
Tsitsiklis and Xu: Flexible Queueing Architectures 1

Electronic Companion: Flexible Queueing Architectures9

John N. Tsitsiklis

LIDS, Massachusetts Institute of Technology, Cambridge, MA 02139, jnt@mit.edu

Kuang Xu

Graduate School of Business, Stanford University, Stanford, CA 94305, kuangxu@stanford.edu

Appendix A: Proofs

A.1. Proof of Lemma 3.2

Proof. Fix �= (�1, . . . ,�n

)2⇤
n

(u
n

), and let g
n

be a (�/�
n

,�
n

)-expander, where � > ⇢ and �
n

� u
n

.

By the max-flow-min-cut theorem, and the fact that all servers have unit capacity, it su�ces to

show that
X

i2S

�
i

< |N (S) |, 8S ⇢ I. (30)

We consider two cases, depending on the size of S.

1. Suppose that |S|< �n/�
n

. By the expansion property of g
n

, we have that

N (S)��
n

|S|� u
n

|S|>
X

i2S

�
i

, (31)

where the second inequality follows from the fact that �
n

� u
n

, and the last inequality from

�
i

<u
n

for all i2 I.

2. Suppose that |S|� �n/�
n

. By removing, if necessary, some of the nodes in S, we obtain a set

S0 ⇢ S of size exactly �n/�
n

, and

N (S)�N (S0)
(a)

� �n> ⇢n
(b)

�
X

i2S

�
i

, (32)

where step (a) follows from the expansion property, and step (b) from the assumption that
P

i2I

�
i

 ⇢n.

This completes the proof. Q.E.D.

A.2. Proof of Lemma 3.3

Proof. Lemma 3.3 is a consequence of the following standard result (cf. [1]), where we let d= d
n

,

� = �
n

, and ↵= �/�
n

=
p
⇢/�

n

, and observe that log2 �n

⌧ �
n

as n!1.

9 May 2015; revised October 2016.

Tsitsiklis and Xu: Flexible Queueing Architectures 2

Lemma A.1 Fix n� 1, � � 1 and ↵� < 1. If

d� 1+ log2 �+(�+1) log2 e

� log2(↵�)
+�+1, (33)

then there exists an (↵,�)-expander with maximum degree d.

Q.E.D.

A.3. Proof of Theorem 3.5

Proof. Since the arrival rate vector �
n

whose existence we want to show can depend on the

architecture, we assume, without loss of generality, that servers and queues are clustered in the

same manner: server i and queue i belong to the same cluster. Since all servers have capacity 1, and

each cluster has exactly d
n

servers, it su�ces to show that there exists �= (�1, . . . ,�n

) 2⇤
n

(u
n

),

such that the total arrival rate to the first queue cluster exceeds d
n

, i.e.,

dnX

i=1

�
i

> d
n

. (34)

To this end, consider the vector � where �
i

=min{2, (1+ u
n

)/2} for all i 2 {1, . . . , d
n

}, and �
i

= 0

for i� d
n

+1. Because of the assumption u
n

> 1 in the statement of the theorem, we have that

max
1in

�
i

=min{2, (1+u
n

)/2} 1+u
n

2
<u

n

, (35)

and
nX

i=1

�
i

= d
n

min{2, (1+u
n

)/2} 2d
n

 2 · ⇢
2
n= ⇢n, (36)

where the last inequality in Eq. (36) follows from the assumption that d
n

 ⇢

2
n. Eqs. (35) and (36)

together ensure that � 2⇤
n

(u
n

) (cf. Condition 1). Since we have assumed that u
n

> 1, we have

�
i

> 1, for i= 1, . . . , d
n

, and therefore Eq. (34) holds for this �. We thus have that � /2R(g
n

), which

proves our claim. Q.E.D.

A.4. Proof of Theorem 3.6

Proof. Part (a); Eq. (5). We will use the following classical result due to Hoe↵ding, adapted from

Theorem 3 in [4].

Lemma A.2 Fix integers m and n, where 0 < m < n. Let X1,X2, . . . ,Xm

be random variables

drawn uniformly from a finite set C = {c1, . . . , cn}, without replacement. Suppose that 0 c
i

 b for

all i, and let �2 =Var (X1). Let X = 1
m

P
m

i=1Xi

. Then,

P
�
X �E

�
X
�
+ t
� exp

✓
�mt

b

✓
1+

�2

bt

◆
ln

✓
1+

bt

�2

◆
� 1

�◆
, (37)

for all t2 (0, b).

