C Delvenne, R. Carli, and S. Zampieri, Optimal strategies in the average consensus

problem, Systems Control Lett., 58 (2009), pp. 759–765.
[22] P. M. DeMarzo, D. Vayanos, and J. Zwiebel, Persuasion bias, social influence, and unidi-

mensional opinions, Quart. J. Econom., 118 (2003), pp. 909–968.
[23] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, Geographic gossip: Efficient aggrega-

tion for sensor networks, in Proceedings of the 5th International Conference on Information
Processing in Sensor Networks (IPSN), Nashville, TN, 2006, pp. 69–76.

[24] J. Duchi, A. Agarwal, and M. J. Wainwright, Dual averaging for distributed optimization:
Convergence analysis and network scaling, IEEE Trans. Automat. Control, to appear.

[25] P. Erdös and A. Renyi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató
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