
2276 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

Distributed Anonymous Discrete
Function Computation

Julien M. Hendrickx, Alex Olshevsky, and John N. Tsitsiklis, Fellow, IEEE

Abstract—We propose a model for deterministic distributed
function computation by a network of identical and anonymous
nodes. In this model, each node has bounded computation and
storage capabilities that do not grow with the network size.
Furthermore, each node only knows its neighbors, not the entire
graph. Our goal is to characterize the class of functions that can
be computed within this model. In our main result, we provide
a necessary condition for computability which we show to be
nearly sufficient, in the sense that every function that violates this
condition can at least be approximated. The problem of computing
(suitably rounded) averages in a distributed manner plays a cen-
tral role in our development; we provide an algorithm that solves
it in time that grows quadratically with the size of the network.

Index Terms—Averaging algorithms, distributed computing,
distributed control.

I. INTRODUCTION

T HE goal of many multi-agent systems, distributed compu-
tation algorithms, and decentralized data fusion methods

is to have a set of nodes compute a common value based on ini-
tial values or observations at each node. Towards this purpose,
the nodes, which we will sometimes refer to as agents, perform
some internal computations and repeatedly communicate with
each other. The objective of this paper is to understand the fun-
damental limitations and capabilities of such systems and al-
gorithms when the available information and computational re-
sources at each node are limited.

A. Motivation

The model that we will employ is a natural one for many dif-
ferent settings, including the case of wireless sensor networks.
However, before describing the model, we start with a few ex-
amples that motivate the questions that we address.

Manuscript received April 01, 2010; revised March 31, 2011; accepted June
30, 2011. Date of publication August 08, 2011; date of current version October
05, 2011. This paper was presented in part at the Forty-Seventh Annual Allerton
Conference on Communication, Control, and Computing, Oct.2009. This work
was supported by the National Science Foundation under a graduate fellowship
and grant ECCS-0701623, and by postdoctoral fellowships from the Belgian
Fund for Scientific Research (F.R.S.-FNRS) and the Belgian American Edu-
cation Foundation (B.A.E.F.), and was conducted while J. Hendrickx and A.
Olshevsky were at M.I.T. Recommend by Associate Editor I. Paschalidis.

J.M. Hendrickx is with the Université catholique de Louvain, Louvain-la-
Neuve B-1348, Belgium (e-mail: julien.hendrickx@uclouvain.be).

A. Olshevsky is with the Department of Mechanical and Aerospace
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail: aol-
shevs@princeton.edu).

J. N. Tsitsiklis is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
jnt@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2011.2163874

(a) Quantized consensus: Suppose that each node begins
with an integer value . We would
like the nodes to end up, at some later time, with
values that are almost equal, i.e., , for
all , , while preserving the sum of the values, i.e.,

. This is the so-called quantized
averaging problem, which has received considerable at-
tention recently; see, e.g., [3], [7], [13], [21], [25], [36]. It
may be viewed as the problem of computing the function

, rounded to an integer value.
(b) Distributed hypothesis testing and majority voting:

Consider sensors interested in deciding between two
hypotheses, and . Each sensor collects measure-
ments and makes a preliminary decision in
favor of one of the hypotheses. The sensors would like
to make a final decision by majority vote, in which case
they need to compute the indicator function of the event

, in a distributed way. Alternatively,
in a weighted majority vote, they may be interested in
computing the indicator function of an event such as

. A variation of this problem involves
the possibility that some sensors abstain from the vote,
perhaps due to their inability to gather sufficiently reliable
information.

(c) Direction coordination on a ring: Consider vehicles
placed on a ring, each with some arbitrarily chosen di-
rection of motion (clockwise or counterclockwise). We
would like the vehicles to agree on a single direction
of motion. A variation of this problem was considered
in [30], where, however, additional requirements on the
vehicles were imposed which we do not consider here.
The solution provided in [30] was semi-centralized in
the sense that vehicles had unique numerical identifiers,
and the final direction of most vehicles was set to the
direction of the vehicle with the largest identifier. We
wonder whether the direction coordination problem can
be solved in a completely decentralized way. Further-
more, we would like the final direction of motion to cor-
respond to the initial direction of the majority of the ve-
hicles: if, say, 90% of the vehicles are moving counter-
clockwise, we would like the other 10% to turn around.
If we define to be 1 when the th vehicle is initially
oriented clockwise, and 0 if it is oriented counterclock-
wise, then, coordinating on a direction involves the dis-
tributed computation of the indicator function of the event

.
(d) Solitude verification: This is the problem of checking

whether exactly one node has a given state. This problem
is of interest if we want to avoid simultaneous transmis-
sions over a common channel [17], or if we want to main-

0018-9286/$26.00 © 2011 IEEE

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2277

tain a single leader (as in motion coordination—see for
example [20]) Given states , solitude
verification is equivalent to the problem of computing
the binary function which is equal to 1 if and only if

.
There are numerous methods that have been proposed for

solving problems such as the above; see for example the vast
and growing literature on consensus and averaging methods, or
the distribute robotics literature [9]. Oftentimes, different algo-
rithms involve different computational capabilities on the part
of the nodes, which makes it hard to talk about a “best” al-
gorithm. At the same time, simple algorithms (such as setting
up a spanning tree and aggregating information by progressive
summations over the tree) are often considered undesirable be-
cause they require too much coordination or global information.
It should be clear that a sound discussion of such issues requires
the specification of a precise model of computation, followed by
a systematic analysis of fundamental limitations under a given
model. This is precisely the objective of this paper: to propose a
particular model, and to characterize the class of functions com-
putable under this model.

B. The Features of Our Model

Our model provides an abstraction for common requirements
for distributed algorithms in the wireless sensor network litera-
ture. We model the nodes as interacting deterministic finite au-
tomata that exchange messages on a fixed bidirectional network,
with no time delays or unreliable transmissions. Some important
qualitative features of our model are the following.

Identical nodes: Any two nodes with the same number
of neighbors must run the same algorithm. Note that this
assumption is equivalent to assuming that the nodes are
exactly identical. Any algorithm that works in this setting
will also work if the nodes are not all identical, since the
nodes can still run the same algorithm.
Anonymity: A node can distinguish its neighbors using
its own, private, local identifiers. However, nodes do not
have global identifiers. In other words, a node receiving a
message from one of its neighbors can send an answer to
precisely that neighbor, or recognize that a later message
comes from this same neighbor. On the other hand,
nodes do not a priori have a unique signature that can be
recognized by every other node.
Determinism: Randomization is not allowed. This restric-
tion is imposed in order to preclude essentially centralized
solutions that rely on randomly generated distinct identi-
fiers and thus bypass the anonymity requirement. Clearly,
developing algorithms is much harder, and sometimes im-
possible, when randomization is disallowed.
Limited memory: We focus on the case where the nodes
can be described by finite automata, and pay special at-
tention to the required memory size. Ideally, the number
of memory bits required at each node should be bounded
above by a slowly growing function of the degree of a node.
Absence of global information: Nodes have no global in-
formation, and do not even have an upper bound on the total
number of nodes. Accordingly, the algorithm that each
node is running is independent of the network size and
topology.

Convergence requirements: Nodes hold an estimated
output that must converge to a desired value which is a
function of all nodes’ initial observations or values. In
particular, for the case of discrete outputs, all nodes must
eventually settle on the desired value. On the other hand,
the nodes do not need to become aware of such termina-
tion, which is anyway impossible in the absence of any
global information [6].

