
2694 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 11, NOVEMBER 2011

[15] M. Sarich, F. Noe, and C. Schütte, “On the approximation quality of
Markov state models,” Multiscale Modeling Simul., vol. 8, no. 4, pp.
1154–1177, 2010.

[16] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems,”
Automatica, vol. 44, no. 11, pp. 2724–2734, Nov. 2008.

[17] H. J. Hartfiel, Markov Set-Chains, ser. Lecture Notes in Mathe-
matics. Berlin, Germany: Springer-Verlag, 1998, vol. 1695.

[18] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Dis-
crete-Time Case. Cambridge, MA: Athena Scientific, 1996.

[19] J. Cohen, “Random evolutions in discrete and continuous time,” Stoch.
Processes Appl., vol. 9, no. 4, pp. 245–251, 1979.

[20] M. Keepler, “Random evolutions processes induced by discrete time
Markov Chains,” Port. Math., vol. 55, no. 4, pp. 391–400, 1998.

[21] I. Kozine and L. Utkin, “Interval-valued finite Markov Chains,” Reli-
able Computing, vol. 8, pp. 97–113, 2002.

[22] D. P. Bertsekas, “Convergence of discretization procedures in dynamic
programming,” IEEE Trans. Autom. Control, vol. AC-20, no. 3, pp.
415–419, Jun. 1975.

[23] S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability.
Berlin, Germany: Springer Verlag, 1993.

A Lower Bound for Distributed Averaging
Algorithms on the Line Graph

Alex Olshevsky and John N. Tsitsiklis

Abstract—We derive lower bounds on the convergence speed of a widely
used class of distributed averaging algorithms. In particular, we prove that
any distributed averaging algorithm whose state consists of a single real
number and whose (possibly nonlinear) update function satisfies a natural
smoothness condition has a worst case running time of at least on the order
of on a line network of nodes. Our results suggest that increased
memory or expansion of the state space is crucial for improving the running
times of distributed averaging algorithms.

Index Terms—, Cooperative control, distributed averaging, load bal-
ancing.

I. INTRODUCTION

The goal of this technical note is to analyze the fundamental limita-
tions of a class of distributed averaging algorithms. These algorithms
are message-passing rules for a collection of agents (which may be
sensors, nodes of a communication network, or UAVs), each beginning
with a real number, to estimate the average of these numbers using only
nearest neighbor communications. Such algorithms are interesting be-
cause a number of sophisticated network coordination tasks can be re-
duced to averaging (see [1], [2], [6], [8], [9], [13], [20], [23], [25]), and
also because they can be designed to be robust to frequent failures of
communication links.

Manuscript received April 01, 2010; revised November 02, 2010; accepted
June 05, 2011. Date of publication June 16, 2011; date of current version
November 02, 2011. This work was supported by the National Science Founda-
tion (NSF) under grants ECCS-0701623 and CMMI-0856063. Recommended
by Associate Editor Y. Hong.

A. Olshevsky is with the Department of Mechanical and Aerospace
Engineering, Princeton University, Princeton, NJ, 01527 USA (e-mail: aol-
shevs@princeton.edu).

J. N. Tsitsiklis is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA, 02139 USA (e-mail:
jnt@mit.edu).

Digital Object Identifier 10.1109/TAC.2011.2159652

A variety of such algorithms are available (see [10], [12], [15]–[18],
[21], [22], [24], [26]). However, many of these algorithms tend to suffer
from a common disadvantage: even when no link failures occur, their
convergence times do not scale well with the number of agents. Our
aim in this technical note is to show that this is, in fact, unavoidable
for a common class of such algorithms; namely, that any distributed
averaging algorithm that uses a single scalar state variable at each agent
and satisfies a natural “smoothness” condition will have this property,
even if no link failures occur and the communication graph is always a
simple “line graph.”

