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We analyze the effect of tumor repopulation on optimal dose delivery in radiation therapy. We are primarily
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1. Introduction
According to the American Cancer Society, at least
50% of cancer patients undergo radiation therapy
over the course of their treatment. Radiation ther-
apy plays an important role in curing early stage
cancer, preventing metastatic spread to other areas,
and treating symptoms of advanced cancer. For many
patients, external beam radiation therapy is one of
the best options for cancer treatment. Current ther-
apy procedures involve taking a pretreatment com-
puted tomography (CT) scan of the patient, which
provides a geometrical model of the patient that is
used to determine incident radiation beam directions
and intensities. In current clinical practice, most radi-
ation treatments are fractionated; i.e., the total radia-
tion dose is split into approximately 30 fractions that
are delivered over a period of six weeks. Fractiona-
tion allows normal tissue to repair sublethal radia-
tion damage between fractions and thereby tolerate
a much higher total dose. Currently, the same dose
is delivered in all fractions, and temporal dependen-
cies in tumor growth and radiation response are not

taken into account. Biologically based treatment plan-
ning, aiming at optimal dose delivery over time, has
tremendous potential, as more is being understood
about tumor repopulation and reoxygenation, healthy
tissue repair, and redistribution of cells.
In this paper, we study the effect of tumor repopu-

lation on optimal fractionation schedules, i.e., on the
total number of treatment days and the dose delivered
per day. We are primarily motivated by accelerated
tumor repopulation toward the end of radiation treat-
ment, which is considered to be an important cause of
treatment failure, especially for head and neck tumors
(Withers et al. 1988, Withers 1993). Our main conclu-
sion is that accelerated repopulation suggests larger
dose fractions later in the treatment to compensate for
the increased tumor proliferation.

1.1. Motivation
Radiation therapy treatments are typically fraction-
ated (i.e., distributed over a longer period of time) so
that normal tissues have time to recover. However,
such time between treatments allows cancer cells to
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proliferate and can result in treatment failure (Kim
and Tannock 2005). The problem of interest then is the
determination of an optimal fractionation schedule
to counter the effects of tumor repopulation. Using
the biological effective dose (BED) model, a recent
paper (Mizuta et al. 2012) mathematically analyzed
the fractionation problem in the absence of repop-
ulation. For a fixed number of treatment days, the
result states that the optimal fractionation schedule
is to deliver either a single dose or an equal dose
on each treatment day. The former schedule of a sin-
gle dose corresponds to a hypo-fractionated regimen,
in which treatments are ideally delivered in as few
days as possible. The latter schedule of equal dose
per day corresponds to a hyperfractionation regimen,
in which treatments are delivered in as many days as
possible. The work in this paper further develops the
mathematical framework in Mizuta et al. (2012) and
analyzes the effect of tumor repopulation on optimal
fractionation schedules. We are interested in optimiz-
ing nonuniform (in time) dose schedules, motivated
primarily by the phenomenon of accelerated repopu-
lation, i.e., a faster repopulation of surviving tumor
cells toward the end of radiation treatment.

1.2. Related Work
There has been prior work on the optimization of
nonuniform radiation therapy fractionation schedules
(Almquist and Banks 1976; Swan 1981, 1984; Marks
and Dewhirst 1991; Yakovlev et al. 1994; Yang and
Xing 2005), some of which also includes tumor repop-
ulation effects. However, these works have either not
used the BED model or have primarily considered
other factors such as tumor reoxygenation. It has
been shown that effects such as reoxygenation, redis-
tribution, and sublethal damage repair can result in
non-uniform optimal fractionation schemes (Yang and
Xing 2005, Bertuzzi et al. 2013). Previous works have
considered the case of exponential tumor growth with
a constant rate of repopulation (Wheldon et al. 1977,
Jones et al. 1995, Armpilia et al. 2004). Other tumor
growth models, e.g., Gompertzian and logistic, have
also been considered although mostly in the context
of constant dose per day (Usher 1980, McAneney and
O’Rourke 2007).
There is a significant amount of literature, espe-

cially from the mathematical biology community, on
the use of control theory and dynamic program-
ming (DP) for optimal cancer therapy. Several of
these works (Zietz and Nicolini 2007, Pedreira and
Vila 1991, Ledzewicz and Schättler 2004, Salari et al.
2014) have looked into optimization of chemother-
apy. For radiation therapy fractionation, some stud-
ies (Hethcote and Waltman 1973, Almquist and Banks
1976, Wein et al. 2000) have used the DP approach
based on deterministic biological models, as in this

paper. However, these works have not carried out a
detailed mathematical analysis of the implications of
optimal dose delivery in the presence of accelerated
repopulation. Using imaging information obtained
between treatment days, dynamic optimization mod-
els have been developed to adaptively compensate
for past accumulated errors in dose to the tumor
(Ferris and Voelker 2004, de la Zerda et al. 2007, Deng
and Ferris 2008, Sir et al. 2012). There also has been
work on online approaches that adapt the dose and
treatment plan based on images obtained immedi-
ately prior to treatment (Lu et al. 2008; Chen et al.
2008; Kim et al. 2009, 2012; Kim 2010; Ghate 2011;
Ramakrishnan et al. 2012).
Perhaps the closest related work is Wein et al.

(2000), which considers both faster tumor prolifera-
tion and reoxygenation during the course of treat-
ment. Although a dose intensification strategy is also
suggested in Wein et al. (2000), the primary rationale
for increasing dose fractions is different: it is con-
cluded that because of the increase in tumor sensitiv-
ity from reoxygenation, larger fraction sizes are more
effective at the end of treatment. Our work, how-
ever, suggests dose intensification (i.e., larger doses
over time) as a direct consequence of a model of
accelerated tumor repopulation during the course of
treatment.

1.3. Overview of Main Contributions
The primary contributions of this paper are the de-
velopment of a mathematical framework and the
analysis of optimal fractionation schedules in the pres-
ence of accelerated repopulation. We give qualitative
and structural insights on the optimal fractionation
scheme, with the hope that it can guide actual practice.
Specifically:
1. We formulate a problem that includes general

tumor repopulation characteristics and develop a DP
approach to solve it. We choose to model accelerated
repopulation implicitly by using decelerating tumor
growth curves, where a larger number of tumor cells
results in slower growth. Thus, faster growth is exhib-
ited toward the end of radiation treatment, when
there are fewer cells.
2. We prove that the optimal doses are nondecreas-

ing over time (Theorem 3), because of the decelerating
nature of tumor growth curves. This type of result
remains valid even when we allow for weekend and
holiday breaks (Corollary 1).
3. We analyze the special structure of the problem

for the case of Gompertzian tumor growth and show
that it is equivalent to maximizing a discounted ver-
sion of the BED in the tumor (§2.3.2), which results in
a simplified DP algorithm.
4. We show that when there is repopulation, the op-

timal number of dose fractions is finite (Theorem 4).
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5. We find through numerical simulations that the
optimal fraction sizes are approximately proportional
to the instantaneous proliferation rate, suggesting
larger dose fractions later in the treatment to compen-
sate for the increased tumor proliferation.