In this paper, we only consider the special case of fixed graph
topologies, where the underlying (and unknown) interconnec-
tion graph does not change with time. Developing a meaningful
model for the time-varying case and extending our algorithms
to that case is an interesting topic, but outside the scope of this
paper.

C. Literature Review

There is a very large literature on distributed function compu-
tation in related models of computation [5], [8], [26]. This liter-
ature can be broadly divided into two strands, although the sep-
aration is not sharp: works that address general computability
issues for various models, and works that focus on the compu-
tation of specific functions, such as the majority function or the
average. We start by discussing the first strand.

A common model in the distributed computing literature
involves the requirement that all processes terminate once the
desired output is produced and that nodes become aware that
termination has occurred. A consequence of the termination
requirement is that nodes typically need to know the network
size (or an upper bound on) to compute non-trivial func-
tions. We refer the reader to [1], [4], [6], [22], [32], [37] for
some fundamental results in this setting, and to [14] for a
comprehensive summary of known results. Closest to our work
is [11] which provides an impossibility result very similar to
our Theorem III.1, for a closely related model computation.

The biologically-inspired “population algorithm” model of
distributed computation has some features in common with our
model, namely, anonymous, bounded-resource nodes, and no
requirement of termination awareness; see [2] for an overview
of available results. However, this model involves a different
type of node interactions from the ones we consider; in par-
ticular, nodes interact pairwise at times that may be chosen
adversarially.

Regarding the computation of specific functions, [27] shows
the impossibility of majority voting if the nodes are limited to a
binary state. Some experimental memoryless algorithms (which
are not guaranteed to always converge to the correct answer)
have been proposed in the physics literature [16]. Several pa-
pers have quantified the performance of simple heuristics for
computing specific functions, typically in randomized settings.
We refer the reader to [19], which studied simple heuristics for
computing the majority function, and to [35], which provides
a heuristic that has guarantees only for the case of complete
graphs.

The large literature on quantized averaging often tends to in-
volve themes similar to those addressed in this paper [3], [10],
[13], [21], [25], [34]. However, the underlying models of com-
putation are typically more powerful than ours, as they allow
for randomization and unbounded memory. Closer to the cur-
rent paper, [33] develops an algorithm with convergence

2278 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

time for a variant of the quantized averaging problem, but re-
quires unbounded memory. Reference [7] provides an algorithm
for the particular quantized averaging problem that we consider
in Section IV (called in [7] the “interval consensus problem”),
which uses randomization but only bounded memory (a total of
two bits at each node). An upper bound on its expected conver-
gence time is provided in [12] as a function of and a spec-
tral quantity related to the network. A precise convergence time
bound, as a function of , is not given. Similarly, the algorithm
in [38] runs in time for the case of fixed graphs. (How-
ever, we note that [38] also addresses an asynchronous model in-
volving time-varying graphs.) Roughly speaking, the algorithms
in [7], [38] work by having positive and negative “load tokens”
circulate randomly in the network until they meet and annihilate
each other. Our algorithm involves a similar idea. However, at
the cost of some algorithmic complexity, our algorithm is de-
terministic. This allows for fast progress, in contrast to the slow
progress of algorithms that need to wait until the coalescence
time of two independent random walks. Finally, a deterministic
algorithm for computing the majority function (and some more
general functions) was proposed in [29]. However, the algorithm
appears to rely on the computation of shortest path lengths, and
thus requires unbounded memory at each node.

Semi-centralized versions of the problem, in which the nodes
ultimately transmit to a fusion center, have often been consid-
ered in the literature, e.g., for distributed statistical inference
[31] or detection [24]. The papers [15], [23], and [28] consider
the complexity of computing a function and communicating its
value to a sink node. We refer the reader to the references therein
for an overview of existing results in such semi-centralized set-
tings. However, the underlying model is fundamentally different
from ours, because the presence of a fusion center violates our
anonymity assumption.

Broadly speaking, our results differ from previous works
in several key respects: (i) Our model, which involves totally
decentralized computation, deterministic algorithms, and con-
straints on memory and computation resources at the nodes,
but does not require the nodes to know when the computation
is over, is different from that considered in almost all of the rel-
evant literature. (ii) Our focus is on identifying computable and
non-computable functions under our model, and we achieve a
nearly tight separation, as evidenced by a comparison between
Theorem III.1 and Corollary IV.3. (iii) Our averaging
algorithm is quite different, and significantly faster than avail-
able memory-limited algorithms.

D. Summary and Contributions

We provide a general model of decentralized anonymous
computation on fixed graphs, with the features described in
Section I-B, and characterize the type of functions of the initial
values that can be computed.

We prove that if a function is computable under our model,
then its value can only depend on the frequencies of the different
possible initial values. For example, if the initial values are
binary, a computable function can only depend on

and . In particular, deter-
mining the number of nodes, or whether at least two nodes have
an initial value of 1, is impossible.

Conversely, we prove that if a function only depends on the
frequencies of the different possible initial values (and is mea-
surable), then the function can be approximated with any given
precision, except possibly on a set of frequency vectors of ar-
bitrarily small volume. Moreover, if the dependence on these
frequencies can be expressed through a combination of linear
inequalities with rational coefficients, then the function is com-
putable exactly. In particular, the functions involved in the quan-
tized consensus, distributed hypothesis testing, and direction co-
ordination examples are computable, whereas the function in-
volved in solitude verification is not. Similarly, statistical mea-
sures such as the standard deviation of the distribution of the
initial values can be approximated with arbitrary precision. Fi-
nally, we show that with infinite memory, the frequencies of the
different initial values (i.e., , in the binary case) are com-
putable exactly, thus obtaining a precise characterization of the
computable functions in this case.

The key to our positive results is a new algorithm for cal-
culating the (suitably quantized) average of the initial values,
which is of independent interest. The algorithm does not involve
randomization, requires only time to terminate, and the
memory (number of bits) required at each node is only loga-
rithmic in the node’s degree. In contrast, existing algorithms ei-
ther require unbounded memory, or are significantly slower to
converge.

E. Outline

In Section II, we describe formally our model of computation.
In Section III, we establish necessary conditions for a function to
be computable. In Section IV, we provide sufficient conditions
for a function to be computable or approximable. Our positive
results rely on an algorithm that keeps track of nodes with max-
imal values, and an algorithm that calculates a suitably rounded
average of the nodes’ initial values; these are described in Sec-
tions Sections V and VI, respectively. We provide some cor-
roborating simulations in Section VII, and we end with some
concluding remarks, in Section VIII.

II. FORMAL DESCRIPTION OF THE MODEL

Under our model, a distributed computing system consists of
three elements:

(a) A network: A network is a triple , where is the
number of nodes, and is a connected bidirec-
tional graph with nodes. (By bidirectional,
we mean that the graph is directed but if , then

.) We define as the in-degree (and also
out-degree, hence “degree” for short) of node . Finally,

is a port labeling which assigns a port number (a dis-
tinct integer in the set) to each outgoing
edge of any node . Note that the unique identifiers used
to refer to nodes are only introduced for the purpose of
analysis, and are not part of the actual system. In partic-
ular, nodes do not know and cannot use their identifiers.

(b) Input and Output Sets: The input set is a finite set
to which the initial value of each node be-

longs. The output set is a finite set to which the output
of each node belongs.

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2279

(c) An algorithm: An algorithm is defined as a family of fi-
nite automata , where the automaton de-
scribes the behavior of a node with degree . The state of
the automaton is a tuple ; we
will call the initial value, the internal
memory state, the output or estimated answer, and

the outgoing messages. The sets
and are assumed finite. We allow the cardinality of
to increase with . Clearly, this would be necessary for
any algorithm that needs to store the messages received
in the previous time step. Each automaton is identi-
fied with a transition law from into
itself, which maps each to some

. In words, at each iteration, the
automaton takes , , , and incoming messages into ac-
count, to create a new memory state, output, and (out-
going) messages, but does not change the initial value.