We thus identify a basic limitation on convergence speed for a
common class of averaging algorithms. The major implication of
our result is that algorithms which overcome this limitation must
be somewhat different from the majority of averaging algorithms
designed thus far: they must either use increased memory, a larger
state space, or non-smooth updates.

A. Background and Basic Definitions

Definition of Local Averaging Algorithms: Agents �� � � � � � begin
with real numbers ������ � � � � ����� stored in memory. At each round
� � �� �� �� � � �, agent � broadcasts ����� to each of its neighbors in
some undirected graph ���� � ���� � � � � ��� ����� (without any self-
arcs), and then sets ���� � �� to be some function of ����� and of the
values �� ���� �� ���� � � � it has just received from its own neighbors

����� �� � �������������� �� ���� �� ���� � � ��	 (1)

We require each ������� to be a differentiable function. Each agent uses
the incoming messages �� ���� �� ���� � � � as the arguments of �������

in some arbitrary order; we assume that this order does not change, i.e.,
if ����� � �����, then the message coming from the same neighbor
of agent � is mapped to the same argument of ������� for � � �� and
� � ��. It is desired that

	
�
���

����� �
�

�

�

���

����� (2)

for every �, for every sequence of graphs ���� having the property that

�� ���� ���� � � � � ���������
��
� ��������� ��� ����� � (3)

and for every possible way for the agents to map incoming messages
to arguments of �������.

In words, as the number of rounds � approaches infinity, iteration
(1) must converge to the average of the numbers ������ � � � � �����.
Note that the agents have no control over the communication graph se-
quence ����, which is exogenously provided by “nature.” However,
as we stated previously, every element of the sequence ���� must be
undirected: this corresponds to bidirectional models of communication
between agents. Moreover, the sequence ���� must satisfy the mild
connectivity condition of (3), which says that the network cannot be-
come disconnected after a finite period.

Local averaging algorithms are useful tools for information fusion
due to their efficient utilization of resources (each agent stores only a
single number in memory) as well as their robustness properties (the
sequence of graphs ���� is time-varying, and it only needs to satisfy
the relatively weak connectivity condition in (3) for the convergence in
(2) to hold). As far as the authors are aware, no other class of schemes
for averaging (e.g., flooding, fusion along a spanning tree, etc) is known
to produce similar results under the same assumptions.

Remark 1: As can be seen from the subscripts, the update function
������� is allowed to depend on the agent and on the graph. Some de-

0018-9286/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 11, NOVEMBER 2011 2695

pendence on the graph is unavoidable since in different graphs an agent
may have a different number of neighbors, in which case nodes will
receive a different number of messages, so that even the number of ar-
guments of ������� will depend on ����. It is often practically desired
that ������� depend only weakly on the graph, as the entire graph may
be unknown to agent �. For example, we might require that ������� be
completely determined by the degree of � in ����. However, since our
focus is on what distributed algorithms cannot do, it does not hurt to
assume the agents have unrealistically rich information; thus we will
not assume any restrictions on how ������� depends on ����.

Remark 2: We require the functions ������� to be smooth, for the
following reason. First, we need to exclude unnatural algorithms that
encode vector information in the infinitely many bits of a single real
number. Second, although we make the convenient technical assump-
tion that agents can transmit and store real numbers, we must be aware
that in practice agents will transmit and store a quantized version of
�����. Thus, we are mostly interested in algorithms that are not dis-
rupted much by quantization. For this reason, we must prohibit the
agents from using discontinuous update functions �������. For tech-
nical reasons, we actually go a little further, and prohibit the agents
from using non-smooth update functions �������.

B. Examples

In order to provide some context, let us mention just a few of the
distributed averaging schemes that have been proposed in the literature.

1) The max-degree method [18] involves picking ���� with the prop-
erty ���� � ������� � ��, where ���� is the largest degree of any
agent in ����, and updating by

����� �� � ����� � ����
��� ���

������� ������ 	

Here we use
���� to denote the set of neighbors of agent � in
����. In practice, a satisfactory ����may not be known to all of the
agents, because this requires some global information. However,
in some cases a satisfactory choice for ���� may be available, for
example when an a priori upper bound on ���� is known.