1.4. Organization
In §2, we present the model, formulation, and DP
solution approach. We also analyze the special struc-
ture of the problem for the case of Gompertzian tumor
growth. In §3, we discuss both previously known
results and the main results of this paper. Our pri-
mary conclusion is that the optimal dose fractions
are nondecreasing over time. In §4, we present and
discuss numerical results under exponential or Gom-
pertzian growth models. In §5, we provide further
remarks about the model under other assumptions
and discuss the results in relation to prior work.
Finally, in §6, we summarize our main findings and
the most important implications.

2. Model, Formulation, and
Solution Approach

2.1. Model of Radiation Cell Kill
In this section, we describe the radiation cell kill
model without any tumor growth dynamics. We use
the linear-quadratic (LQ) model (Fowler 1989) to
relate radiation dose and the fraction of surviving
cells. This model is supported by observations from
irradiating cells in vitro. The LQ model relates the
expected survival fraction S (in the absence of tumor
growth) after a single delivered dose d, in terms of
two tissue parameters Å and Ç, through the relation

S = exp4É4Åd+Çd2550

Thus, the logarithm of the survival fraction consists of
a linear component with coefficient Å and a quadratic
component Ç (see the dotted curve in Figure 1). This
LQ model assumes two components of cell killing by
radiation: one proportional to dose and one to the
square of the dose. The respective tissue-specific pro-
portionality constants are given by Å and Ç. It is pos-
sible to interpret these two components of killing as
they relate to the probability of exchange aberrations
in chromosomes (see Hall and Giaccia 2006). We illus-
trate this cell kill effect by plotting the logarithm of
the survival fraction in Figure 1.
For N treatment days with radiation doses d01d11

0 0 0 1dNÉ1, the resulting survival fractions from each
individual dose can be multiplied, assuming indepen-
dence between dose effects. The resulting relation is

S = exp
✓
É

NÉ1X

k=0

4Ådk +Çd2
k5

◆
0
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Figure 1 (Color online) Illustration of the Fractionation Effect
Using the LQ Model

Notes. The dotted line represents the effect of both the linear and quadratic

terms resulting from applying a single total dose of radiation. The solid line

corresponds to the effect of the same total dose, if it is divided into multiple

individual doses, which results in a much higher survival fraction when the

quadratic Ç term is significant. Finally, the dashed line shows the total effect

of the linear term, whether doses are applied as single or multiple individual

fractions.

The effect of the quadratic factor Ç, in the above
equation, is that the survival fraction is larger when
splitting the total dose into individual dose fractions
(Figure 1). Thus, there is an inherent trade-off be-
tween delivering large single doses to maximize cell
kill in the tumor and fractionating doses to spare nor-
mal tissue.
A common quantity that is used alternatively

to quantify the effect of the radiation treatment is
the BED (Barendsen 1982, Hall and Giaccia 2006,
O’Rourke et al. 2009). It is defined by

BED4d5= 1
Å
4Åd+Çd25= d

✓
1+ d

Å/Ç

◆
1 (1)

where Å/Ç is the ratio of the respective tissue param-
eters. Thus, the BED in the above definition captures
the effective biological dose in the same units as phys-
ical dose. A small Å/Ç value means that the tissue is
sensitive to large doses; the BED in this case grows
rapidly with increasing dose per fraction. Note that
BED is related to the LQ model by setting BED =
É ln4S5/Å. In the BED model, only a single param-
eter, the Å/Ç value, needs to be estimated; e.g., in
Miralbell et al. (2012) the Å/Ç value is estimated
for prostate cancer from radiotherapy outcomes of
thousands of patients. Whenever nonstandard frac-
tionation schemes are used in a clinical setting, the
BED model is typically used to quantify fractionation
effects. In this paper, we frequently switch between
the cell interpretation in the LQ model and the effec-
tive dose interpretation in the BED model, as they
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both provide alternative and useful views based on
context.
Based on the relation given in Equation (1), we

define BEDT 4d5 as the BED in a tumor when a dose d
is delivered, where 6Å/Ç7T is the Å/Ç value of the
tumor. We also define the total BED in the tumor from
delivering doses d01d11 0 0 0 1dNÉ1 as

BEDT =
NÉ1X

k=0

BEDT 4dk5=
NÉ1X

k=0

dk

✓
1+ dk

6Å/Ç7T

◆
0

In this paper, we consider a single dose-limiting
radio-sensitive organ-at-risk (OAR); this assumption
is appropriate for some disease sites (e.g., for prostate
cancer, the rectum could be taken as the dose-limiting
organ). We assume that an OAR receives a frac-
tion of the dose applied to the tumor. Thus, let a
dose d be applied to the tumor result in a dose
of Éd in the OAR, where É is the fractional constant,
also referred to as the normal tissue sparing factor,
satisfying 0 < É < 1. Implicitly, this assumes a spa-
tially homogeneous dose in the tumor and the OAR
as in Mizuta et al. (2012). The generalization to a
more realistic inhomogeneous OAR dose distribution
(Unkelbach et al. 2013), which leaves the main find-
ings of this paper unaffected, is detailed in §5.1. The
value of É will depend on the treatment modality and
the disease site. For treatment modalities providing
very conformal dose around the tumor and disease
sites with the OAR not closely abutting the primary
tumor, the OAR will receive less radiation and thus É
would be a smaller. Using Éd as the dose in the OAR
and 6Å/Ç7O as the OAR Å/Ç value, we can define
the associated OAR BEDs, BEDO4d5, and BEDO in the
same way as was done for the tumor BED:

BEDO =
NÉ1X

k=0

BEDO4dk5=
NÉ1X

k=0

Édk

✓
1+ Édk

6Å/Ç7O

◆
0

2.2. Tumor Growth Model
In this section, we describe tumor growth models that
will be used later to formulate a fractionation prob-
lem. We model the growth of the tumor through the
ordinary differential equation (Wheldon 1988):

1
x4t5

dx4t5
dt

=î4x4t551 (2)

with initial condition x405 = X0, where x4t5 is the ex-
pected number of tumor cells at time t. In the Equa-
tion (2), î4x5 represents the instantaneous tumor
proliferation rate. We assume that î4x5 is nonincreas-
ing and is continuous in x (for x > 0), which implies
that the solution to theabovedifferential equationexists
and is unique for any X0 > 0. By choosing an appro-
priate functional form of î, we can describe a variety
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0

0.01

0.02

0.03

0.04

0.05

x(t )/X∞ – normalized number of cells

φ(
x)

 –
 tu

m
or

 g
ro

w
th

 ra
te

 (d
ay

s–1
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Figure 2 (Color online) Tumor Growth Rate vs. Number of Tumor
Cells

Note. The Gompertz equation models slower growth for larger number of

cells while the exponential model assumes a constant growth rate.

of tumor repopulation characteristics relevant for radi-
ation therapy:
1. We can model exponential tumor growth (Whel-

don 1988, Yorke et al. 1993) with a constant prolifer-
ation rate ê by choosing î4x5 = ê. In this case, the
solution x4t5 of the differential equation with initial
condition x405=X0 is

x4t5=X0 exp4êt51

where X0 is the initial number of cells and ê> 0 is the
proliferation rate.
2. We represent accelerated repopulation by choos-

ing î4x5 to be a decreasing function of x. In this case,
the instantaneous tumor proliferation rate increases
when, toward the end of treatment, the number
of remaining tumor cells decreases. The Gompertz
model (Laird 1964, Norton et al. 1976, Norton 1988) is
one such decelerating tumor growth curve (Figure 2).
For Gompertzian growth, we would simply set

î4x5= b ln
✓
Xà
x

◆
1

where X0 is the initial number of tumor cells, Xà is the
carrying capacity or the maximum number of tumor
cells, and b is a parameter that controls the rate of
growth. The solution to the differential Equation (2),
with initial condition x405=X0, is

x4t5=X
exp4Ébt5
0 X1Éexp4Ébt5

à 0 (3)

This equation models slower repopulation for larger
tumor sizes and vice versa (see Figure 2).