Given the above elements of a distributed computing system,
an algorithm proceeds as follows. For convenience, we assume
that the above defined sets , , and contain a special el-
ement, denoted by . Each node begins with an initial value

and implements the automaton , initialized with
and . We use

to denote the
state of node ’s automaton at time . Consider a particular node
. Let be an enumeration of its neighbors, according

to the port numbers. (Thus, is the node at the other end of the
th outgoing edge at node .) Let be the port number assigned

to link according to the port labeling at node . At each
time step, node carries out the following update:

In words, the messages , , “sent” by
the neighbors of into the ports leading to are used to tran-
sition to a new state and create new messages ,

, that “sends” to its neighbors at time . We
say that the algorithm terminates if there exists some
(called the final output of the algorithm) and a time such that

for every and .
Consider now a family of functions , where

. We say that such a family is computable if
there exists a family of automata such that for any

, for any network , and any set of initial conditions
, the resulting algorithm terminates and the final

output is . Intuitively, a family of function s
is computable if there is a bounded-memory algorithm which
allows the nodes to “eventually” learn the value of the function
in any connected topology and for any initial conditions.

As an exception to the above definitions, we note that al-
though we primarily focus on the finite case, we will briefly
consider in Section IV function families com-
putable with infinite memory, by which we mean that the
internal memory sets and the output set are countably
infinite, the rest of the model remaining the same.

The rest of the paper focuses on the following general ques-
tion: what families of functions are computable, and how can we
design a corresponding algorithm ? To illustrate the

nature of our model and the type of algorithms that it supports,
we provide a simple example.

1) Detection Problem: In this problem, all nodes start with
a binary initial value . We wish to detect
whether at least one node has an initial value equal to 1. We
are thus dealing with the function family , where

. This function family is
computable by a family of automata with binary messages, bi-
nary internal state, and with the following transition rule:

if or or then

set

send to every neighbor of

else

set

send to every neighbor of

end if

In the above algorithm, we initialize by setting , ,
and to zero instead of the special symbol . One can easily
verify that if for every , then for all and . If
on the other hand for some , then at each time step ,
those nodes at distance less than from will have .
Thus, for connected graphs, the algorithm will terminate within

steps, with the correct output. It is important to note, however,
that because is unknown, a node can never know whether its
current output is the final one. In particular, if ,
node cannot exclude the possibility that for some node
whose distance from is larger than .

III. NECESSARY CONDITION FOR COMPUTABILITY

In this section we establish our main negative result, namely,
that if a function family is computable, then the final output can
only depend on the frequencies of the different possible initial
values. Furthermore, this remains true even if we allow for infi-
nite memory, or restrict to networks in which neighboring nodes
share a common label for the edges that join them. This result is
quite similar to Theorem 3 of [11], and so is the proof. Never-
theless, we provide a proof in order to keep the paper self-con-
tained.

We first need some definitions. Recall that
. We let be the unit simplex, that is,

. We
say that a function corresponds to a function family

if for every and every , we have

so that is the frequency of occurrence of the
initial value . In this case, we say that the family is fre-
quency-based. Note that is used in defining the notion of fre-
quency, but its value is unknown to the agents, and cannot be
used in the computations.

2280 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

Fig. 1. Example of two situations that are algorithmically indistinguishable.
The numbers next to each edge are the edge labels.

Theorem III.1: Suppose that the family is computable
with infinite memory. Then, this family is frequency-based. The
result remains true even if we only require computability over
edge-labeled networks.

The following are some applications of Theorem III.1.
(a) The parity function is not computable,

for any .
(b) In a binary setting , checking whether the

number of nodes with is larger than or equal to the
number of nodes with plus 10 is not computable.

(c) Solitude verification, i.e., checking whether
, is not computable.

(d) An aggregate difference function such as
is not computable, even if it is to be calculated modulo .

Proof of Theorem III.1

The proof of Theorem III.1 involves a particular degree-two
network (a ring), in which all port numbers take values in the
set , and in which any two edges and have
the same port number, as represented in Fig. 1. More precisely,
it relies on showing that two rings obtained by repeating, re-
spectively, and times the same sequences of nodes, edges,
and initial conditions are algorithmically indistinguishable, and
that any computable family of functions must thus take the
same value on two such rings. The proof proceeds through a
sequence of intermediate results, starting with the following
lemma, which essentially reflects the fact that the node iden-
tifiers used in our analysis do not influence the course of the
algorithm. It can be easily proved by induction on time, and
its proof is omitted. The second lemma states that the value
taken by computable (families of) functions may not depend on
which particular node has which initial condition.

Lemma III.1: Suppose that and
are isomorphic; that is, there exists a permu-

tation such that if and only if .
Furthermore, suppose that the port label at node for the edge
leading to in is the same as the port label at node
for the edge leading to in . Then, the state re-
sulting from the initial values on the graph is
the same as the state resulting from the initial values

on the graph .
Lemma III.2: Suppose that the family is com-

putable with infinite memory on edge-labeled networks. Then,
each is invariant under permutations of its arguments.

Proof: Let be the permutation that swaps with
(leaving the other nodes intact); with a slight abuse of notation,
we also denote by the mapping from to that swaps

the th and th elements of a vector. (Note that .) We
show that for all , .

We run our distributed algorithm on the -node complete
graph with an edge labeling. Note that at least one edge labeling
for the complete graph exists: for example, nodes and can use
port number for the edge connecting them. Con-
sider two different sets of initial values, namely the vectors (i)

, and (ii) . Let the port labeling in case (i) be arbitrary;
in case (ii), let the port labeling be such that the conditions in
Lemma III.1 are satisfied (which is easily accomplished). Since
the final value is in case (i) and in case (ii), we
obtain . Since the permutations generate
the group of permutations, permutation invariance follows.

Let . We will denote by the concatenation of
with itself, and, generally, by the concatenation of copies
of . We now prove that self-concatenation does not affect the
value of a computable family of functions.

Lemma III.3: Suppose that the family is com-
putable with infinite memory on edge-labeled networks. Then,
for every , every sequence , and every positive
integer

Proof: Consider a ring of nodes, where the th node
clockwise begins with the th element of ; and consider a ring
of nodes, where the nodes (clockwise)
begin with the th element of . Suppose that the labels in the
first ring are . That is, the label of the edge (1,2) is
0 at both nodes 1 and 2; the label of a subsequent edge
is the same at both nodes and , and alternates between
1 and 2 as increases. In the second ring, we simply repeat
times the labels in the first ring. See Fig. 1 for an example with

, .
Initially, the state ,

with , of node in the first ring is exactly the same as the
state of the nodes in the second ring.
We show by induction that this property must hold at all times
. (To keep notation simple, we assume, without any real loss of

generality, that and .)
Indeed, suppose this property holds up to time . At time ,

node in the first ring receives a message from node and a
message from node ; and in the second ring, node satis-
fying receives one message from and .
Since and

, the states of and are identical at
time , and similarly for and . Thus, because of pe-
riodicity of the edge labels, nodes (in the first ring) and (in
the second ring) receive identical messages through identically
labeled ports at time . Since and were in the same state
at time , they must be in the same state at time . This
proves that they are always in the same state. It follows that

for all , whenever , and there-
fore .