2) The Metropolis method [24] involves setting ������ to satisfy
������ � ������������ � ��� �������� � ���, where ������ �����
are the degrees of agents � and � in ����, and updating by

����� �� � ����� �
��� ���

������ ������� ������ 	

3) The load-balancing algorithm of [17] involves updating by

����� �� � ����� �
��� ���

����� ������� ������

where ����� is determined by the following rule: each agent se-
lects exactly two neighbors, the neighbor with the largest value
above its own and with the smallest value below its own. If �� �
have both selected each other, then ����� � ��	; else ����� �
.
The intuition comes from load-balancing: agents think of ����� as
load to be equalized among their neighbors; they try to offload on
their lightest neighbor and take from their heaviest neighbor.

We remark that the above load-balancing algorithm is not a “local
averaging algorithm” according to our definition because ������� does
not depend only on ����� and its neighbors; for example, agents � and �
may not match up because � has a neighbor � with ����� � �����. By
contrast, the max-degree and Metropolis algorithm are indeed “local
averaging algorithms.”

For each of the above algorithms, it is known that (2) holds provided
the connectivity condition in (3) holds. A proof of this fact for the load-
balancing algorithm is implicit in [17], and for the others it follows
from the results of [3], [5], [14].

C. Our Contribution

Our goal is to study the worst-case convergence time of local aver-
aging schemes. We will show that these do not have good convergence
times, even when the communication graph ���� is restricted to be the
same line graph at every time �. We next give an informal statement of
our result.

Let ���� be the vector in �� whose �th component is �����. We de-
fine the convergence time � ��� �� of a local averaging algorithm on the
sequence ���� as the time until the square root of the sum of squared
errors

� ������ �

�

���

������
�

�

�

���

���
�

�

permanently shrinks by a factor of �, i.e., � ������ � ��� ���
�� for
all � � � ��� ��, for all initial vectors ��
�; � ��� �� is defined to be the
smallest number with this property. We are interested in how � ��� ��
scales with � and �.

Currently, the best available upper bound for the convergence time is
obtained with the load-balancing algorithm; in [17] it was proven that
for any time-varying graph sequence ����

� ��� �� � ���� ��
�

�

for some absolute constant1� , and a parameter � related to the con-
nectivity of the graph sequence ����. We are primarily interested in
whether it is possible to improve the scaling with � to below ��. Are
there nonlinear update functions ������� which speed up the conver-
gence time?

Our main result is that the answer to this question is negative within
the class of local averaging algorithms, even when the graph sequence
���� is restricted to be the same line-graph for all times �. For local
averaging algorithms in this setting, we prove that

� ��� �� � ��� ��
�

�

for some absolute constant �.

II. FORMAL STATEMENT AND PROOF OF MAIN RESULT

We next state our main theorem. The theorem begins by specializing
our definition of local averaging algorithms to the case of a fixed line
graph, and states a lower bound on the convergence time in this setting.

We will use the notation � to denote the vector in � whose entries
are all ones, and � to denote the vector whose entries are all 0. The
average of the entries of a vector � will be denoted by ��.

Theorem 1: Let ��, �� be two differentiable functions from � to
, and let ��� ��� � � � � ���� be differentiable functions from � to .

Consider the dynamical system

����� �� � ��������� �������

����� �� � ��������� �������� ��������� � � �� � � � � �� ��

����� �� � ����������� ������	 (4)

1By “absolute constant” we mean that � does not depend on the problem
parameters ���� �.