2.3. Formulation
In this section, we combine the LQ model from §2.1
and the tumor growth model from §2.2 and formulate
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a fractionation problem. The aim of radiation therapy
is to maximize the tumor control probability (TCP)
subject to an upper limit on the normal tissue com-
plication probability (NTCP) in the OAR (O’Rourke
et al. 2009). A significant amount of research has been
conducted to determine appropriate and better mod-
els of TCP (Brahme and Agren 1987, O’Rourke et al.
2009) and NTCP (Kutcher and Burman 1989, Lyman
1985). A common way to model NTCP is as a sig-
moidal function of BEDO (Kutcher et al. 1991). Since
a sigmoidal function is monotonic in its argument,
it then suffices in our model to impose an upper
limit on BEDO . Though some studies have raised con-
cerns (Tucker et al. 1990), TCP has been widely mod-
eled using Poisson statistics (Munro and Gilbert 1961;
Porter 1980a, b), under which

TCP= exp4ÉX+
NÉ151

where X+
NÉ1 is the expected number of tumor cells

surviving after the last dose of radiation. In this
case, maximizing the TCP is equivalent to minimiz-
ing X+

NÉ1. We now define

Y +
NÉ1 = ln4X+

NÉ15/ÅT 1

where ÅT is a tumor tissue parameter associated with
the linear component of the LQ model. Note that the
definition of Y is analogous to the definition of the
BED. It has units of radiation dose; thus differences
in Y can be interpreted as differences in effective
BED delivered to the tumor. We choose to primar-
ily work with this logarithmic version because of this
interpretation.
For the rest of the paper, we focus on the equivalent

problem of minimizing Y +
NÉ1 subject to an upper limit

on BEDO . The problem is stated mathematically as

minimize
8di�09

Y +
NÉ1 s.t. BEDO  c1 (4)

where c is a prespecified constant. There is no guar-
antee of the convexity of the objective, and thus, this
problem is nonconvex. Note that the feasible region
is nonempty because a possible feasible schedule is a
dose of zero for all treatment sessions. We claim that
the objective function in (4) attains its optimal value
on the feasible region. As a function of the dose frac-
tions dk, it can be seen that Y +

NÉ1 is continuous. Fur-
thermore, the constraint on BEDO ensures the feasible
region is compact. Thus, the extreme value theorem
ensures that the objective attains its optimal value on
the feasible region.
We now describe the dynamics of the expected num-

ber of tumor cells during the course of treatment
(Figure 3). We assume that a sequence of N doses
d01d11 0 0 0 1dNÉ1 is delivered at integer times; i.e., time

Time
(days)

· · ·

· · ·0 1

y(t ) = ln(x(t ))/!T

= ln(cell number)/!T

BEDT (d0)
BEDT (d1)

Y 1
+

Y 0
+

Y0
–

Y1
–

2

BEDT (dN –1)

Y –
N –1

Y +
N –2

Y +
N –1

N –2 N –1

Figure 3 Schematic Illustration of the Expected
Number of Tumor Cells Over the Course of Treatment

Note. The effect of radiation dose d is a reduction, proportional to BED

T

4d5,

in the log of the number of cells.

is measured in days. The survival fraction of cells from
delivering these radiation doses is described by the LQ
model in §2.1. If XÉ

i and X+
i are the numbers of tumor

cells immediately before and after delivering the
dose di, we will have X+

i =XÉ
i exp4É4ÅT di +ÇT d

2
i 55.

For the logarithmic versions Y +
i and Y É

i , we have for
integer times

Y +
i = Y É

i ÉBEDT 4di50

For noninteger times in 601N É 17, the tumor grows
according to the differential Equation (2) with pro-
liferation rate î4x5, as described in §2.2. For conve-
nience, we denote by F 4 · 5 the resulting function that
maps Y É to Y + when using the growth differential
Equation (2). Thus, we have

Y É
i+1 = F 4Y +

i 5

for i= 0111 0 0 0 1N É 2.

2.3.1. Exponential Tumor Growth with Constant
Proliferation Rate. For the exponential tumor growth
model, where î4x5 = ê, the rate of repopulation ê
does not change with tumor size (see Figure 2). As-
suming ê represents a measure of growth per unit
day (or fraction), the number of tumor cells is mul-
tiplied by a factor of exp4ê5 after every fraction. Or,
equivalently, a constant factor is added to the logarith-
mic cell number because of tumor growth in between
treatment days. Since there are N dose fractions and
N É 1 days of repopulation in between, it can be seen
that the optimization problem (4) simplifies to

minimize
8di�09

⇢
Y0 +

1
ÅT

4N É 15êÉBEDT

�

s.t. BEDO  c0

(5)

Here the effect of tumor repopulation is captured in
the term 4N É 15ê/ÅT .
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2.3.2. GompertzianTumorGrowth. For the case of
Gompertzian tumor growth, where î4x5=b ln4Xà/x5,
we can also significantly simplify the formulation.
As shown in §2.4, this results in a simplified
DP approach to determine an optimal fractionation
schedule. We will now derive an explicit expression
for the expected number of tumor cells at the end of
treatment. We claim that

Y +
i = 1

ÅT

ln4x4i55É
iX

k=0

exp6Éb4iÉ k57BEDT 4dk51 (6)

for i = 0111 0 0 0 1N É 1, where x4t5 represents the
expected number of tumor cells in the absence of radi-
ation treatment, and which is given by the expres-
sion in Equation (3). (In particular, x4t5 should not
be confused with the number of tumor cells when
the tumor is treated.) Equation (6) holds for i = 0
because x405=X0 and Y +

0 = ln4X05/ÅT ÉBEDT 4d05. For
the inductive step, suppose that Equation (6) holds
true. From the Gompertzian growth Equation (3), and
assuming that the time interval between fractions is
one day (t = 1), we can write the function F that
maps Y +

i to Y É
i+1 as

Y É
i+1 = F 4Y +

i 5= exp4Éb5Y +
i + 41É exp4Éb55

ln4Xà5

ÅT

0

Incorporating the growth and the radiation dose from
di+1, we find

Y +
i+1 = F 4Y +

i 5ÉBEDT 4di+15

= 1
ÅT

ln4x4i5exp4Éb5X1Éexp4Éb5
à 5

É
i+1X

k=0

exp6Éb4i+ 1É k57BEDT 4dk5

= 1
ÅT

ln4x4i+ 155É
i+1X

k=0

exp6Éb4i+ 1É k57BEDT 4dk51

completing the inductive step. This results in the opti-
mization problem

minimize
8di�09

⇢
1
ÅT

ln4x4N É 155

É
NÉ1X

k=0

exp6Éb4N É 1É k57BEDT 4dk5

�

s.t. BEDO  c0

The interesting aspect of the above optimization prob-
lem is that it is essentially a maximization of a dis-
counted sum of the terms BEDT 4dk5. Because the
weighting term gives larger weight to later frac-
tions, we can conjecture that the optimal fractionation
scheme will result in larger fraction sizes toward the
end of treatment. This is in contrast to the exponential
tumor growth model for which there is no accelerated
repopulation, and the BEDT 4dk5 terms are weighted
equally.