Proof of Theorem III.1: Let and be two sequences of
and elements, respectively, such that and

are equal to a common value , for ;
thus, the number of occurrences of in and are and

, respectively. Observe that for any , the vectors
and have the same number of elements, and both contain

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2281

occurrences of . The sequences and can thus be
obtained from each other by a permutation, which by Lemma
III.2 implies that . From Lemma III.3, we
have that and . Therefore,

. This proves that the value of is deter-
mined by the values of , .

Remark: Observe that the above proof remains valid even
under the “symmetry” assumption that an edge is assigned the
same label by both of the nodes that it is incident on.

IV. REDUCTION OF GENERIC FUNCTIONS TO

THE COMPUTATION OF AVERAGES

In this section, we turn to positive results, aiming at a con-
verse of Theorem III.1. The centerpiece of our development is
Theorem IV.1, which states that a certain average-like function
is computable. Theorem IV.2 then implies the computability of
a large class of functions, yielding an approximate converse to
Theorem III.1. We will then illustrate these positive results on
some examples.

The average-like functions that we consider correspond to the
“interval consensus” problem studied in [7]. They are defined
as follows. Let . Let be the following set of
single-point sets and intervals:

(or equivalently, an indexing of this finite collection of
intervals). For any , let be the function that maps

to the element of which contains the
average . We refer to the function family
as the interval-averaging family. The output of this family
of functions is thus the exact average when it is an integer;
otherwise, it is the open interval between two integers that
contains the average.

The motivation for this function family comes from the fact
that the exact average takes values in a countably infi-
nite set, and cannot be computed when the set is finite. In the
quantized averaging problem considered in the literature, one
settles for an approximation of the average. However, such ap-
proximations do not necessarily define a single-valued function
from into . In contrast, the above defined function is
both single-valued and delivers an approximation with an error
of size at most one. Note also that once the interval-average is
computed, we can readily determine the value of the average
rounded down to an integer.

Theorem IV.1: The interval-averaging function family is
computable.

The proof of Theorem IV.1 (and the corresponding algo-
rithm) is quite involved; it will be developed in Sections V and
VI. In this section, we show that the computation of a broad
class of functions can be reduced to interval-averaging.

Since only frequency-based function families can be com-
putable (Theorem III.1), we can restrict attention to the corre-
sponding functions . We will say that a function on the unit
simplex is computable if it corresponds to a frequency-based
computable family . The level sets of are defined as the
sets , for .

Theorem IV.2 (Sufficient Condition for Computability): Let
be a function from the unit simplex to . Suppose that every
level set can be written as a finite union

where each can in turn be written as a finite intersection of
linear inequalities of the form

(IV.1)

or

with rational coefficients . Then, is com-
putable.

Proof: Consider one such linear inequality, which we as-
sume, for concreteness, to be of the form (IV.1). Let be the set
of indices for which . Since all coefficients are rational,
we can clear their denominators and rewrite the inequality as

(IV.2)

for nonnegative integers and . Let be the indicator func-
tion associated with initial value , i.e., if ,
and otherwise, so that . Then,
(IV.2) becomes

or

where and
.

An algorithm that determines whether the last inequality is
satisfied can be designed as follows. Knowing the parameters
and the set , which can be made part of algorithm description
as they depend on the problem and not on the data, each node
can initially compute its value , as well as the value of .
Nodes can then apply the distributed algorithm that computes
the integer part of ; this is possible by virtue of
Theorem IV.1, with set to (the largest possible value
of). It suffices then for them to constantly compare the current
output of this algorithm to the integer . To check any finite col-
lection of inequalities, the nodes can perform the computations
for each inequality in parallel.

To compute , the nodes simply need to check which set
the frequencies lie in, and this can be done by
checking the inequalities defining each . All of these com-
putations can be accomplished with finite automata: indeed, we
do nothing more than run finitely many copies of the automata
provided by Theorem IV.1, one for each inequality. The total
memory used by the automata depends on the number of sets

2282 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

and the magnitude of the coefficients , but not on , as
required.

Theorem IV.2 shows the computability of functions whose
level-sets can be defined by linear inequalities with rational co-
efficients. On the other hand, it is clear that not every function

can be computable. (This can be shown by a counting argu-
ment: there are uncountably many possible functions on the
rational elements of , but for the special case of bounded de-
gree graphs, only countably many possible algorithms.) Still,
the next result shows that the set of computable functions is
rich enough, in the sense that computable functions can approx-
imate any measurable function, everywhere except possibly on
a low-volume set.

We will call a set of the form , with every ,
rational, a rational open box, where stands for Cartesian

product. A function that can be written as a finite sum ,
where the are rational open boxes and the are the asso-
ciated indicator functions, will be referred to as a box function.
Note that box functions are computable by Theorem IV.2.

Corollary IV.3: If every level set of a function
on the unit simplex is Lebesgue measurable, then, for every

, there exists a computable box function such
that the set has measure at most .

Proof: (Outline) The proof relies on the following elemen-
tary result from measure theory. Given a Lebesgue measurable
set and some , there exists a set which is a finite
union of disjoint open boxes, and which satisfies

where is the Lebesgue measure and is the symmetric differ-
ence operator. By a routine argument, these boxes can be taken
to be rational. By applying this fact to the level sets of the func-
tion (assumed measurable), the function can be approxi-
mated by a box function . Since box functions are computable,
the result follows.

The following corollary states that continuous functions are
approximable.

Corollary IV.4: If a function is contin-
uous, then for every there exists a computable function

such that
Proof: Since is compact, is uniformly continuous.

One can therefore partition into a finite number of subsets,
, that can be described by linear inequalities with

rational coefficients, so that
holds for all . The function is then built by assigning to
each an appropriate value in .

To illustrate these results, let us consider again some exam-
ples.

(a) Majority voting between two options is equivalent to
checking whether , with alphabet . This
condition is clearly of the form (IV.1), and is therefore
computable.

(b) Majority voting when some nodes can “abstain” amounts
to checking whether , with input set

. This function family is computable.
(c) We can ask for the second most popular value out of four,

for example. In this case, the sets can be decomposed

into constituent sets defined by inequalities such as
, each of which obviously has rational

coefficients. The level sets of the function can thus clearly
be expressed as unions of sets defined by a collection of
linear inequalities of the type (IV.1), so that the function
is computable.

(d) For any subsets , of , the indicator func-
tion of the set where is computable.
This is equivalent to checking whether more nodes have
a value in than do in .

(e) The indicator functions of the sets defined by
and are measurable, so they are approximable.
We are unable to say whether they are computable.

(f) The indicator function of the set defined by
is approximable, but we are unable to say whether it is
computable.

Finally, we show that with infinite memory, it is possible to
recover the exact frequencies . (Note that this is impossible
with finite memory, because is unbounded, and the number of
bits needed to represent is also unbounded.) The main dif-
ficulty is that is a rational number whose denominator can
be arbitrarily large, depending on the unknown value of . The
idea is to run separate algorithms for each possible value of the
denominator (which is possible with infinite memory), and rec-
oncile their results.

Theorem IV.5: The vector is computable
with infinite memory.

Proof: We show that is computable exactly, which
is sufficient to prove the theorem. Consider the following
algorithm, to be referred to as , parametrized by a pos-
itive integer . The input set is and the
output set is the same as in the interval-averaging problem:

. If , then node sets its initial value to
; else, the node sets its initial value to 0. The algorithm

computes the function family which maps to the
element of containing , which is possible,
by Theorem IV.1.