Tsitsiklis and Xu: Flexible Queueing Architectures 3

We fix some �
n

2⇤
n

(u
n

). If u
n

< 1, then �
n

2⇤
n

(1). It therefore su�ces to prove the result for

the case where u
n

� 1 and we will henceforth assume that this is the case. Recall that A
k

⇢ I is

the set of d
n

queues in the kth queue cluster generated by the partition �
n

= (A1, . . . ,An/dn). We

consider some ✏2 (0,1/⇢), and define the event E
k

as

E
k

=

(
X

i2Ak

�
i

> (1+ ✏)⇢d
n

)
. (38)

Since �
n

is drawn uniformly at random from all possible partitions, it is not di�cult to see that
P

i2Ak
�
i

has the same distribution as
P

dn

i=1Xi

, where X1,X2, . . . ,Xdn are d
n

random variables

drawn uniformly at random, without replacement, from the set {�1,�2, . . . ,�n

}. Note that ✏⇢< 1
u
n

, so that ✏⇢ 2 (0, u
n

). We can therefore apply Lemma A.2, with m= d
n

, b= u
n

, and t= ✏⇢, to

obtain

P (E1) =P

dnX

i=1

X
i

> (1+ ✏)⇢d
n

!

(a)

P

1

d
n

dnX

i=1

X
i

>E

1

d
n

dnX

i=1

X
i

!
+ ✏⇢

!

 exp

✓
�✏⇢d

n

u
n

✓
1+

Var (X1)

✏⇢u
n

◆
ln

✓
1+

✏⇢u
n

Var (X1)

◆
� 1

�◆
, (39)

where the probability is taken with respect to the randomness in G, and where in step (a) we used

the fact that

E

dnX

i=1

X
i

!
=

dnX

i=1

E (X
i

) = d
n

E (X1) = d
n

1

n

nX

i=1

�
i

!
 ⇢d

n

. (40)

We now develop an upper bound on Var (X1). Since X1 takes values in [0, u
n

], we have X2
1 u

n

X1

and, therefore,

Var (X1)E(X2
1) u

n

E(X1) ⇢u
n

. (41)

Observe that for all a,x > 0,

d

dx
(1+x/a) ln(1+ a/x) =�1

x
+

1

a
ln(1+ a/x)<�1

x
+

1

a
· a
x
= 0. (42)

Therefore, with the substitutions a= ✏⇢u
n

and x=Var (X1), we have that the right-hand-side of

(39) is increasing in Var (X1). Combining Eqs. (39) and (41), we obtain

P (E1) exp

✓
�✏⇢d

n

u
n

✓
1+

1

✏

◆
ln (1+ ✏)� 1

�◆
.

Note that
d

dx

✓
1+

1

x

◆
ln(1+x) =

1

x2
(x� ln(1+x))

(a)! 1

2
, as x # 0, (43)

Tsitsiklis and Xu: Flexible Queueing Architectures 4

where step (a) follows from applying l’Hôpital’s rule. We thus have that
⇥�
1+ 1

✏

�
ln(1+ ✏)� 1

⇤⇠
1
2
✏� 1

3
✏, as ✏ # 0, it follows that there exists ✓> 0 such that for all ✏2 (0,✓),

P (E1) exp

✓
�⇢

3
· ✏

2d
n

u
n

◆
. (44)

Let ✏ = 1
2
min{ 1

⇢

� 1,✓}; in particular, our earlier assumption that ✏⇢ < 1 is satisfied. Suppose

that u
n

 ⇢✏

2

6
d
n

ln�1 n. Combining Eq. (44) with the union bound, we have that

P
Gn (�n

/2R(G
n

))P

n/dn[

k=1

E
k

!

n/dnX

k=1

P (E
k

)

 n

d
n

exp

✓
�⇢

3
· ✏

2d
n

u
n

◆

(a)

 n

d
n

· 1

n2

n�1, (45)

where step (a) follows from the assumption that u
n

 ⇢✏

2

6
d
n

ln�1 n. It follows that

lim
n!1

inf
�n2⇤n(un)

P
Gn (�n

2R(G
n

))� lim
n!1

⇣
1� 1

n

⌘
= 1. (46)

We have therefore proved part (a) of the theorem, with c2 = ⇢✏2/6.

Part (b); Eq. (6).

Let us fix a large enough constant c3, whose value will be specified later, and let

v
n

= c3
d
n

lnn
. (47)

For this part of the proof, we will assume that u
n

> v
n

. Because we are interested in showing a

result for the worst case over all �
n

2⇤
n

(u
n

), we can assume that u
n

⌧ n.