2.4. Dynamic Programming Approach
To get from the initial Y0 to Y +

NÉ1, one recursively
alternates between applying a dose d and the growth
function F . That is, Y +

NÉ1 takes the form

Y +
NÉ1 = F 4· · · F 4F 4Y0 ÉBEDT 4d055ÉBED4d155 · · · 5

ÉBED4dNÉ150 (7)

Such a recursive formulation lends itself naturally to a
DP approach. We can solve the optimization problem
by recursively computing an optimal dose backward
in time. Note that although nonlinear programming
methods can also be used, there is no guarantee of the
convexity of (7), and thus, such methods might only
provide a local optimum. A global optimum, how-
ever, is guaranteed if a DP approach is used.
To determine the dose dk, we take into account Y +

kÉ1
and the cumulative BED in the OAR from delivering
the prior doses, which we define as

zk =
kÉ1X

i=0

BEDO4di50

Here, Y +
kÉ1 and zk together represent the state of the

system because they are the only relevant pieces of
information needed to determine the dose dk. We do
not include a cost per stage; instead, we include Y +

NÉ1
in a terminal condition. To ensure that the constraint
on BEDO is satisfied, we also assign an infinite penalty
when the constraint is violated. The Bellman recur-
sion to solve the problem is

JN 4Y
+
NÉ11zN 5=

(
Y +
NÉ11 if zN c3

à1 otherwise1

Jk4Y
+
kÉ11zk5=min

dk�0

⇥
Jk+14F 4Y

+
kÉ15ÉBEDT 4dk51

zk+BEDO4dk55
⇤
1

(8)

for k = N É 11N É 21 0 0 0 11. The initial equation for
time 0, given next, is slightly different because there
is no prior tumor growth (see Figure 3):

J04Y
É
0 1z05=min

d0�0

⇥
J14Y

É
0 ÉBEDT 4d051z0 +BEDO4d055

⇤
0

For the exponential and Gompertzian growth cases,
the DP approach simplifies and only requires the sin-
gle state zk. Next, we discuss the approach for the
Gompertzian case only; for the exponential case, as
will be discussed in §3.1, an optimal fractionation
scheme can be characterized in closed form. For sim-
plicity, we use additive costs per stage this time. The
simplified algorithm is

JN 4zN 5=
(
41/ÅT 5 ln4x4N É 1551 if zN  c3

à1 otherwise1

Jk4zk5=min
dk�0

⇥
Éexp6Éb4N É 1É k57BEDT 4dk5

+ Jk+14zk +BEDO4dk55
⇤
1

(9)
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for k=N É11N É21 0 0 0 10. For numerical implementa-
tion, the state variables need to be discretized and the
tabulated values stored. For evaluating the cost-to-go
function Jk at any nondiscretized values, an interpola-
tion of appropriate discretized values can be used for
increased accuracy.

3. Properties of an Optimal
Fractionation Schedule

In §3.1, we discuss previously known results. These
primarily concern the characterization of optimal frac-
tionation schedules in the absence of accelerated
repopulation. The purpose of this subsection is to pro-
vide the essential results that are scattered in the lit-
erature in different papers and formalize them in the
framework of this paper. In §3.2, we summarize our
main results. The proofs of the results are provided
in the online supplement (available as supplemental
material at http://dx.doi.org/10.1287/ijoc.2015.0659).

3.1. Previously Known Results
The set of all optimal solutions to the fractionation
problem in the absence of repopulation is character-
ized in the following theorem, published in Mizuta
et al. (2012).

Theorem 1. Let N be fixed. In the absence of repopula-
tion (i.e., î4x5= 0), an optimal fractionation schedule can
be characterized in closed form. If 6Å/Ç7O � É6Å/Ç7T , an
optimal solution is to deliver a single dose equal to

d⇤
j =

6Å/Ç7O
2É

"s
1+ 4c

6Å/Ç7O
É 1

#

(10)

at an arbitrary time j and deliver di = 0 for all i 6= j . This
corresponds to a hypofractionation regimen. If 6Å/Ç7O <
É6Å/Ç7T , the unique optimal solution consists of uniform
doses given by

d⇤
j =

6Å/Ç7O
2É

"s

1+ 4c
N 6Å/Ç7O

É 1

#

1 (11)

for j = 0111 0 0 0 1N É 1. This corresponds to a hyperfrac-
tionation regimen, i.e., a fractionation schedule that uses
as many treatment days as possible.

This theorem states that if 6Å/Ç7O � É6Å/Ç7T , a sin-
gle radiation dose is optimal; i.e., the optimal num-
ber of fractions N ⇤ is 1. However, if 6Å/Ç7O is small
enough—i.e., the OAR is sensitive to large doses per
fraction, so that 6Å/Ç7O < É6Å/Ç7T—it is optimal to
deliver the same dose during the N days of treat-
ment. Because taking larger N only results in extra
degrees of freedom, N ⇤ ! à in this case. However,
this is clearly not realistic and is an artifact of model-
ing assumptions. We will show that including tumor
repopulation results in a finite N ⇤. In the following
remark, we comment on the result and the model
assumptions.

Remark 1. Our ultimate goal is to understand the
effect of accelerated repopulation over the duration
of treatment. Thus, we are primarily interested in
the hyperfractionation case, with 6Å/Ç7O < É6Å/Ç7T ,
which will hold for most disease sites. The case where
6Å/Ç7O � É6Å/Ç7T needs careful consideration since
the validity of the model may be limited if N is
small and the dose per fraction is large. The con-
dition 6Å/Ç7O � É6Å/Ç7T would be satisfied for the
case of an early responding OAR tissue (see §5.4
for further details); however, we have not included
repopulation and repair effects into the BED model,
which could play an important role for such tis-
sue. Another aspect that requires consideration is
whether doses should be fractionated to permit tumor
re-oxygenation between treatments. Thus, without
extensions to our current model, it may be better to
set a minimum number of fractions (e.g., five) in the
case where 6Å/Ç7O � É6Å/Ç7T .

In the next remark, we discuss how Theorem 1
can be generalized in the case of exponential tumor
growth.

Remark 2. For the problem including exponential
tumor growth with î4x5= ê, there is only an additive
term 4N É 15ê/ÅT in objective (5), which is indepen-
dent of the dose fractions. Thus, for a fixed N , the
result from Theorem 1 still holds for the exponential
growth case.

It turns out that one can also characterize the op-
timal number of fractions in closed form for the ex-
ponential tumor growth case. The result is consis-
tent with and similar to the work in a few papers
(Wheldon et al. 1977, Jones et al. 1995, Armpilia et al.
2004), though we interpret it differently here. Our
statement below is a slight generalization in that we
do not assume uniform dose per day a priori.

Theorem 2. The optimal number of fractions N ⇤ for
exponential growth with constant proliferation rate ê
(i.e., î4x5= ê) is obtained by the following procedure:
1. If 6Å/Ç7O � É6Å/Ç7T , then N ⇤ = 1.
2. If 6Å/Ç7O < É6Å/Ç7T , then
(a) Compute Nc = A4

p
4ê+B52/4ê4ê+ 2B55 É 15,

where A = 2c/6Å/Ç7O , B = 4ÅT 6Å/Ç7O/2É541É 6Å/Ç7O/
É6Å/Ç7T 5.