2696 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 11, NOVEMBER 2011

Suppose that there exists a function � ��� �� such that

������ �������

������ �������
� � (5)

for all � and �� �, all � � � ��� ��, and all initial conditions
������ � � � � ����� for which not all ����� are equal. Then

� ��� �� �
��

��
���

	

�
(6)

for all � � � and � � �.
Remark 3: The dynamical system described in the theorem state-

ment is simply what a local averaging algorithm looks like on a line
graph. The functions 	�� 	� are the update functions at the left and right
endpoints of the line (which have only a single neighbor), while the up-
date functions 	�� 	�� � � � � 	��� are the ones used by the middle agents
(which have two neighbors).

Remark 4: Theorem 1 provides a lower bound on the worst-case per-
formance of local averaging algorithms on the line graph. Naturally, it
also provides a lower bound on the worst-case performance of local av-
eraging algorithms on arbitrary graph sequences drawn from any class
of time-varying graph sequences that includes the sequence equal to
the line graph at each step.

Remark 5: Our lower bound is tight in the following sense: it is
well-known that the max-degree method and the Metropolis method
both achieve
��� ��� ������ convergence time on the line graph (see
[17] for a proof). Thus, up to a logarithmic factor, it is impossible to
improve the conclusion of Theorem 1.

Remark 6: Fix some � � �. A corollary of our theorem is that there
are no local averaging algorithms which compute the average in finitely
many steps and whose convergence time can be upper bounded on a
ball around the origin. More precisely, there is no local averaging algo-
rithm which, starting from initial conditions ���� in some ball around
the origin, always results in ����
 ��� for all times � larger than some
� which is independent of the initial condition. We will sketch a proof
of this after proving Theorem 1. By contrast, the existence of such al-
gorithms in slightly different models of agent interactions was demon-
strated in [7] and [19].

Proof of Theorem 1

We first briefly sketch the proof strategy. We will begin by noting that
�must be an equilibrium of (4); then, we will argue that an upper bound
on the convergence time of (4) would imply a similar convergence time
bound on the linearization of (4) around the equilibrium of �. This step
will rely on the smoothness of the functions 	�� � � � � 	� to establish the
relationship between the convergence time of (4) and its linearization.
We will then apply a previous����� convergence time lower bound for
linear schemes, proved by the authors in [21], to conclude the proof.

Let 	 (without a subscript) be the mapping from � to itself that
maps ���� to ���	� according to (4). We assume henceforth that the
mapping 	 satisfies the assumptions of Theorem 1. As an immediate
consequence (cf. (5)), we obtain that ���� always converges to �����.

Lemma 1: 	���
 �, for any � .
Proof: Suppose that ����
 �. Then, the initial average is , so

that

�
 ���
���

����
 ���
���

��� 	�
 ���
���

	�������

We use the continuity of 	 to get

�
 	� ���
���

�����
 	����

For �� �
 	� � � � � �, we define ��
 �	�������� , and the matrix

�
 	 ����

�� �� � � � � � �

�� �� �� � � � � �

� �� �� �� � � � �
...

...
...

...
...

...
� � � � � � ����� ��

�

Lemma 2: For any integer � � 	

���
���

�	����� �����
����

 �

where 	� refers to the �-fold composition of 	 with itself.
Proof: The fact that 	���
 � implies by the chain rule that the

derivative of 	� at �
 � is �� . The above equation is a restatement
of this fact.

Lemma 3: Suppose that ���
 �. Then

���
	��

�	�
 ��

Proof: Let �
 � ��� 	���. Since ���
 �, (5) implies that
�	������ � ������. By Lemma 2, there exists a ball � around the
origin such that for all � � �, with � �
 �, we have

�	����� �����
����

�
	

�
�

Since we can scale � without affecting the assumptions or conclusions
of the lemma we are trying to prove, we can assume that � � �. It
follows that:

������
����

����� 	���� 	������

����

�
	

�

�	������
����

�
	

�

	

�

�
�

�
�

Since this inequality implies that ��� � �, we can apply the same
argument recursively to get

���
	��

����	�
 �

which implies the conclusion of the lemma.
Lemma 4: ��
 �.