At this point, we could analyze the model for a worst-case choice of �
n

. However, the analysis

turns out to be simpler if we employ the probabilistic method. Denote by µ
n

a probability measure

over ⇤
n

(u
n

). Let �
n

be a random vector drawn from the distribution µ
n

, independent of the

randomness in the Random Modular architecture, G. (For convenience, we suppress the subscript n

and write G instead of G
n

.) The following elementary fact captures the essence of the probabilistic

method.

Lemma A.3 Fix n, a measure µ
n

on ⇤
n

(u
n

), and a constant a
n

. Suppose that

P�n,G (�
n

/2R(G))� a
n

, (48)

Tsitsiklis and Xu: Flexible Queueing Architectures 5

where P�n,G stands for the product of the measures µ
n

(for �
n

) and P
G

(for G). Then,

sup
�̃n2⇤n(un)

P
G

(�̃
n

/2R(G))� a
n

. (49)

Proof. We have that

sup
�̃n2⇤n(un)

P
G

(�̃
n

/2R(G))�
Z

�̃n2⇤n(un)

P
G

(�̃
n

/2R(G))dµ
n

(�̃
n

)

=P�n,G (�
n

/2R(G))

�a
n

. (50)

Q.E.D.

We will now construct sequences, {µ
n

: n 2 N}, and {a
n

: n 2 N}, with lim
n!1 a

n

= 1, so that

Eq. (48) holds for all n. To simplify notation, in the rest of this proof we will write P instead of P
G

or P�n,G, etc. Which particular measure we are dealing with will always be clear from the context.

Fix n 2 N. We first construct the distribution µ
n

. Let �0 = (�0
1,�

0
2, . . . ,�

0
n

) be a random vector

with independent components and with

�0
i

=

⇢
v
n

, w.p. ⇢

(1+✏)vn
,

0, otherwise,
(51)

for all i. Let H be the event defined by

H =

(
nX

i=1

�0
i

 ⇢n

)
. (52)

Let �
n

be the random vector given by

�
n

= I(H)�0, (53)

where 0 is the zero vector of dimension n, and where I(·) is the indicator function. That is, �
n

takes on the value of �0 if H occurs, and is set to zero, otherwise. It is not di�cult to verify that,

by construction, we always have �
n

2⇤
n

(u
n

). We let µ
n

be the distribution of this random vector

�
n

.

We next show that

lim
n!1

P (�
n

/2R(G)) = 1, (54)

which, together with Lemma A.3 above, will complete the proof of the theorem. Fix some ✏> 1
⇢

�1,

so that (1+ ✏)⇢> 1, and define the event

E
k

=

(
X

i2Ak

�0
i

> (1+ ✏)⇢d
n

)
, k 2 {1, . . . , n/d

n

}. (55)

Tsitsiklis and Xu: Flexible Queueing Architectures 6

Note that, if some E
k

occurs, then �0 will not be in R(G). Therefore,

P(�0 /2R(G))� P

n/dn[

k=1

E
k

!
. (56)

Let X1,X2, . . . be i.i.d. Bernoulli random variables with

E(X1) = P(X1 = 1) =
⇢

(1+ ✏)v
n

. (57)

By the definition of �0 (cf. Eq. (51)), we have that

P(E1) =P

X

i2A1

�0
i

> (1+ ✏)⇢d
n

!

=P

dnX

i=1

X
i

> (1+ ✏)⇢
d
n

v
n

!

=P

1

d
n

dnX

i=1

X
i

> (1+ ✏)2E (X1)

!
. (58)

By Sanov’s theorem (cf. Chapter 12 of [2]), we have that

P(E1) =P

1

d
n

dnX

i=1

X
i

> (1+ ✏)2E (X1)

!

& 1

d2
n

exp

✓
�D

B

✓
(1+ ✏)⇢

v
n

����
⇢

(1+ ✏)v
n

◆
d
n

◆
, (59)

where D
B

(pkq) is the Kullback-Leibler divergence between two Bernoulli distributions with param-

eters p and q, respectively:

D
B

(pkq) = p ln
p

q
+(1� p) ln

1� p

1� q
. (60)

Let us fix some r 2 (0,1). Using the fact that ln(1+ y)⇠ y as y! 0, we have that

D
B

(xk rx)⇠ x

ln

1

r
+(1� r)

�
, as x! 0. (61)