The nodes run the algorithms for every positive integer
value of , in an interleaved manner. Namely, at each time step,
a node runs one step of a particular algorithm , according to
the following order:

At each time , let be the smallest (if it exists) such
that the output of at node is a singleton (not an
interval). We identify this singleton with the numerical value
of its single element, and we set . If

is undefined, then is set to some default value, e.g., .
Let us fix a value of . For any , the definition of

and Theorem IV.1 imply that there exists a time after which the
outputs of do not change, and are equal to a common
value, denoted , for every . Moreover, at least one of the al-
gorithms has an integer output . Indeed, observe
that computes , which is
clearly an integer. In particular, is eventually well-defined
and bounded above by . We conclude that there exists a time

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2283

after which the output of our overall algorithm is fixed,
shared by all nodes, and different from the default value .

We now argue that this value is indeed . Let be the
smallest for which the eventual output of is a single in-
teger . Note that is the exact average of the , i.e.

For large , we have and therefore
, as desired.

Finally, it remains to argue that the algorithm described here
can be implemented with a sequence of infinite memory au-
tomata. All the above algorithm does is run a copy of all the
automata implementing with time-dependent transi-
tions. This can be accomplished with an automaton whose state
space is the countable set , where is the
state space of , and the set of integers is used to keep track
of time.

V. COMPUTING AND TRACKING MAXIMAL VALUES

We now describe an algorithm that tracks the maximum (over
all nodes) of time-varying inputs at each node. It will be used
as a subroutine of the interval-averaging algorithm described
in Section VI, and which is used to prove Theorem IV.1. The
basic idea is the same as for the simple algorithm for the detec-
tion problem given in Section II: every node keeps track of the
largest value it has heard so far, and forwards this “intermediate
result” to its neighbors. However, when an input value changes,
the existing intermediate results need to be invalidated, and this
is done by sending “restart” messages. A complication arises
because invalidated intermediate results might keep circulating
in the network, always one step ahead of the restart messages.
We deal with this difficulty by “slowing down” the intermediate
results, so that they travel at half the speed of the restart mes-
sages. In this manner, restart messages are guaranteed to eventu-
ally catch up with and remove invalidated intermediate results.

We start by giving the specifications of the algorithm. Sup-
pose that each node has a time-varying input stored in
memory at time , belonging to a finite set of numbers . We
assume that, for each , the sequence must eventually stop
changing, i.e., that there exists some such that

(However, node need not ever be aware that has reached
its final value.) Our goal is to develop a distributed algorithm
whose output eventually settles on the value . More
precisely, each node is to maintain a number which must
satisfy the following condition: for every network and any al-
lowed sequences , there exists some with

Moreover, each node must also maintain a pointer to a
neighbor or to itself. We will use the notation ,

, etc. We require the following additional
property, for all larger than : for each node there exists a
node and a power such that for all we have

Fig. 2. Flowchart of the procedure used by node � during slot � in the maximum
tracking algorithm. The subscript � is omitted, but ����,����, and � ��� should
be understood as � ���, � ���, and � ���. In those cases where an updated
value of � or � is not indicated, it is assumed that ��� � �� � ���� and
� �� � �� � � ���. The symbol � is used to indicate no action. Note that the
various actions indicated are taken during slot �, but the messages determined
by these actions are sent (and instantaneously received) at time � � �. Finally,
observe that every node sends an identical message to all its neighbors at every
time � � �. We note that the apparent non-determinism in instruction O2 can
be removed by picking a node with, say, the smallest port label.

and . In words, by successively following the
pointers , one can arrive at a node with a maximal value.

We next describe the algorithm. We will use the term slot to
refer, loosely speaking, to the interval between times and .
More precisely, during slot each node processes the messages
that have arrived at time and computes the state at time
as well as the messages it will send at time .

The variables and are a complete description of
the state of node at time . Our algorithm has only two types of
messages that a node can send to its neighbors. Both are broad-
casts, in the sense that the node sends them to every neighbor:

1) “Restart!”
2) “My estimate of the maximum is ,” where is some

number in chosen by the node.
Initially, each node sets and . At time

, nodes exchange messages, which then determine
their state at time , i.e., the pair , , as
well as the messages to be sent at time . The procedure
node uses to do this is described in Fig. 2. One can verify that
a memory size of at each node suffices,
where is an absolute constant. (This is because and can
take one of and possible values, respectively.)

The result that follows asserts the correctness of the algo-
rithm. The idea of the proof is quite simple. Nodes maintain
estimates which track the largest among all the
in the graph; these estimates are “slowly” forwarded by the
nodes to their neighbors, with many artificial delays along the
way. Should some value change, restart messages trav-
eling without artificial delays are forwarded to any node which
thought had a maximal value, causing those nodes to start
over. The possibility of cycling between restarts and forwards is
avoided because restarts travel faster. Eventually, the variables

stop changing, and the algorithm settles on the correct an-
swer. On the other hand a formal and rigorous exposition of this

2284 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

simple argument is rather tedious. A formal proof is available in
the technical report [18].

Theorem V.1 (Correctness of the Maximum Tracking Algo-
rithm): Suppose that the stop changing after some finite
time. Then, for every network, there is a time after which the
variables and stop changing and satisfy

; furthermore, after that time, and for every , the
node satisfies .

VI. INTERVAL-AVERAGING

In this section, we present an interval-averaging algorithm
and prove its correctness. We start with an informal discussion
of the main idea. Imagine the integer input value as repre-
sented by a number of pebbles at node . The algorithm at-
tempts to exchange pebbles between nodes with unequal num-
bers so that the overall distribution becomes more even. Even-
tually, either all nodes will have the same number of pebbles, or
some will have a certain number and others just one more. We
let be the current number of pebbles at node ; in partic-
ular, . An important property of the algorithm will
be that the total number of pebbles is conserved.

To match nodes with unequal number of pebbles, we use the
maximum tracking algorithm of Section V. Recall that the algo-
rithm provides nodes with pointers which attempt to track the
location of the maximal values. When a node with pebbles
comes to believe in this way that a node with at least peb-
bles exists, it sends a request in the direction of the latter node
to obtain one or more pebbles. This request follows a path to
a node with a maximal number of pebbles until the request ei-
ther gets denied, or gets accepted by a node with at least
pebbles.

A. The Algorithm

The algorithm uses two types of messages. Each type of
message can be either originated at a node or forwarded by a
node.

(a) (Request,): This is a request for a transfer of pebbles.
Here, is an integer that represents the number of pebbles

at the node that first originated the request, at the
time that the request was originated. (Note, however, that
this request is actually sent at time .)

(b) (Accept,): This corresponds to acceptance of a request,
and a transfer of pebbles towards the node that orig-
inated the request. An acceptance with a value
represents a request denial.

As part of the algorithm, the nodes run the maximum tracking
algorithm of Section V, as well as a minimum tracking coun-
terpart. In particular, each node has access to the variables

and of the maximum tracking algorithm (recall that
these are, respectively, the estimated maximum and a pointer to
a neighbor or to itself). Furthermore, each node maintains three
additional variables.

(a) “ ” . Initially, the mode of
every node is free. A node is blocked if it has originated
or forwarded a request, and is still waiting to hear whether
the request is accepted (or denied).

(b) “ ” and “ ” are pointers to a neighbor of
, or to itself. The meaning of these pointers when in

Fig. 3. Flowchart of the procedure used by node � during slot � in the interval-
averaging algorithm. The subscript � is omitted from variables such as�������,
����, etc. Variables for which an update is not explicitly indicated are assumed
to remain unchanged. “Denying a request” is a shorthand for � sending a message
of the form (Accept, 0) at time �� � to a node from which � received a request
at time �. Note also that “forward the acceptance” in the blocked mode includes
the case where the answer had � 	
 (i.e., it was a request denial), in which
case the denial is forwarded.

blocked mode are as follows. If , then node
has sent (either originated or forwarded) a request to node
, and is still in blocked mode, waiting to hear whether the

request is acceptd or denied. If , and ,
then node has received a request from node but has not
yet responded to node . If , then node has
originated a request and is still in blocked mode, waiting
to hear whether the request is accepted or denied.