Proof: We have

��
 ���

��

	�� ���� 	���

�

 ���

��

��

�

 �

where we used Lemma 1.
Lemma 5: For every vector � � �,

���
���

���
 ���

where ��
 � �

���
�����.

Proof: Every vector � can be written as

�
 ��� �

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 11, NOVEMBER 2011 2697

where ��� � �. Thus

���
���

��� � ���
���

�� ����� �	 � ���� ���
���

��� � ���

where we used Lemmas 3 and 4.
Lemma 6: The matrix � has the following properties:

1) ��� � � whenever �� � �� �
.
2) The directed graph �� � ��
	 � � � 	
�	 ��	, with �� �
���	 �	 � ��� �� ��, is strongly connected.

3) �� � � and ��� � �
� .

4) An eigenvalue of � of largest modulus has modulus 1.
5) � has an eigenvector �, with real eigenvalue � �
� ��
�	
	,

such that ��� � �.
Proof:

1) True because of the definitions of � and �.
2) Suppose not. Then, there is a nonempty set � � �
	 � � � 	
� with

the property that ��� � � whenever � � � and � � ��. Consider
the vector � with �� � � for � � �, and �� �
 for � � ��.
Clearly, �
�
	 � �� � �, but ����	� � � for � � �. This
contradicts Lemma 5. We note that we cannot begin by assuming
the graph the graph �� is undirected; however, this is true, and a
consequence of this lemma, as we will remark below.

3) The first equality was already proven in Lemma 4. For the second,
let � � �

��. Consider the vector

� � ���
���

���� (7)

where �� is the �th unit vector. By Lemma 5

� �
�
� ��

� �

��

On the other hand

���
���

���� � ���
���

������ � ���
���

������	�

Applying Lemma 5 again, we get

� �
�
� ����	

� �

��

�

where �� is the �th component of �. We conclude that �� �
; since
no assumption was made on �, this implies that � � �, which is
what we needed to show.

4) We already know that �� � �, so that an eigenvalue with mod-
ulus 1 exists. Now suppose there is an eigenvalue with larger
modulus, that is, there is some vector � � � such that �� �
� and �� �
. Then, ���� ��

���� � 	. By writing � �
������ ���	�
����� , we immediately have that ��� � ������� �
�����	�
����� . But by Lemma 5 both ������� and ����	�
�����

approach some finite multiple of � as �
 	, so ������ is
bounded above. This is a contradiction.

5) The following fact is a combination of Theorems 4.1 and 6.1 in
[21]: Consider an
 �
 matrix � such that ��� � � whenever
����� �
, and such that the graph with edge set ���	 �	 � ��� �� ��
is connected. Let �	 �	 � � � be its eigenvalues in order of de-
creasing modulus. Suppose that � �
, �� � �, and ��� �
�� , for some vector � satisfying � �� �
, and �� �
���
	
for some positive � and for all �. Then, � has a real eigenvalue
in2�
 � ���
�	
	. Furthermore, the corresponding right eigen-

2The reference [21] proves that an eigenvalue lies in �� � � ��� � �� for
some absolute constant � . By tracing through the proof, we find that we can
take � � �.

vector is orthogonal to �, since right-eigenvectors of a matrix are
orthogonal to left-eigenvectors with different eigenvalues.
By parts 1–4, all the assumptions of the result from [21] are satis-
fied with � � ��
 and � �
, thus completing the proof of the
lemma.

Remark 7: An alternative proof of part 5 is possible. One can argue
that parts 1 and 3 force � to be symmetric, and that Lemma 5 implies
that the elements ��� must be nonnegative. Once these two facts are
established, the results of [4] imply that an eigenvalue has to lie in
�
� ��
�	
	, for a certain absolute constant �.