Recall that d
n

� c1 lnn and v
n

� / lnn. By Eq. (61), with x= (1+ ✏)⇢/v
n

, r = 1/(1+ ✏)2, and for

the given c1, we can set c3 to be su�ciently large so that

D
B

✓
(1+ ✏)⇢

v
n

����
⇢

(1+ ✏)v
n

◆
2

(1+ ✏)⇢

v
n

·

ln(1+ ✏)2 +

✓
1� 1

(1+ ✏)2

◆�

=
2h

v
n

, (62)

for all su�ciently large n, where h= (1+ ✏)⇢
h
ln(1+ ✏)2 +

⇣
1� 1

(1+✏)2

⌘i
> 0. Combining Eqs. (59)

and (62), we have that

P(E1)&
1

d2
n

exp

✓
�2h

d
n

v
n

◆
(a)

& 1

d2
n

n�2h/c3 , (63)

Tsitsiklis and Xu: Flexible Queueing Architectures 7

where step (a) follows from the assumption that v
n

� c3dn/ lnn. Equation (63) can be rewritten in

the form

P(E1)� c

d2
n

n�2h/c3 , (64)

where c is a positive constant, and where the inequality is valid for large enough n.

Fix c3 = 40h, and recall that ✏> 1
⇢

� 1. We have that

P(�0 /2R(G))�P

n/dn[

k=1

E
k

!

(a)
=1�

n/dnY

k=1

(1�P(E
k

))

=1� (1�P(E1))
n/dn

(b)

�1� �1� cd�3
n

n1�2h/c3d
n

/n
�
n/dn

(c)

�1� �1� cn0.05d
n

/n
�
n/dn

!1, as n!1, (65)

where step (a) is based on the independence among the events E
k

, which is in turn based on

the independence among the �0
i

s; step (b) follows from Eq. (64) and some rearrangement; step (c)

follows from the assumption in the statement of the theorem that d
n

 n0.3, and our choice of

c3 = 40h.

We next show that the event H occurs with high probability when n is large. Let, as before, the

X
i

s be i.i.d. Bernoulli random variables with E(X1) =
⇢

vn(1+✏)
. Then,

P(H) =P

nX

i=1

�0
i

 ⇢n

!

=P

nX

i=1

X
i

 ⇢n/v
n

!

=P

1

n

nX

i=1

X
i

 (1+ ✏)E (X1)

!
! 1, as n!1, (66)

by the weak law of large numbers.

We are now ready to prove Eq. (54). We have that

P�n,G

⇣
�

n

/2R(G)
⌘
=P�0

,G

⇣
I(H)�0 /2R(G)

⌘

=P�0
,G

⇣
H \ {�0 /2R(G)}

⌘

�P(H)+P
�
�0 /2R(G)

�� 1

!1, as n!1, (67)

Tsitsiklis and Xu: Flexible Queueing Architectures 8

where the last step follows from Eqs. (65) and (66). By Lemma A.3, Eq. (67)

implies that lim
n!1 sup�n2⇤n(un) PGn (�n

/2R(G)) = 1, which is in turn equivalent to

lim
n!1 inf�n2⇤n(un) PGn (�n

2R(G)) = 0. This proves Eq. (6). Q.E.D.

A.5. Proof of Theorem 3.7

Proof. Denote by Q
i

(t) the number of jobs in queue i at time t, and by Q
k

(t) the total number of

jobs in queue cluster k, i.e.,

Q
k

(t) =
X

i2Ak

Q
i

(t). (68)

We note that Q
k

(·) is the number of jobs in an M/M/c queue, with c = d
n

and arrival rate

⌘
k

=
P

i2Ak
�
i

. Also note that since �
n

2 �R(g
n

), we have that ⌘
k

 �d
n

. Using the formula for the

expected waiting time in queue for an M/M/c queue (cf. Section 2.3 of [3]), one can show that the

average waiting time across jobs arriving to cluster k, W
k

, satisfies

E (W
k

|�) = 1P
i2Ak

�
i

X

i2Ak

�
i

E (W
i

) =
C(d

n

,⌘
k

)

d
n

� ⌘
k

 C(d
n

,�d
n

)

(1� �)d
n

. exp(�b · d
n

), (69)

where C(c, r) is given by

C(c, r) =
rc

c!
· 1

c(1� r/c)2

rc

c!
· 1

1� r/c
+

c�1X

i=0

ri

i!

!�1

.

The last inequality in Eq. (69) follows from the fact that for any given � 2 (0,1), there exists

b > 0, so that C(x,�x) . exp(�b · x) as x!1, as can be checked through elementary algebraic

manipulations. Q.E.D.