A precise description of the algorithm is given in Fig. 3.
The proof of correctness is given in Section VI-B, thus also
establishing Theorem IV.1. Furthermore, we will show that the
time until the algorithm settles on the correct output is of order

.

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2285

Proof of Correctness

We begin by arguing that the rules of the algorithm preclude
one potential obstacle; we will show that nodes will not get stuck
sending requests to themselves.

Lemma VI.1: A node never sends (originates or forwards) a
request to itself. More precisely, , for all and .

Proof: By inspecting the first two cases for the free mode,
we observe that if node originates a request during time slot
(and sends a request message at time), then . In-
deed, to send a message, it must be true

. However, any action of the maximum tracking algorithm that
sets also sets , and moreover, as long
as does not change neither does . So the recipient of
the request originated by is different than , and accordingly,

is set to a value different than . We argue that the
same is true for the case where is set by the “Forward
request” box of the free mode. Indeed, that box is enabled only
when and , so
that . As in the previous case, this implies
that and that is again set to a value other
than . We conclude that for all and .

We will now analyze the evolution of the requests. A re-
quest is originated at some time by some originator node
who sets and sends the request to some node

. The recipient of the request either
accepts/denies it, in which case remains unchanged, or for-
wards it while also setting to . The process then
continues similarly. The end result is that at any given time , a
request initiated by node has resulted in a “request path of node

at time ,” which is a maximal sequence of nodes
with , , and for

.
Lemma VI.2: At any given time, different request paths

cannot intersect (they involve disjoint sets of nodes). Further-
more, at any given time, a request path cannot visit the same
node more than once.

Proof: For any time , we form a graph that consists of all
edges that lie on some request path. Once a node is added to
some request path, and as long as that request path includes ,
node remains in blocked mode and the value of cannot
change. This means that adding a new edge that points into is
impossible. This readily implies that cycles cannot be formed
and also that two request paths cannot involve a common node.

We use to denote the request path of node at time ,
and to denote the last node on this path. We will say that
a request originated by node terminates when node receives
an (Accept,) message, with any value .

Lemma VI.3: Every request eventually terminates. Specifi-
cally, if node originates a request at time (and sends a request
message at time), then there exists a later time
at which node receives an “accept request” message (per-
haps with), which is forwarded until it reaches , no later
than time .

Proof: By the rules of our algorithm, node sends a request
message to node at time . If node replies at
time with a “deny request” response to ’s request, then
the claim is true; otherwise, observe that is nonempty
and until receives an “accept request” message, the length

of increases at each time step. Since this length cannot be
larger than , by Lemma VI.2, it follows that receives
an “accept request” message at most steps after initiated the
request. One can then easily show that this acceptance message
is forwarded backwards along the path (and the request path
keeps shrinking) until the acceptance message reaches , at most

steps later.
The arguments so far had mostly to do with deadlock avoid-

ance. The next lemma concerns the progress made by the algo-
rithm. Recall that a central idea of the algorithm is to conserve
the total number of “pebbles,” but this must include both peb-
bles possessed by nodes and pebbles in transit. We capture the
idea of “pebbles in transit” by defining a new variable. If is the
originator of some request path that is present at time , and if
the final node of that path receives an (Accept,) message
at time , we let be the value in that message. (This con-
vention includes the special case where , corresponding
to a denial of the request). In all other cases, we set .
Intuitively, is the value that has already been given away
by a node who answered a request originated by node , and that
will eventually be added to , once the answer reaches .

We now define

By the rules of our algorithm, if , an amount
will eventually be added to , once the acceptance message is
forwarded back to . The value can thus be seen as a future
value of , that includes its present value and the value that has
been sent to but has not yet reached it.

The rules of our algorithm imply that the sum of the remain
constant. Let be the average of the initial values . Then

We define the variance function as

Lemma VI.4: The number of times that a node can send an
acceptance message (Accept,) with , is finite.

Proof: Let us first describe the idea behind the proof. Sup-
pose that nodes could instantaneously transfer value to each
other. It is easily checked that if a node transfers an amount

to a node with and ,
the variance decreases by at least 2. Thus, there
can only be a finite number of such transfers. In our model, the
situation is more complicated because transfers are not imme-
diate and involve a process of requests and acceptances. A key
element of the argument is to realize that the algorithm can be
interpreted as if it only involved instantaneous exchanges in-
volving disjoint pairs of nodes.

Let us consider the difference at some typical
time . Changes in are solely due to changes in the . Note
that if a node executes the “fulfill the acceptance” instruction
at time , node was the originator of the request and the request
path has length zero, so that it is also the final node on the path,
and . According to our definition, is the value

in the message received by node . At the next time

2286 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

step, we have but . Thus,
does not change, and the function is unaffected.
By inspecting the algorithm, we see that a nonzero difference

is possible only if some node executes the
“accept request” instruction at slot , with some particular value

, in which case . For this to
happen, node received a message (Request,) at time from
a node for which , and with . That
node was the last node, , on the request path of some
originator node . Node receives an (Accept,) message at
time and, therefore, according to our definition, this sets

.
It follows from the rules of our algorithm that had origi-

nated a request with value at some previous time .
Subsequently, node entered the blocked mode, preventing any
modification of , so that . Moreover, ob-
serve that was 0 because by time , no node had answered
’s request. Furthermore, because having

a positive requires to be in blocked mode, preventing the
execution of “accept request”. It follows that:

Using the update equation , and the fact
, we obtain

Combining with the previous equalities, we have

Assume for a moment that node was the only one that exe-
cuted the “accept request” instruction at time . Then, all of the
variables , for , , remain unchanged. Simple algebraic
manipulations then show that decreases by at least 2. If there
was another pair of nodes, say and , that were involved in a
transfer of value at time , it is not hard to see that the transfer
of value was related to a different request, involving a separate
request path. In particular, the pairs , and , do not overlap.
This implies that the cumulative effect of multiple transfers on
the difference is the sum of the effects of in-
dividual transfers. Thus, at every time for which at least one
“accept request” step is executed, decreases by at least 2. We
also see that no operation can ever result in an increase of .
It follows that the instruction “accept request” can be executed
only a finite number of times.

Proposition VI.1: There is a time such that ,
for all and all . Moreover

Proof: It follows from Lemma VI.4 that there is a time
after which no more requests are accepted with . By

Lemma VI.3, this implies that after at most additional time
steps, the system will never again contain any “accept request”

messages with , so no node will change its value
thereafter.

We have already argued that the sum (and therefore the av-
erage) of the variables does not change. Once there are no
more “accept request” messages in the system with , we
must have , for all . Thus, at this stage the average of
the is the same as the average of the .

It remains to show that once the stop changing, the max-
imum and minimum differ by at most 1. Recall (cf. The-
orem V.1) that at some time after the stop changing, all
estimates of the maximum will be equal to , the true
maximum of the ; moreover, starting at any node and fol-
lowing the pointers leads to a node whose value is
the true maximum, . Now let be the set of nodes whose
value at this stage is at most . To derive a contra-
diction, let us suppose that is nonempty.

Because only nodes in will originate requests, and because
every request eventually terminates (cf. Lemma VI.3), if we wait
some finite amount of time, we will have the additional property
that all requests in the system originated from . Moreover,
nodes in originate requests every time they are in the free
mode, which is infinitely often.