(b) If Nc < 1, then N ⇤ = 1. Otherwise, evaluate the
objective at èNcê and ëNcí, where è · ê and ë · í are the floor
and ceiling operators, respectively, and let the optimum N ⇤

be the one that results in a better objective value.

This result also makes sense in the limiting cases.
When approaching the case of no repopulation—i.e.,
ê ! 0—we see that Nc ! à, and the optimum N ⇤

approaches infinity. When ê!à, we see that Nc ! 0,
meaning that the optimum N ⇤ is a single dose. Recall
that if 6Å/Ç7O < É6Å/Ç7T , N ⇤ ! à in the absence of
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repopulation. For the case of exponential repopula-
tion with constant but positive rate, the above result
shows that the optimum N is finite. Indeed, even for
general tumor growth characteristics, we will show
nextthat as long as there is some repopulation, the
optimal number of fractions will be finite.

3.2. Main Results of This Paper
We begin with two lemmas. The first one simply
states that the constraint on BEDO is binding; intu-
itively, this is because of the assumption that î4x5> 0
(implying the growth function F 4 · 5 is increasing) and
the fact that the BED function is monotone in dose.

Lemma 1. Assume that î4x5> 0 for all x > 0. Then the
constraint on BEDO in (4) will be satisfied with equality.

Lemma 2. Assume that î4x5> 0 for all x > 0 and that
î4x5 is a nonincreasing function of x. Suppose that i < j
and that we apply the same sequence of doses di+11 0 0 0 1dj ,
starting with either Y +

i or Ỹ +
i . If Y +

i < Ỹ +
i , then Y +

j < Ỹ +
j

and Ỹ +
j ÉY +

j  Ỹ +
i ÉY +

i .

Assuming that the same sequence of doses are ap-
plied, Lemma 2 states a monotonicity and a contrac-
tion type property when mapping the expected num-
ber of cells from one point in time to another. Next,
we state the main theorem.

Theorem 3. Let us fix the number of treatment days N .
Assume that there is always some amount of repopula-
tion—i.e., î4x5 > 0 for all x > 0—and that the instan-
taneous tumor growth rate î4x5 is nonincreasing as a
function of the number of cells x. If 6Å/Ç7O � É6Å/Ç7T ,
then it is optimal to deliver a single dose equal to (10) on
the last day of treatment. This corresponds to a hypofrac-
tionation regimen. If 6Å/Ç7O < É6Å/Ç7T , then any optimal
sequence of doses is nondecreasing over the course of treat-
ment. That is, these doses will satisfy d⇤

0  d⇤
1  · · · d⇤

NÉ1.

For the case where 6Å/Ç7O � É6Å/Ç7T , we take note
of Remark 1 again. It is reasonable that an optimal
solution uses the most aggressive treatment of a sin-
gle dose, as this is the case even without repopula-
tion. The next remark gives an intuitive explanation
for why in the fixed N case it is optimal to deliver
only on the last treatment day and shows the optimal
number of fractions N ⇤ is 1 when 6Å/Ç7O � É6Å/Ç7T .

Remark 3. A single dose delivered on the last treat-
ment day is optimal when 6Å/Ç7O � É6Å/Ç7T because
it is better to let the tumor grow slowly during the
course of treatment rather than to stimulate acceler-
ated growth by treating it earlier. However, this does
not mean it is optimal to wait too long before treating
the patient. Starting with a given initial number of
tumor cells, it is clear that treating a single dose with
a smaller N results in a better cost. This is because
the tumor grows for a shorter time. Thus, it follows

that when 6Å/Ç7O � É6Å/Ç7T , the optimal number of
fractions is N ⇤ = 1.

When 6Å/Ç7O < É6Å/Ç7T , the doses must increase
over time. Intuitively, because of the decreasing prop-
erty of î4x5 as a function of x, the tumor grows faster
when its size becomes smaller over the course of treat-
ment; higher doses are then required to counter the
increased proliferation. An interchange argument is
used to prove the above theorem.
The next theorem states that as long as the repopu-

lation rate cannot decrease to 0, the optimal number
of fractions N ⇤ is finite.

Theorem 4. Suppose that there exists r > 0 such that
î4x5 > r for all x > 0. Then there exists a finite optimal
number of fractions N ⇤.

Typically in a clinical setting, dose fractions are not
delivered during weekend and holiday breaks. The
following remark explains how such breaks can be
included in our formulation.

Remark 4. We can adjust the fractionation problem
by setting N to be the total number of days, includ-
ing weekend and holiday breaks. For days in which
a treatment is not administered, the dose fraction is
set to 0. For all other days, the DP algorithm (8) is
used as before to determine the optimal fractionation
schedule.

Corollary 1 shows that the structure of an opti-
mal solution is still similar to that described in Theo-
rem 3 even when including holidays in the formula-
tion and/or fixing some dose fractions.

Corollary 1. Including breaks and/or fixing the dose
in some fractions does not change the structure of the opti-
mized dose fractions as described in Theorem 3. Fix N .
Assume that î4x5> 0 for all x > 0 and that î4x5 is non-
increasing in x. If 6Å/Ç7O � É6Å/Ç7T , then an optimal
solution is to deliver a single dose on the last deliver-
able day that is not a break and not a fixed dose fraction.
If 6Å/Ç7O < É6Å/Ç7T , then an optimal sequence of doses,
excluding breaks and fixed dose fractions, is nondecreasing
over the course of treatment.

Thus, according to this corollary, if 6Å/Ç7O <
É6Å/Ç7T and we introduce weekend breaks, the dose
on Monday will in general be larger than the dose
on the Friday of the previous week. To understand
why this is so, consider what would happen if the Fri-
day dose were in fact larger. The tumor would then
be growing at a faster rate over the weekend; then it
would make better sense to deliver a higher Monday
dose instead. This result is different from the numer-
ical results in Wein et al. (2000). Of course, the model
was different in that paper because the primary moti-
vation was to determine the effect of the varying
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tumor sensitivity over the course of treatment, not to
counter accelerated repopulation.
When we assume an exponential growth model,

we can fully characterize the optimal solution, like in
Remark 5.

Remark 5. For the exponential growth model
where î4x5= ê, if 6Å/Ç7O < É6Å/Ç7T , we claim that the
optimal solution would be to deliver uniform doses
at each treatment session, i.e., on days that are not
breaks and that do not have fixed dose fractions. Let
us adjust the number of days N appropriately and
set the dose fractions to 0 for the breaks. Then, for
a fixed N , as seen from the objective in (5), the only
relevant term that determines the dose fractions is
ÉBEDT . Thus, for a fixed N , the arguments from The-
orem 1 hold and uniform doses are optimal. Now we
discuss the effect of breaks on the optimal number of
fractions. If the number of breaks is simply a fixed
number, the optimal number of days N ⇤, including
holiday breaks, would be still given by the expression
in Theorem 2. This is because the derivative of the
objective given in (5) as a function of N would remain
unchanged. If the number of breaks is nondecreasing
in the number of treatment days (as would be the case
with weekend breaks), the expression for N ⇤ given
in Theorem 2 would not necessarily hold. Deriving a
closed form formula for N ⇤ for this case appears to
be tedious, if not impossible. We suggest, therefore,
exhaustively evaluating the objective given in (5) for
reasonable values of N to obtain a very good, if not
optimal, choice of the number of treatment days. For a
given break pattern, we could also optimize the start-
ing day of treatment by appropriately evaluating the
objective in (5).