A.6. Lower Bound on the Total Arrival Rate

We show in this section that the assumption that ⇢2 (1/2 ,1) and
P

n

i=1 �i

� (1� ⇢)n (cf. Eq. (10)

in Assumption 4.1) can be made without loss of generality. Fix the tra�c intensity ⇢2 (0,1), and

suppose that �2⇤
n

(u
n

). Define

⇢0 = ⇢+
1

2
(1� ⇢) =

1+ ⇢

2
. (70)

Note that 1/2< ⇢0 < 1, and 1�⇢0 = (1�⇢)/2. Consider a modified vector �0, where �0
i

= (1�⇢0)+�
i

,

for all i2 {1, . . . , n}. By construction, we have that

nX

i=1

�0
i

�(1� ⇢0)n, (71)

nX

i=1

�0
i

(1� ⇢0)n+
nX

i=1

�
i

 (1� ⇢0)n+ ⇢n= ⇢0n, (72)

max
1in

�0
i

 max
1in

�
i

+(1� ⇢0)<u
n

+(1� ⇢0). (73)

Tsitsiklis and Xu: Flexible Queueing Architectures 9

The above definition of �0 amounts to the following: we feed each queue with an additional indepen-

dent Poisson stream of artificial (dummy) jobs of rate 1� ⇢0. By Eqs. (72) and (73), the resulting

arrival rate vector, �0, will belong to the set ⇤
n

(u
n

+1� ⇢0). Also, by Eq. (71), it will satisfy the

lower bound (10) on the total arrival rate, albeit with a modified tra�c intensity of ⇢0 2 (1/2 , 1).

Therefore, our assumption can always be satisfied by the insertion of dummy jobs. Note that the

increment of 1� ⇢0 to the value of u
n

is insignificant in our regime of interest, where u
n

� 1, and

the insertion of dummy jobs only requires knowledge of the original tra�c intensity, ⇢.

A.7. Proof of Lemma 4.5

Proof. Note that because there are ⇢b
n

jobs in a batch, the size of � is at most ⇢b
n

, which is in

turn less than m
n

. This guarantees that the cardinality of �̂ can be taken to be m
n

. It therefore

su�ces to show that

P
✓
max
1in

A
i

� û
n

◆
 1/n3. (74)

There is a total of ⇢b
n

arriving jobs in a single batch, and for each arriving job

P (the job arrives to queue i) =
�
iP

n

i=1 �i

(a)

 �
i

(1� ⇢)n
 u

n

(1� ⇢)n

(b)

 1

2n
�
n

 1

2n⇢̂
�
n

, (75)

for all i, where steps (a) and (b) follow from the assumptions that
P

n

i=1 �i

� (1� ⇢)n (Eq. (10)

in Assumption 4.1) and that u
n

 1�⇢

2
�
n

(in the statement of Theorem 3.4), respectively. From

Eq. (75), A
i

is stochastically dominated by a binomial random variable Ã
d

=Bino(⇢b
n

, 1
2n⇢̂

�
n

), with

E
⇣
Ã
⌘
= ⇢b

n

1

2n⇢̂
�
n

=
1

2

✓
�
n

⇢b
n

/⇢̂

n

◆
=

1

2

⇣
�
n

m
n

n

⌘
=

1

2
û
n

. (76)

Based on this expression of E
⇣
Ã
⌘
, we will now use an exponential tail bound to bound the

probability of the event {max1in

A
i

� û
n

}. Recall that b
n

= 320
(1�⇢)2

· n lnn

�n
. Using the union bound,

we have that

P
✓
max
1in

A
i

� û
n

◆
= P(A

i

� û
n

, for some i)

 nP(A1 � û
n

) (77)

 nP
⇣
Ã� û

n

⌘

(a)
= nP

⇣
Ã� 2E(Ã)

⌘

(b)

 n exp

✓
�1

3
E(Ã)

◆

= n exp

✓
� ⇢

6⇢̂
· bn�n

n

◆

 n exp

✓
�⇢

6
· bn�n

n

◆

Tsitsiklis and Xu: Flexible Queueing Architectures 10

= n exp

✓
�⇢

6
· 320

(1� ⇢)2
· n lnn

�
n

· �n

n

◆

(c)

 n exp

✓
�160

6
lnn

◆

 n�3. (78)

Step (a) follows from Eq. (76). Step (b) follows from the following multiplicative form of the

Cherno↵ bound (cf. Chapter 4 of [5]), with � = 1: P(Ã � (1 + �)µ) exp(� �

2

2+�

µ), where Ã is a

binomial random variable with E(Ã) = µ. Step (c) follows from the assumption ⇢ 2 (1/2,1) (cf.