Consider now a request originating at a node in the set . The
value of such a request satisfies , which implies
that every node that receives it either accepts it (contradicting
the fact that no more requests are accepted after time), or
forwards it, or denies it. But a node will deny a request only if
it is in blocked mode, that is, if it has already forwarded some
other request to node . This shows that requests will keep
propagating along links of the form , and therefore will
eventually reach a node at which , at
which point they will be accepted—a contradiction.

We are now ready to conclude.
Proof of Theorem IV.1: Let be the value that even-

tually settles on. Proposition VI.1 readily implies that if the av-
erage of the is an integer, then will
eventually hold for every . If is not an integer, then some
nodes will eventually have and some other
nodes . Besides, using the maximum and
minimum computation algorithm, nodes will eventually have a
correct estimate of and , since all settle on
the fixed values . This allows the nodes to determine whether
the average is exactly (integer average), or whether it lies in

or (fractional average). Thus, with
some simple post-processing at each node (which can be done
using finite automata), the nodes can produce the correct output
for the interval-averaging problem. The proof of Theorem IV.1
is complete.

Next, we give a convergence time bound for the algorithms
we have just described.

Theorem VI.1: Any function satisfying the assumptions of
Theorem IV.2 can be computed in time steps.

Theorem VI.2: The functions whose existence is guaran-
teed by Corollary IV.3 or Corollary IV.4 can be computed in
time which grows quadratically in .

The general idea behind Theorems VI.1 and VI.2 is quite
simple. We have just argued that the nonnegative function
decreases by at least 2 each time a request is accepted. It also

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2287

Fig. 4. Number of iterations as a function of the number of nodes for a complete
graph under random initial conditions.

Fig. 5. Number of iterations as a function of the number of nodes for a line
graph under random initial conditions.

satisfies . Thus there are at most
acceptances. To prove Theorems VI.1 and VI.2, one needs to
argue that if the algorithm has not terminated, there will be an
acceptance within time steps. This should be fairly clear
from the proof of Theorem IV.1. A formal argument is given in
the technical report [18]. It is also shown there that the running
time of our algorithm, for many graphs, satisfies a lower
bound, in the worst case over all initial conditions.

VII. SIMULATIONS

We report here on simulations involving our algorithm on sev-
eral natural graphs. Figs. 4 and 5 describe the results for a com-
plete graph and a line. Initial conditions were random integers
between 1 and 30, and each data point represents the average
of two hundred runs. As expected, convergence is faster on the
complete graph. Moreover, convergence time in both simula-
tions appears to be approximately linear.

Fig. 6. The number of iterations as a function of the number of nodes for a
dumbbell graph.

Finally recall that it is possible for our algorithm to take on the
order of (as opposed to) time steps to converge. Fig. 6
shows simulation results for the dumbbell graph (two complete
graphs with nodes, connected by a line) of length ; each
node in one of the complete graphs starts with , every
node in the other complete graph starts with . The
time to converge in this case is quadratic in .

VIII. CONCLUSION

We have proposed a model of deterministic anonymous dis-
tributed computation, inspired by the wireless sensor network
and multi-agent control literature. We have given an almost
tight characterization of the functions that are computable in our
model. We have shown that computable functions must depend
only on the the frequencies with which the different initial con-
ditions appear, and that if this dependence can be expressed in
term of linear inequalities with rational coefficients, the function
is indeed computable. Under weaker conditions, the function
can be approximated with arbitrary precision. It remains open to
exactly characterize the class of computable function families.

Our positive results are proved constructively, by providing a
generic algorithm for computing the desired functions. Interest-
ingly, the finite memory requirement is not used in our negative
results, which remain thus valid in the infinite memory case. In
particular, we have no examples of functions that can be com-
puted with infinite memory but are provably not computable
with finite memory. We suspect though that simple examples
exist; a good candidate could be the indicator function ,
which checks whether the fraction of nodes with a particular ini-
tial condition is smaller than .

We have shown that our generic algorithms terminate in
time. On the other hand, it is clear that the termination

time cannot be faster than the graph diameter, which is of order
, in the worst case. Some problems, such as the detection

problem described in Section II, admit algorithms. It is an
open problem whether the interval averaging problem admits
an algorithm under our model. Finally, we conjecture
that the dependence on in our complexity estimate
can be improved by designing a different algorithm.

2288 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

Possible extensions of this work involve variations of the
model of computation. For example, the algorithm for detection
problem, described in Section II, does not make full use of the
flexibility allowed by our model of computation. In particular,
for any given , the messages are the same for all , so, in
some sense, messages are “broadcast” as opposed to being per-
sonalized for the different outgoing links. This raises an inter-
esting question: do there exist computable function families that
become non-computable when we restrict to algorithms that are
limited to broadcast messages? We have reasons to believe that
in a pure broadcast scenario where nodes located in a non-bidi-
rectional network broadcast messages without knowing their
out-degree (i.e., the size of their audience), the only computable
functions are those which test whether there exists a node whose
initial condition belongs to a given subset of , and
combinations of such functions.

Another important direction is to consider models in which the
underlying graph may vary with time. It is of interest to develop
algorithms that converge to the correct answer at least when
the underlying graph eventually stops changing. For the case
where the graph keeps changing while maintaining some degree
of connectivity, we conjecture that no deterministic algorithm
with bounded memory can solve the interval-averaging problem.
Finally, other extensions involve models accounting for clock
asynchronism, delays in message propagation, or data loss.

REFERENCES

[1] D. Angluin, “Local and global properties in networks of processors,”
in Proc. 12th Annu. ACM Symp. Theory Comp., 1980, pp. 82–93.

[2] J. Aspnes and E. Ruppert, “An introduction to population protocols,”
Bull. Eur. Assoc. Theoretical Comp. Sci., vol. 93, pp. 98–117, 2007.

[3] T. C. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus
using probabilistic quantization,” in Proc. 14th IEEE/SP Workshop
Stat. Signal Processing, 2007, pp. 640–644.

[4] Y. Afek and Y. Matias, “Elections in anonymous networks,” Inform.
Comp., vol. 113, no. 2, pp. 113–330, 1994.

[5] O. Ayaso, D. Shah, and M. Dahleh, “Counting bits for distributed func-
tion computation,” in Proc. IEEE Int. Symp. Inform. Theory, 2008, pp.
652–656.

[6] H. Attiya, M. Snir, and M. K. Warmuth, “Computing on an anonymous
ring,” J. ACM, vol. 35, no. 4, pp. 845–875, 1988.

[7] F. Bénézit, P. Thiran, and M. Vetterli, “Interval consensus: From quan-
tized gossip to voting,” in Proc. ICASSP’08., 2008, pp. 3661–3664.

[8] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall,
1989.

[9] F. Bullo, J. Cortés, and S. Martítnez, Distributed Control of Robotic
Networks. Princeton, NJ: Princeton Univ. Press, 2009.

[10] R. Carli and F. Bullo, “Quantized coordination algorithms for ren-
dezvous and deployment,” SIAM J. Control Optim., vol. 48, no. 3, pp.
1251–1274, 2009.

[11] I. Cidon and Y. Shavitt, “Message terminating algorithms for anony-
mous rings of unknown size,” Inform. Processing Lett., vol. 54, no. 2,
pp. 111–119, Apr. 1995.

[12] M. Draief and M. Vojnovic, “Convergence speed of binary interval con-
sensus,” in Proc. Infocom’10, 2010, pp. 1–9.