4. Numerical Experiments
In §4.1, we calculate the optimal treatment duration
while assuming exponential tumor growth with vary-
ing rates of repopulation. In §§4.2 and 4.3, we model
accelerated repopulation using Gompertzian growth
and numerically calculate the resulting optimal frac-
tionation scheme. Finally, in §4.4, we evaluate the
effect of weekend breaks. For all of our numerical
simulations, we used MATLAB on a 64-bit Windows
machine with 4GB RAM.

4.1. Faster Tumor Growth Suggests Shorter
Overall Treatment Duration

We use realistic choices of radiobiological parameters
to assess the effect of various rates of tumor growth
on the optimal number of treatment days. Here, we
assume exponential growth with a constant rate of
repopulation. We use 6Å/Ç7T = 10 Gy, 6Å/Ç7O = 3 Gy,
and ÅT = 003 GyÉ1 for the tissue parameters; these are
appropriate standard values (Guerrero and Li 2003,

Hall and Giaccia 2006). We consider a standard frac-
tionated treatment as reference, i.e., a dose of 60 Gy
delivered to the tumor in 30 fractions of 2 Gy. For the
above choice of Å/Ç values and É = 007, this corre-
sponds to an OAR BED of 61.6 Gy, which we use as
the normal tissue BED constraint c. To choose appro-
priate values for the proliferation rate ê, we relate it
to the tumor doubling time íd. Since íd represents the
time it takes for the tumor to double in size, we set
exp4êt5= 2t/íd , resulting in the following relation:

ê= ln425
íd

0

For human tumors, the doubling time can range from
days to months (Withers et al. 1988, Kim and Tannock
2005), depending on the particular disease site. We
observe that for the parameters assumed above, the
optimal number of treatment days is smaller for faster
growing tumors (Figure 4).
The objective value plotted in Figure 4 is

BEDT É
1
ÅT

4N É 15ê0

For the reference treatment (N = 30) and ÅT = 003,
the decrease in the tumor BED from the second term
4N É 15ê/ÅT evaluates to about 103 Gy for a slowly
proliferating tumor with doubling time íd = 50. This
is small compared to BEDT = 72. For a fast prolifer-
ating tumor with doubling time íd = 5, the correc-
tion 4N É 15ê/ÅT is about 1304 Gy and becomes more
important. Thus, smaller values of N are suggested
for faster proliferating tumors.

4.2. Accelerated Repopulation Suggests
Increasing Doses Toward the End of
Treatment

One way to model accelerated repopulation is to use
decreasing tumor growth curves (see Figure 2). We
model this behavior using the Gompertzian tumor
growth model and solve the fractionation problem by
using the simplified DP Equation (9). For numerical
implementation of the DP algorithm, we discretize the
state into 500 points for each time period. When eval-
uating the cost-to-go function for values in between
discretization points, we use linear interpolation. We
illustrate optimal fractionation schemes for both slow
and fast proliferating tumors. For a slowly prolifer-
ating tumor, we choose the parameters X0 = 4⇥ 106,
Xà = 5⇥ 1012, and b = exp4É60925 by fixing Xà (to be
on the order of the value given in Norton (1988) for
breast cancer) and manually varying X0 and b so that
the doubling time for the reference treatment starts at
50 days in the beginning and decreases to 20 days at
the end of treatment. For a fast proliferating tumor,
we adjust the parameters accordingly so that the dou-
bling time goes from 50 to 5 days: X0 = 6 ⇥ 1011,
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Figure 4 (Color online) Dependence of the Optimal Value of the
Objective Function for Different Choices of the Number of
Fractions, Assuming Exponential Tumor Growth

Notes. The optimal number of treatment days is smaller for faster growing

tumors. The expression in Theorem 2 was used to generate this plot. The

objective was evaluated at the floor and ceiling of the continuous optimum

N to obtain the actual optimum N

⇤
.

Xà = 5⇥ 1012, and b= exp4É50035. Such fast growth is
not atypical; clinical data on squamous cell carcino-
mas of the head and neck show that it is possible for
the doubling time to decrease from 60 days to four
days, although there could be an initial lag period of
constant repopulation (Withers et al. 1988). As before,
we use the parameters 6Å/Ç7T = 10 Gy, 6Å/Ç7O = 3 Gy,
ÅT = 003 GyÉ1, c= 6106 Gy, and É = 007.
As shown in Figure 5, for a fast proliferating tumor,

the sequence of radiation doses increases from 1 Gy to
3 Gy, which is a significant difference from the stan-
dard treatment of 2 Gy per day for 30 days. For a
slow proliferating tumor, the doses closely resemble
standard treatment and only increase slightly over the
course of treatment. Note that the optimal fraction-
ation scheme distributes the doses so that they are
approximately proportional to the instantaneous pro-
liferation rate î4x5. The plotted î4x5 in Figure 5 is
the resulting instantaneous proliferation rate after the
delivery of each dose fraction. For the reference treat-
ment of 2 Gy per day with N = 30, in the case of a fast
proliferating tumor, the objective Y +

NÉ1 is 26003. The
objective Y +

NÉ1 for the optimal fractionation scheme in
plot (b) of Figure 5 is 25041. This is a change of about
204% in Y +

NÉ1 and 1700% change in X+
NÉ1 in comparison

to the reference treatment. It is not straightforward
to make a meaningful statement about the improve-
ment in tumor control simply based on these values.
However, we can say that even a small improvement
in tumor control for a specific disease site can make
a significant impact because of the large number of
patients treated with radiation therapy every year.

In principle, running the DP algorithm for every
possible value of N would give us the optimal num-
ber of fractions. We choose to run the algorithm for
N = 1121 0 0 0 1100. For each run of the DP algorithm
for a fixed N , it takes on average about 7 seconds
using MATLAB on a 64-bit Windows machine with
4GB RAM and an Intel i7 2.90 GHz chip. We find
N = 79 results in the best cost for the slowly pro-
liferating tumor and N = 38 for the fast proliferat-
ing tumor. For the slowly proliferating tumor, a very
small fraction of the tumor’s cells remains, regardless
of whether N = 79 or N = 30; for the fast proliferat-
ing tumor, setting N = 30 instead of N = 38 results
only in a change of 007% in Y +

NÉ1. Thus, for practi-
cal purposes, it is reasonable to set N = 30 because
more dose fractions could mean, among other factors,
patient inconvenience and further cost.