Assumption 4.1), and hence

⇢

(1� ⇢)2
� ⇢� 1/2. (79)

This completes the proof of Lemma 4.5. Q.E.D.

A.8. Proof of Lemma 4.7

Proof. For a set S ⇢ �̂, denote by N ⇤(S) the set of neighbors of S in Ĝ, i.e., N ⇤(S) =N (S)\�.

To prove Lemma 4.7, we will leverage the fact that the underlying connectivity graph, g
n

, is an

expander graph with appropriate expansion. As a result, most subsets S ⇢ �̂ have a large set

of neighbors, N (S), in g
n

. Because each server in N (S) belongs to N ⇤(S) independently, as a

consequence of our scheduling policy, we will then use a concentration inequality to show that,

with high probability, the sizes of the sets N ⇤(S) remain su�ciently large. Using the union bound

over the relevant sets S, we will finally conclude that Ĝ has the desired expansion property, with

high probability.

By the definition of a (�/û
n

, û
n

)-expander, we are only interested in the expansion of subsets

of �̂ with size less than or equal to |�̂|�/û
n

. We first verify below that the size of such subsets S

is su�ciently small to be able to exploit the expansion property of g
n

and to infer that N ⇤(S) is

large. We have

n�/�
n

|�̂|�/û
n

=
n

|�̂| ·
û
n

�
n

=
n

m
n

· �n

mn
n

�
n

= 1, (80)

which is equivalent to saying

s �n/�
n

, 8s |�̂|�/û
n

, (81)

as desired.

For a set S ⇢ �̂, we now characterize the size of its neighborhood in Ĝ, |N ⇤(S)|, which depends

on the distribution of the random subset, �. Fix some s 2N with s |�̂|�/û
n

. From Eq. (81), we

Tsitsiklis and Xu: Flexible Queueing Architectures 11

know that s �n/�
n

. Consider some S ⇢ �̂ with |S|= s. Using the expansion property of g
n

, we

have that |N (S)|� �
n

s. Therefore,

P(|N ⇤(S)| û
n

s) =P

0

@
X

j2N (S)

I(j 2�) û
n

s

1

A

(a)

P
✓
Bino

✓
|N (S) | , bn

n
(⇢+3✏/4)

◆
 û

n

s

◆

(b)

P
✓
Bino

✓
�
n

s ,
b
n

n
(⇢+3✏/4)

◆
 û

n

s

◆
, (82)

for all su�ciently large n. Step (a) follows from the assumption that P (j 2�)�(⇢+3✏/4) bn
n

, and

step (b) from the inequality |N (S)|� �
n

s. We observe that

µ
4
=E

✓
Bino

✓
�
n

s ,
b
n

n
(⇢+3✏/4)

◆◆

=(⇢+3✏/4)
�
n

b
n

n
s

(a)
=(⇢+3✏/4)

1

n
· 80
✏2

· n lnn
�
n

�
n

s

=(⇢+3✏/4)
80 lnn

✏2
s, (83)

where in step (a) we used the substitution b
n

= 80
✏

2 · n lnn

�n
. We also have that

û
n

=�
n

m
n

n

=�
n

⇢b
n

⇢̂n

=�
n

⇢

⇢̂n
· 80
✏2

· n lnn
�
n

=
⇢

⇢̂
· 80 lnn

✏2
. (84)

By combining Eqs. (83) and (84), we can derive a useful lower bound on the quantity 1� sûn
µ

,

which is recorded in the lemma that follows.

Lemma A.4 We have that

1� sû
n

µ
� ✏

2
. (85)

Proof. Using Eqs. (83) and (84) in the first step below, we have that

1� sû
n

µ
= 1� ⇢

⇢̂(⇢+3✏/4)
.

Recall that ✏= (1�⇢)/2, so that ⇢= 1�2✏ and that ⇢̂= 1/(1+ ✏/4). Using these substitutions, we

obtain

1� sû
n

µ
=1� (1� 2✏)(1+ ✏/4)

1� 2✏+3✏/4

Tsitsiklis and Xu: Flexible Queueing Architectures 12

=
3✏/4� ✏/4+2✏2/4

1� 5✏/4

=
✏(1+ ✏)/2

1� 5✏/4

� ✏

2
.

Q.E.D.