Proof of Theorem 1: Let � be an eigenvector of � with the prop-
erties in part 5 of Lemma 6. Fix a positive integer �. For any �� � �,
we can pick � �� � to be a small enough multiple of � so that

�����	� �����
����

 ����

This is possible by Lemma 2. Then, we have

�����	��
����

�
������
����

� �� �
�
�

�

�

� ���

Using the orthogonality property ��� � �, we have �� � �, and

��
��

���������

�����	� �����
�� � �����

�
�����	��
����

�
�
�

�

�

����

Now at time � � � �
	 �	, the left-hand side is at most �, by the defini-
tion of � �
	 �	, so that

� �
�
�

�

	��
��

���

and letting ��
 �, we obtain

� �
�
�

�

	��
��

�

Since
 � �, we have
 � ��
� � ��	
	, and

� �
	 �	 �

���
� �
�

�
��� ��

Now using the bound ����
��	 � ����
	 for � � ��	 ���	, we get

� �
	 �	 �

�

��
���

�
�

Remark 8: We now sketch the proof of the claim we made earlier
that a local averaging algorithm cannot average in finitely many steps
and have a convergence time which is uniformly bounded over a ball
around the origin. Fix
 � �. Suppose that for any ���	 in some ball
� around the origin, a local averaging algorithm results in ���	 � ���
for all � � � , where � is independent of ���	.

The proof of Theorem 1 shows that given any �	 � � �, one can
pick a vector ���	 so that if ���	 � ���	 then � ����		�� ����		 �

�
� ��
�	� � �
�
. Moreover, the vectors ���	 can be chosen to be

arbitrarily small. One simply picks � � � and � � �
� ��
�	� to get
that ��� 	 is not a multiple of �; and furthermore, picking ���	 small
enough in norm so that it lies in � results in a contradiction.

2698 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 11, NOVEMBER 2011

Remark 9: Theorem 1 gives a lower bound on how long we must
wait for the 2-norm ������ ����� to shrink by a factor of �. What if we
replace the 2-norm with other norms, for example with the �-norm?
Since ����� ��

�
�� � ����� �� � ����� ��, it follows that if the

�-norm shrinks by a factor of �, then the 2-norm must shrink by at least�
��. Since � only enters the lower bound of Theorem 1 logarithmi-

cally, the answer only changes by a factor of ���� when passing to the
�-norm. Similarly, since for any � 	 �� � �, ����� ������ ����� �
�� ��� �� � ����� ��, the same argument shows that, modulo some
logarithmic factors, we can replace � � 	 with any other �-norm.

III. CONCLUSION

We have proved a lower bound on the convergence time of local av-
eraging algorithms which scales quadratically in the number of agents.
This lower bound holds even if all the communication graphs are equal
to a fixed line graph. Our work points to a number of open questions.

1) Is it possible to loosen the definition of local averaging algorithms
to encompass a wider class of algorithms? In particular, is it pos-
sible to weaken the requirement that each
������ be smooth, per-
haps only to the requirement that it be piecewise-smooth or con-
tinuous, and still obtain a
���� lower bound? What are the lim-
itations of algorithms that allow the update functions
������ to
depend explicitly on time, even if ���� does not change?

2) Does the worst-case convergence time change if we introduce
some memory and allow ����� �� to depend on the last � sets of
messages received by agent ? Alternatively, there is the broader
question of how much is there to be gained if every agent is al-
lowed to keep track of extra variables. Some positive results in
this direction were obtained in [11].

3) What if each node maintains a small number of update functions,
and is allowed to choose which of them to apply based on the mes-
sages received? Our lower bound does not apply to such schemes,
so it is an open question whether its possible to design practical
algorithms along these lines with worst-case convergence time
scaling better than ��.

REFERENCES

[1] M. Alighanbari and J. P. How, “Unbiased Kalman consensus algo-
rithm,” in Proc. Amer. Control Conf., Minneapolis, MN, Jun. 14–16,
2006, pp. 3519–3524.