4.3. Smaller Å/Ç Value of the Tumor Results in
Larger Changes in the Fractionation Schedule

We use a smaller value for the Å/Ç value of the tumor
and rerun the calculations from the previous sub-
section. The parameters of the Gompertzian growth
remain the same for the slow and fast proliferating
tumor. As before, we use the parameters 6Å/Ç7O =
3 Gy, ÅT = 003 GyÉ1, c = 6106 Gy, and É = 007, with
the only change being that 6Å/Ç7T = 507 Gy. Note
that the condition 6Å/Ç7O = 3 < É6Å/Ç7T = 4 is satis-
fied, meaning that hypofractionation is not optimal
(see Theorem 3). We run the DP algorithm for N =
1121 0 0 0 1100, and find N = 42 and N = 17 result in
the best cost for the slowly and fast proliferating
tumors, respectively. However, for practical purposes,
we again set the maximum number of fractions as
30 for the slowly proliferating tumor because a very
small fraction of the tumor’s cells remains, regardless
of whether N = 42 or N = 30, and there is a change
of only 007% in Y +

NÉ1. As seen in part (b) of Figure 6,
for the fast proliferating tumor, the sequence of radia-
tion doses ranges from approximately 1 Gy to 505 Gy
for the 17 days of treatment. This change in the frac-
tionation schedule results in the objective Y +

NÉ1 being
15042, compared to 17078 for the reference treatment of
2 Gy per day for 30 days. This is a significant change
of 1303% in Y +

NÉ1 and about 5007% change in X+
NÉ1 in

comparison to the reference treatment. Similar to §4.2,
the fraction doses are approximately proportional to
the instantaneous proliferation rate.
We can infer that a smaller Å/Ç value of the tumor

suggests using larger changes in the fraction sizes
and shorter overall treatment duration; this results
in larger gains in the objective value and hence in
overall tumor control. Low values of Å/Ç have been
observed for disease sites such as prostate cancer
(Miralbell et al. 2012). Numerical experiments also
indicate a similar effect when varying the normal
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Figure 5 (Color online) Optimal Fractionation for Accelerated Repopulation
Notes. Plot (a) shows the optimal fractionation schedule for a slowly proliferating tumor and plot (b) for a fast one. The doubling time for the reference

treatment begins at í

d

= 50 days and decreases approximately to (a) 20 and (b) 5 days, respectively, at the end of treatment. The plotted î4x5 is the resulting

instantaneous proliferation rate after the delivery of each dose fraction.

tissue sparing factor É. That is, a smaller É results
in larger changes in the fractionation schedule. Intu-
itively, this is because better sparing of normal tis-
sue allows a more aggressive treatment with higher
tumor control. Of course, if the Å/Ç value or spar-
ing factor É is very small, hypofractionation would be
optimal (see Theorem 3).

4.4. Effect of Weekend Breaks
We simulate the effect of weekend breaks using
30 treatment sessions (starting Monday and ending
Friday) with appropriately inserted weekend days,
resulting in N = 40 days (6 weeks, 5 weekends). We
set 6Å/Ç7T = 10 and assume a fast proliferating tumor,
with Gompertzian growth parameters given in §4.2.
Thus, the parameters are the same as those used in
part (b) of Figure 5, with the only difference being
the inclusion of weekend breaks. The optimal frac-
tionation scheme in this case is shown in Figure 7.
Note that the dose fractions range from approxi-
mately 0.9 Gy in the first fraction to 3.5 Gy in the last
fraction. The dose increase toward the end of treat-
ment is larger than in Figure 5 part (b), which can
probably be attributed to the lengthened overall treat-
ment time from weekend breaks. Note that î4x5 is
slightly decreasing during the weekend interval; this

is because a growing tumor results in a smaller prolif-
eration rate. In this numerical example, the decrease
in î4x5 is small so that the dose fractions remain
approximately proportional to î4x5.

5. Discussion and Further Remarks
5.1. Nonuniform Irradiation of the OAR
Although we have assumed throughout the paper
that a dose d results in a homogeneous dose Éd to the
OAR, in reality the OAR receives nonuniform irradi-
ation. The tumor, however, is generally treated homo-
geneously. In Unkelbach et al. (2013) and Keller et al.
(2013), the basic result stated in Theorem 1 is gener-
alized to arbitrary inhomogeneous doses in the OAR.
The arguments in Unkelbach et al. (2013) are also
applicable to the case of repopulation as considered
in this paper. We can define an effective sparing fac-
tor Éeff and an effective upper limit ceff on the BEDO ,
and the results in this paper will still hold.
The results differ for the case of parallel OAR and

serial OAR. A parallel organ could remain functional
even with damaged parts; a serial OAR, in contrast,
remains functional only when all of its parts remain
functional. For the case of a parallel OAR (e.g., lung),
assuming that Éid represents the dose in the ith voxel
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Figure 6 (Color online) Optimal Fractionation for Accelerated Repopulation in the Case of 6Å/Ç7
T

= 507 Gy
Notes. Plot (a) shows the optimal fractionation schedule for a slowly proliferating tumor and plot (b) for a fast one. The doubling time for the reference

treatment begins at í

d

= 50 days and decreases approximately to (a) 20 and (b) 5 days, respectively.
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Figure 7 (Color online) Effect of Weekend Breaks on Optimal Fractionation
Note. We use 30 treatment sessions and 6Å/Ç7

T

= 10 Gy. The doubling time for the reference treatment begins at í

d

= 50 days and decreases approximately

to 5 days.

(or spatial point) in the OAR, the integral BED in the
OAR is given by

BEDO =
NÉ1X

k=0

X

i

Éidk

✓
1+ Éidk

6Å/Ç7O

◆
0

After some algebraic manipulations, we obtain the
same form for the normal tissue constraint as in this
paper:

NÉ1X

k=0

Éeffdk

✓
1+ Éeffdk

6Å/Ç7O

◆
= ceff1

where Éeff =
P

i É
2
i /

P
i Éi and ceff = cÉeff/

P
i Éi. For the

serial case (e.g., spinal cord), only the maximum dose
to the OAR matters, resulting in Éeff = maxi Éi and
ceff = c. Additional details can be found in Unkelbach
et al. (2013). When the OAR is neither completely par-
allel nor completely serial, a good approximation of
the BED may, e.g., be a weighted combination of the
BED for the parallel and serial cases.

5.2. Evolution of Instantaneous Proliferation Rate
In this work, we modeled accelerated repopulation
as Gompertzian growth. For the numerical examples
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provided in §4, this leads to steadily increasing instan-
taneous proliferation rates over the course of treat-
ment (see Figures 5 and 7). For a smaller Å/Ç value
and a fast proliferating tumor, we even observed
rapid increases in the instantaneous proliferation
rate—see Figure 6, panel (b). However, more work
is needed to estimate the temporal evolution of the
repopulation rate î4x5 during treatment for specific
disease sites.
There are alternative tumor growth models, such as

the logistic and the Gomp-ex curve (Wheldon 1988)
that we did not consider. However, the framework
in this paper can also model these patterns of tumor
growth.
There are some studies that indicate accelerated

repopulation begins only after a lag period, e.g., for
head and neck cancer (Brenner 1993). We did not
include such a lag period in our numerical experi-
ments. But it can be modeled in our framework by
using an appropriate form for î4x5. We expect a con-
stant dose per fraction during this initial period of
constant proliferation rate.

5.3. Variable Time Intervals
The models in this paper are applicable for vari-
able time intervals (e.g., weekends, holidays), as long
as each radiation treatment is delivered in a short
period of time and the time interval between doses is
comparatively long. However, our formulation is not
applicable for very short time intervals (on the order
of hours) between doses; in such cases, we would
need to include biological effects such as incomplete
repair of sublethal damage. For optimal fractionation
schemes that result from including these sublethal
damage repair effects, see Bertuzzi et al. (2013).