To obtain an upper bound for the probability in Eq. (82), we substitute Eqs. (83) and (85) into

Eq. (82). Given the assumption that s�n/�
n

, we have that

P(|N ⇤(S)| û
n

s)P
✓
Bino

✓
�
n

s ,
b
n

n
(⇢+3✏/4)

◆
 û

n

s

◆

(a)

 exp

✓
�1

2

⇣ ✏
2

⌘2

µ

◆

(b)
= exp

✓
�✏2

8
· 80 lnn

✏2
(⇢+3✏/4)s

◆

=exp(�(10 lnn)(⇢+3✏/4)s)
(c)

 exp(�(5 lnn)s)

=
1

n5s
. (86)

for all su�ciently large n. Step (a) is based on a multiplicative form of the Cherno↵ bound

(cf. Chapter 4 of [5]), P (X (1� �)µ) exp
�� 1

2
�2µ
�
, where X is a binomial random variable with

E (X) = µ, and

�= 1� sû
n

µ
� ✏/2, (87)

where the last inequality follows from Lemma A.4. Step (b) follows from Eq. (83), and (c) from the

assumption that ⇢� 1/2.

We now apply Eq. (86) to subsets of �̂, and use the union bound. We have, for all su�ciently

large n, that

P
⇣
Ĝ is not a (�/û

n

, û
n

)-expander
⌘
P(9S ⇢ �̂ such that: |S| |�̂|�/û

n

and |N ⇤(S)| û
n

|S|)
(a)

|�̂|�/ûnX

s=1

0

@
X

S⇢�̂,|S|=s

P (|N ⇤(S)| û
n

s)

1

A

|�̂|�/ûnX

s=1

✓|�̂|
s

◆
P (|N ⇤(S)| û

n

s)

(b)
<

|�̂|�/ûnX

s=1

bs
n

P (|N ⇤(S)| û
n

s)

(c)

|�̂|�/ûnX

s=1

bs
n

1

n5s

Tsitsiklis and Xu: Flexible Queueing Architectures 13

1X

s=1

(b
n

/n5)s

=
b
n

/n5

1� b
n

/n5
. (88)

Step (a) is the union bound. In step (b), we used the bound
�
n

k

� nk, and the fact that |�̂|=m
n

=

⇢

⇢̂

b
n

< b
n

. Step (c) follows from Eq. (86). Because �
n

� lnn, we have that b
n

. n lnn

�n
⌧ n, and hence

b
n

n5
 1

n3
, (89)

for all su�ciently large n. Combining Eqs. (88) and (89), we conclude that

P
⇣
Ĝ is not a

⇣
�

ûn
, û

n

⌘
-expander

⌘
 1

n3
, (90)

for all su�ciently large n. This proves our claim. Q.E.D.

Appendix B: Expanded Modular Architectures

In this appendix, we start by describing the graph product, and subsequently we discuss the

implications of using an expander graph.

Construction of the Architecture. We first express the average degree as a product, d
n

=

dm
n

· de
n

, where the relative magnitudes of dm
n

and de
n

are a design choice. The architecture is

constructed as follows.

1. Similar to the case of the Modular architecture, partition I and J into equal-sized clusters of

size dm
n

. We will refer to the index set of the queue and server clusters as Q and S, respectively.
For any i 2 I and j 2 J , denote by q(i) 2Q and s(j) 2 S, the indices of the queue and server

clusters to which i and j belong, respectively.

2. Let ge
n

be a bipartite graph of maximum degree de
n

whose left and right nodes are the queue

and server clusters, Q and S, respectively. Let Ee be the set of edges of ge
n

.

3. To construct the interconnection topology g
n

= (I [J,E), let (i, j) 2 E if and only if their

corresponding queue and server clusters are connected in ge
n

, i.e., if (q(i), s(j))2Ee.

Note that by the above construction, each queue is connected to at most de
n

server clusters

through ge
n

, and within each connected cluster, to dm
n

servers. Therefore, the maximum degree of

g
n

is dm
n

· de
n

= d
n

.

Scheduling Policy. The scheduling policy requires the knowledge of the arrival rate vector,

�
n

, and involves two stages. For a given �
n

, the computation in the first stage is performed only

once, while the steps in the second stage are repeated throughout the operation of the system.

Tsitsiklis and Xu: Flexible Queueing Architectures 14

1. Compute a feasible flow, {f
q,s

}(q,s)2E

e , over the graph ge
n

, where the incoming flow at each

queue cluster q 2Q is equal to
P

i2q

�
i

, and the outgoing flow at each server cluster s 2 S is

constrained to be less than or equal to 1+⇢

2
dm
n

. (It turns out that, under our assumptions, such

a feasible flow exists [6].) Denote by f
q,s

the total rate of flow from the queue cluster q to the

server cluster s.