[13] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average consensus
on networks with quantized communication,” Int. J. Robust Nonlin.
Control, vol. 19, no. 6, pp. 1787–1816, 2009.

[14] F. Fich and E. Ruppert, “Hundreds of impossibility results for dis-
tributed computing,” Distrib. Comp., vol. 16, pp. 121–163, 2003.

[15] A. Giridhar and P. R. Kumar, “Computing and communicating func-
tions over sensor networks,” IEEE J. Selected Areas Commun., vol. 23,
no. 4, pp. 755–764, Apr. 2005.

[16] P. Gacs, G. L. Kurdyumov, and L. A. Levin, “One-dimensional uniform
arrays that wash out finite islands,” Problemy Peredachi Informatsii,
vol. 14, no. 3, pp. 92–96, 1978.

[17] A. G. Greenberg, P. Flajolet, and R. Lander, “Estimating the multi-
plicity of conflicts to speed their resolution in multiple access chan-
nels,” J. ACM, vol. 34, no. 2, pp. 289–325, 1987.

[18] J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, Distributed Anony-
mous Discrete Function Computation and Averaging Tech. Rep., 2010
[Online]. Available: http://arxiv.org/abs/1004.2102

[19] Y. Hassin and D. Peleg, “Distributed probabilistic polling and applica-
tions to proportionate agreement,” Inform. Comp., vol. 171, no. 2, pp.
248–268, 2001.

[20] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[21] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, no. 7, pp. 1192–1203, 2007.

[22] E. Kranakis, D. Krizanc, and J. van den Berg, “Computing boolean
functions on anonymous networks,” in Proc. 17th Int. Colloq. Autom.,
Languages Programming, Jul. 1990, pp. 254–267.

[23] N. Khude, A. Kumar, and A. Karnik, “Time and energy complexity
of distributed computation in wireless sensor networks,” in Proc. IN-
FOCOM, 2005, pp. 2625–2637.

[24] N. Katenka, E. Levina, and G. Michailidis, “Local vote decision fusion
for target detection in wireless sensor networks,” IEEE Trans. Signal
Processing, vol. 56, no. 1, pp. 329–338, Jan. 2008.

[25] S. Kar and J. M. Moura, “Distributed average consensus in sensor net-
works with quantized inter-sensor communication,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Processing, 2008, pp. 2281–2284.

[26] N. Lynch, Distributed Algorithms. Waltham, MA: Morgan-
Kauffman, 1996.

[27] M. Land and R. K. Belew, “No perfect two-state cellular automaton
for density classification exists,” Phys. Rev. Lett., vol. 74, no. 25, pp.
5148–5150, Jun. 1995.

[28] Y. Lei, R. Srikant, and G. E. Dullerud, “Distributed symmetric function
computation in noisy wireless sensor networks,” IEEE Trans. Inform.
Theory, vol. 53, no. 12, pp. 4826–4833, Dec. 2007.

[29] L. Liss, Y. Birk, R. Wolff, and A. Schuster, “A local algorithm for ad
hoc majority voting via charge fusion,” in Proc. DISC’04, Amsterdam,
The Netherlands, Oct. 2004, pp. 275–289.

[30] S. Martinez, F. Bullo, J. Cortes, and E. Frazzoli, “On synchronous
robotic networks—Part I: Models, tasks, complexity,” IEEE Trans.
Robot. Autom., vol. 52, no. 12, pp. 2199–2213, Dec. 2007.

[31] S. Mukherjee and H. Kargupta, “Distributed probabilistic inferencing
in sensor networks using variational approximation,” J. Parallel Dis-
trib. Comp., vol. 68, no. 1, pp. 78–92, 2008.

[32] S. Moran and M. K. Warmuth, “Gap theorems for distributed compu-
tation,” SIAM J. Comp., vol. 22, no. 2, pp. 379–394, 1993.

[33] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans.
Autom. Control, vol. 54, no. 11, pp. 2506–2517, Nov. 2009.

[34] D. Peleg, “Local majorities, coalitions and monopolies in graphs: A
review,” Theoretical Comp. Sci., vol. 282, no. 2, pp. 231–237, 2002.

[35] E. Perron, D. Vasuvedan, and M. Vojnovic, “Using Three States for
Binary Consensus on Complete Graphs,” in Proc. IEEE INFOCOM
Conf., 2009, pp. 2527–2535.

[36] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65–78, 2004.

[37] M. Yamashita and T. Kameda, “Computing on an anonymous net-
work,” IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 1, pp. 69–89,
Jan. 1996.

[38] M. Zhu and S. Martinez, “On the convergence time of asynchronous
distributed quantized averaging algorithms,” IEEE Trans. Autom. Con-
trol, vol. 56, no. 2, pp. 386–390, Feb. 2011.

Julien M. Hendrickx received the M.S. degree in applied mathematics and the
Ph.D. degree in mathematical engineering from Université catholique de Lou-
vain, Ecole Polytechnique de Louvain, Belgium, in 2004 and 2008, respectively.

He is Assistant Professor (chargé de cours) at the Université Catholique de
Louvain, Ecole Polytechnique de Louvain, Belgium, since September 2010. He
was a Visiting Researcher at the University of Illinois at Urbana Champaign,
from 2003 to 2004, at the National ICT Australia in 2005 and 2006, and at the
Massachusetts Institute of Technology in 2006 and 2008. He was a Postdoctoral
Fellow at the Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, in 2009 and 2010, holding Postdoctoral Fellowships
of the Fund for Scientific Research (F.R.S.-FNRS) and the Belgian American
Education Foundation since September 2010.

Dr. Hendrickx received the 2008 EECI Award for the best Ph.D. thesis in
Europe in the field of Embedded and Networked Control, and the Alcatel-Lu-
cent-Bell 2009 Award for a Ph.D. thesis on original new concepts or application
in the domain of information or communication technologies.

HENDRICKX et al.: DISTRIBUTED ANONYMOUS DISCRETE FUNCTION COMPUTATION 2289

Alex Olshevsky received the B.S. degree in mathematics and the B.S. degree
in electrical engineering from the Georgia Institute of Technology, Atlanta, and
the M.S. and Ph.D. degrees in electrical engineering and computer science from
the Massachusetts Institute of Technology, Cambridge.

He is a Postdoctoral Scholar with the Department of Mechanical and
Aerospace Engineering, Princeton University, Princeton, NJ, until Fall 2011
when he will be an Assistant Professor with the Department of Industrial
and Enterprise System Engineering, University of Illinois at Urbana-Cham-
paign. His research interests are in control theory, optimization, and applied
probability.

John N. Tsitsiklis (F’99) received the B.S. degree in mathematics and the
B.S., M.S., and Ph.D. degrees in electrical engineering from the Massachusetts
Institute of Technology (MIT), Cambridge, in 1980, 1980, 1981, and 1984,
respectively.

He is currently a Clarence J. Lebel Professor with the Department of Elec-
trical Engineering, MIT. He has served as a Codirector of the MIT Operations
Research Center from 2002 to 2005, and in the National Council on Research
and Technology in Greece (2005–2007). His research interests are in systems,
optimization, communications, control, and operations research. He has coau-
thored four books and several journal papers in these areas.

Dr. Tsitsiklis received the Outstanding Paper Award from the IEEE Control
Systems Society (1986), the M.I.T. Edgerton Faculty Achievement Award
(1989), the Bodossakis Foundation Prize (1995), and the INFORMS/CSTS
Prize (1997). He is a member of the National Academy of Engineering. Finally,
in 2008, he was conferred the title of Doctor honoris causa, from the Université
Catholique de Louvain.