[2] L. Brunet, H. L. Choi, and J. P. How, “Consensus-based decentralized
aiuctions for robust task allocation,” IEEE Trans. Robotics, vol. 25, no.
4, pp. 912–926, Aug. 2009.

[3] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,”
in Proc. Joint 44th IEEE Conf. Decision Control Eur. Control Conf.
(CDC-ECC’05), Seville, Spain, Dec. 2005, pp. 2996–3000.

[4] S. Boyd, P. Diaconis, J. Sun, and L. Xiao, “Fastest mixing Markov
chain on a path,” Amer. Math. Monthly, vol. 113, no. 1, pp. 70–74, Jan.
2006.

[5] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment: Convergence rates, measure-
ment delays, and asynchronous events,” SIAM J. Control Optim., vol.
47, no. 2, pp. 601–623, 2008.

[6] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed
Kalman filtering based on consensus strategies,” IEEE J. Selected
Areas Commun., vol. 26, no. 4, pp. 622–633, Apr. 2008.

[7] J. Cortes, “Finite-time convergent gradient flows with applications to
network consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.

[8] C. Gao, J. Cortes, and F. Bullo, “Notes on averaging over acyclic di-
graphs and discrete coverage control,” Automatica, vol. 44, no. 8, pp.
2120–2127, 2008.

[9] N. Hayashi and T. Ushio, “Application of a consensus problem to fair
multi-resource allocation in real-time systems,” in Proc. 47th IEEE
Conf. Decision Control, Cancun, Mexico, 2008, pp. 2450–2455.

[10] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[11] K. Jung, D. Shah, and J. Shin, “Distributed averaging via lifted Markov
chains,” Cornell Univ. Library pp. 1–28, 2008 [Online]. Available:
http://arxiv.org/PS_cache/arxiv/pdf/0908/0908.4073v1.pdf

[12] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, no. 7, pp. 1192–1203, 2007.

[13] Q. Li and D. Rus, “Global clock synchronization for sensor networks,”
in Proc. 23rd Conf. IEEE Commun. Soc. (INFOCOM’04), Hong Kong,
Mar. 2004, pp. 564–574.

[14] S. Li and H. Wang, “Multi-Agent Coordination using Nearest-
Neighbor Rules: Revisiting the Vicsek Model,” Tech. Rep., 2004
[Online]. Available: http://arxiv.org/abs/cs.MA/0407021

[15] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp.
169–182, Feb. 2005.

[16] C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE
Trans. Inform. Theory, vol. 52, no. 11, pp. 4753–4766, Nov. 2006.

[17] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans.
Autom. Control, vol. 54, no. 11, pp. 2506–2517, Nov. 2009.

[18] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[19] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in Proc. Amer. Control Conf.,
New York, Jul. 2007, pp. 650–660.

[20] M. Schwager, J.-J. Slotine, and D. Rus, “Consensus learning for dis-
tributed coverage control,” in Proc. Int. Conf. Robot. Autom., Pasadena,
CA, May 2008, pp. 1042–1048.

[21] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,” SIAM J. Control Optim., vol. 48, no. 1, pp.
33–55, 2009.

[22] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimization algo-
rithms,” IEEE Trans. Autom. Control, vol. AC-31, no. 9, pp. 803–812,
Sep. 1986.

[23] F. Wuhid, R. Stadler, and M. Dam, “Gossiping for threshold detection,”
in Proc. 11th IFIP/IEEE Int. Conf. Symp. Integr. Netw. Manag., 2009,
pp. 259–266.

[24] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65–78, 2004.

[25] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. Int. Conf. Inform. Pro-
cessing Sensor Netw., Los Angeles, CA, Apr. 2005, pp. 63–70.

[26] M. Zhu and S. Martinez, “On the convergence time of asynchronous
distributed quantized averaging algorithms,” IEEE Trans. Autom. Con-
trol, vol. 56, no. 2, pp. 386–390, Feb. 2011.