2. Arriving jobs first wait in queue until they are fetched by a server. When a server becomes

available, it chooses a neighboring queue cluster (w.r.t. the topology of ge
n

) with probability

roughly proportional to the flow between the clusters. In particular, a server in cluster s

chooses the queue cluster q with probability

p
s,q

=
f
q,sP

q

02N (s) fq0,s
· 1+ ⇢

2
+

1

deg(s)
· 1� ⇢

2
, (91)

where deg(s) is the degree of s in ge
n

. Within the chosen cluster, the server starts serving a

job from an arbitrary non-empty queue, or, if all queues in the cluster are empty, the server

initiates an idling period whose length is exponentially distributed with mean 1.

When the graph ge
n

is an expander graph, we refer to the topology created via the above procedure

as an Expanded Modular architecture generated by ge
n

.

Note that an Expanded Modular architecture is constructed as a “product” between an expander

graph across the queue and server clusters, and a fully connected graph for each pair of connected

clusters. As a result, its performance is also of a hybrid nature: the expansion properties of ge
n

guarantee a large capacity region, while a diminishing delay is obtained as a result of the growing

size of the server and queue clusters. We summarize this in the next theorem. Here we assume

that de
n

is su�ciently large so that the expander graph described in Lemma 3.3 exists. The reader

is referred to Section 3.4.5 of [6] for the proof of the theorem (although with di↵erent choices for

some of the constants).

Theorem B.1 (Capacity and Delay of Expanded Modular Architectures) Suppose that

d
n

= dm
n

· de
n

. Let � =
p
⇢ and �

n

= 1
2
· ln(1/⇢)
1+ln(1/⇢)

de
n

. Let ge
n

be a (�/�
n

,�
n

)-expander with maximum

degree de
n

, and let g
n

be an Expanded Modular architecture generated by ge
n

. If

u
n

 1+ ⇢

2
�
n

=
1+ ⇢

4
· ln(1/⇢)

1+ ln(1/⇢)
de
n

, (92)

then, under the scheduling policy described above, we have that

sup
�n2⇤n(un)

E (W |�
n

). c

dm
n

, (93)

where c is a constant that does not depend on n.

Tsitsiklis and Xu: Flexible Queueing Architectures 15

A Tradeo↵ between the Size of the Capacity Region and the Delay. For the Expanded Modular

architecture, the relative values of dm
n

and de
n

reflect a design choice: a larger value of de
n

ensures

a larger capacity region, while a larger value of dm
n

yields smaller delays. Therefore, while the

Expanded Modular architecture is able to provide a strong delay guarantee that applies to all

arrival rate vectors in ⇤
n

(u
n

), it comes at the expense of either a slower rate of diminishing delay

(small dm
n

) or a smaller capacity region (small de
n

).

References

[1] A. S. Asratian, T. M. J. Denley, and R. Haggkvist. Bipartite Graphs and their Applications. Cambridge

University Press, 1998.

[2] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2012.

[3] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals of Queueing Theory. John

Wiley & Sons, 2008.

[4] W. Hoe↵ding. Probability inequalities for sums of bounded random variables. Journal of the American

Statistical Association, 58(301):13–30, 1963.

[5] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized Algorithms and Probabilistic

Analysis. Cambridge University Press, 2005.

[6] K. Xu. On the power of (even a little) flexibility in dynamic resource allocation. PhD thesis, Massachusetts

Institute of Technology, 2014. Available at http://hdl.handle.net/1721.1/91101.

	Introduction
	Motivating Applications
	Related Research
	Model and Metrics
	Queueing Model and Interconnection Topologies
	Performance Metrics
	Notation

	Main Results: Capacity Region and Delay of Flexible Architectures
	Preliminaries
	Expander Architecture
	Modular Architectures
	Expanded Modular Architectures

	Analysis of the Expander Architecture
	The Main Idea
	An additional assumption
	The Policy
	Arrivals of Batches.
	The Virtual Queue
	The Service Time of a Batch.

	Bounding the Virtual Queue by a GI/GI/1 Queue
	Bounds on the Modified Service Times
	Assumptions on the Various Parameters
	The Probability of a Short Batch Service Time
	Service and Waiting Time Bounds for the Virtual Queue
	Service Time Bounds.
	Waiting Time Bounds.

	Completing the Proof of Theorem 3.4
	On Practical Policies

	Summary and Future Research
	Proofs
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Lower Bound on the Total Arrival Rate
	Proof of Lemma 4.5
	Proof of Lemma 4.7
	Expanded Modular Architectures