5.4. Early and Late Responding Normal
Tissue, and Multiple OARs

In the context of fractionation, two types of tissue
are typically distinguished in the literature: early
responding and late responding. Tumor tissue and
some types of healthy tissue such as the skin are typ-
ically early responding. That is, they have a relatively
large Å/Ç value (e.g., 10), and they start proliferating
within a few weeks of the start of radiation treatment
(Hall and Giaccia 2006). In contrast, late responding
tissue typically has a low Å/Ç value. In this paper,
we considered a BED constraint for a single OAR and
focused on the situation where 6Å/Ç7O < É6Å/Ç7T . This
describes the situation in which a single late respond-
ing tissue is dose limiting and needs to be spared via
fractionation. This situation is expected to be most
common.
For the case where 6Å/Ç7O � É6Å/Ç7T , our model

suggests a hypofractionation regimen. This condition
can be fulfilled for early responding tissues that may

exhibit a large enough 6Å/Ç7O value. However, this
case requires careful consideration and possibly an
extension of the model. For early responding tissue,
the complication probability depends not only on the
dose per fraction (as described via the 6Å/Ç7O value)
but also the overall treatment time. This is currently
not explicitly included in our model.
In this paper, we have considered the case where

a single OAR is dose-limiting. This is reasonable for
some disease sites (e.g., in prostate cancer, the rec-
tum is a single dose-limiting OAR). In the situation
where multiple OARs are dose limiting, additional
BED constraints and therefore more states in the DP
model would be required. This could be computation-
ally intensive even with a few OARs; future research
may address this situation. See also Saberian et al.
(2014, 2015) for some recent studies on optimal frac-
tionation with multiple OARs.

5.5. Comparison with Prior Work
There have been studies that suggest dose escala-
tion uniformly in time, to counter accelerated repop-
ulation (see, for example, Wang and Li 2005 for
prostate cancer and Huang et al. 2012 for cer-
vical cancer). However, our paper primarily sug-
gests dose intensification over time to counter the
increased repopulation toward the end of treatment.
Dose intensification has now been recommended by
many studies, though in other contexts. The Norton-
Simon hypothesis (Norton and Simon 1977, 1986) sug-
gests increasing the dose intensity over the course
of chemotherapy because of a Gompertzian tumor
growth assumption. This work, however, dealt with
chemotherapy and thus did not make use of the LQ
model. Other studies suggest dose intensification to
capitalize on the increased sensitivity of the tumor
to radiation toward the end of treatment (Hethcote
and Waltman 1973, Almquist and Banks 1976, Marks
and Dewhirst 1991, Wein et al. 2000). In Marks and
Dewhirst (1991) and Wein et al. (2000), a spherical
tumor model consisting of a hypoxic core and an
outer rim of well-nourished cells was used to ana-
lyze alternative fractionation schemes. The effect of
radiation response, e.g., tumor shrinkage, here led to
accelerated growth of the tumor toward the end of
treatment. Our approach differs from these studies in
that accelerated repopulation is modeled by letting
the rate of repopulation depend directly on the num-
ber of cells in the tumor volume. A few studies indi-
cate the effectiveness of concomitant boost therapy for
head and neck cancers (Harari 1992, Ang and Peters
1992), where increased radiation is delivered at the
end of treatment. These results seem to be consistent
with the analysis in this paper.
The dose intensification strategy presented in this

paper has the potential to improve treatment out-
comes for certain disease sites that exhibit significant
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accelerated repopulation, as long as the objective in
our optimization model represents to some degree the
actual objectives of the treatment. We note that cur-
rent practice may actually result in the opposite of the
suggested intensification strategy. The initial uniform
doses prescribed are sometimes changed to reduced
doses at the end of treatment to mitigate patient side
effects. Intuitively, however, it is more beneficial to
wait until the tumor is aggressive at the end of treat-
ment and only then deliver a high dose, which may
result in reduced side effects experienced at that time.
Further studies investigating the clinical benefit of
dose intensification to counter accelerated repopula-
tion for specific disease sites would be useful.
With technological advances such as functional and

molecular imaging, there is potential to track previ-
ously unobservable biological processes such as the
tumor proliferation rate during the course of therapy
(Bading and Shields 2008). The opportunity to then
adapt the treatment to the observed data, rather than
relying on a model, becomes a possibility. Although
previous works have investigated using imaging tech-
nology to select dose fractions (Lu et al. 2008, Chen
et al. 2008, Kim et al. 2009, Kim 2010, Ghate 2011,
Ramakrishnan et al. 2012), they have not done so
to counter accelerated repopulation. The problem in
this paper can be seen as a special case of the gen-
eral one presented in Kim et al. (2012), but the effect
of tumor proliferation, which is our main focus, was
not analyzed therein. Prior works have also con-
sidered optimizing the number of treatment days
(Kim 2010) but, again, have not done so for general
tumor repopulation characteristics, including the case
of accelerated repopulation. The insights from this
paper suggest that the increases in doses are approx-
imately proportional to the proliferation rate î4x5.
This suggests the importance of further advance-
ment of biological imaging technologies that can accu-
rately measure quantities such as tumor proliferation
rates during the course of treatment. An interesting
approach worth investigating would then be the use
of such imaging techniques to guide therapy.

6. Conclusions
There are multiple ways to model accelerated repop-
ulation. One approach could be to increase the tumor
proliferation rate with already delivered dose or BED.
In this paper, we chose instead to model accelerated
repopulation implicitly by using a decelerating tumor
growth curve, e.g., Gompertzian growth, with a pro-
liferation rate î4x5 that is dependent on the number
of tumor cells. This resulted in accelerated growth
toward the end of the treatment because fewer cells
remained after initial radiation treatment. We devel-
oped a DP framework to solve the optimal fraction-
ation problem with repopulation for general tumor

growth characteristics described by î4x5. We proved
that the optimal dose fractions are nondecreasing over
time, and showed the optimal number of fractions is
finite. We derived the special structure of the prob-
lem when assuming Gompertzian tumor growth. This
resulted in maximizing a discounted version of BEDT ,
which placed a higher weight on later treatment
days, because of increased tumor proliferation. In this
paper, we arrived at three main conclusions:
• Faster tumor growth suggested shorter overall

treatment duration.
• Accelerated repopulation suggested larger dose

fractions later in the treatment to compensate for the
increased tumor proliferation. Numerical results indi-
cated that the optimal fraction sizes were approxi-
mately proportional to the instantaneous proliferation
rate.
• The optimal fractionation scheme used more

aggressive increases in dose fractions with a shorter
overall treatment duration when the Å/Ç value of the
tumor was smaller; in this case, there were larger
gains in tumor control.
The advantage of the methods presented in this

paper is that a change in the fractionation schedule
can be readily implementable in a clinical setting,
without technological barriers. However, the results
presented in this paper are for illustrative purposes
and should not be taken as immediate recommenda-
tions for a change in clinical practice. Clinical trials
that compare standard approaches with intensified
dose at the end of treatment would be needed to
quantify the benefit for specific disease sites. We also
realize that actual tumor dynamics are more complex
than presented in this paper. The tumor volume may
consist of a heterogeneous set of cells each with vary-
ing division rates. Effects such as re-oxygenation and
incomplete repair have not been taken into account.
Yet we have avoided incorporating all of these aspects
in a single model to primarily focus on the effect of
accelerated repopulation. We hope that this analysis
can provide useful insights and a basis for further
research.
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