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Abstract. We consider the following distributed service model: jobs with unit mean,
exponentially distributed, and independent processing times arrive as a Poisson process
of rate �n, with 0 < � < 1, and are immediately dispatched by a centralized dispatcher
to one of n First-In-First-Out queues associated with n identical servers. The dispatcher
is endowed with a finite memory, and with the ability to exchange messages with the
servers.

We propose and study a resource-constrained “pull-based” dispatching policy that
involves two parameters: (i) the number of memory bits available at the dispatcher, and
(ii) the average rate at which servers communicate with the dispatcher. We establish
(using a fluid limit approach) that the asymptotic, as n !1, expected queueing delay
is zero when either (i) the number of memory bits grows logarithmically with n and
the message rate grows superlinearly with n, or (ii) the number of memory bits grows
superlogarithmically with n and the message rate is at least �n. Furthermore, when
the number of memory bits grows only logarithmically with n and the message rate is
proportional to n, we obtain a closed-form expression for the (now positive) asymptotic
delay.

Finally, we demonstrate an interesting phase transition in the resource-constrained
regime where the asymptotic delay is non-zero. In particular, we show that for any
given ↵ > 0 (no matter how small), if our policy only uses a linear message rate ↵n,
the resulting asymptotic delay is upper bounded, uniformly over all � < 1; this is in
sharp contrast to the delay obtained when no messages are used (↵ ⇤ 0), which grows
as 1/(1� �) when � " 1, or when the popular power-of-d-choices is used, in which the
delay grows as log(1/(1� �)).
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1. Introduction
This paper addresses the tradeoffs between performance (delay) and resources (local memory and communica-
tion overhead) in large-scale queueing systems. More specifically, we study such tradeoffs in the context of the
supermarket model (Mitzenmacher 1996), which describes a system in which incoming jobs are to be dispatched
to one of several queues associated with different servers (see Figure 1).

There is a variety of ways that the system in the supermarket model can be operated, which correspond to
different decision making architectures and policies, with different delay performance. At one extreme, incoming
jobs can be sent to a random queue. This policy has no informational requirements but incurs a substantial
delay because it does not take advantage of resource pooling. At the other extreme, incoming jobs can be sent
to a shortest queue, or to a server with the smallest workload. The latter policies have very good performance
(small queueing delay), but rely on substantial information exchange.

Many intermediate policies have been explored in the literature, and they achieve different performance levels
while using varying amounts of resources, including local memory and communication overhead. For example,
the power-of-d-choices (Mitzenmacher 1996, Vvedenskaya et al. 1996) and its variations (Mitzenmacher et al. 2002,
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Figure 1. The basic setting.

Incoming jobs
Dispatcher Servers

Ying et al. 2015, Mukherjee et al. 2016) have been extensively studied, including the case of non-exponential
service time distributions (Bramson et al. 2013, Aghajani and Ramanan 2017). More recently, pull-based policies
like Join-Idle-Queue (Badonnel and Burgess 2008, Lu et al. 2011) have been getting more attention, including
extensions for heterogeneous servers (Stolyar 2015), multiple dispatchers (Mitzenmacher 2016, Van Der Boor
et al. 2017, Foss and Stolyar 2017), and general service time distributions (Stolyar 2017).

1.1. Our Contribution
Our purpose is to study the effect of different resource levels (local memory and communication overhead),
and to understand the amount of resources required for the asymptotic (as n !1) delay to become negligible,
in the context of the supermarket model. We adopt the average rate at which messages are exchanged between
the dispatcher and the servers as our measure of the communication overhead, because of its simplicity and
the fact that it applies to any kind of policy. We accomplish our purpose in two steps.

(a) In this paper, we propose a pull-based dispatching policy parameterized by the amount of resources
involved, namely, the size of the memory used by the dispatcher and the average message rate. We carry out a
thorough analysis in different regimes and show that we obtain vanishing asymptotic delay if and only if the
resources are above a certain level.

(b) In a companion paper (see also Gamarnik et al. 2016), we show that in the regime (i.e., level of resources)
where our policy fails to result in vanishing asymptotic delay, the same is true for every other policy within a
broad class of “symmetric” policies that treat all servers in the same manner.

More concretely, our development relies on a fluid limit approach. As is common with fluid-based analyses,
we obtain two types of results: (i) qualitative results obtained through a deterministic analysis of a fluid model,
and (ii) technical results on the convergence of the actual stochastic system to its fluid counterpart.

On the qualitative end, we establish the following:
(a) If the message rate is superlinear in n and the number of memory bits is at least logarithmic in n, then

the asymptotic delay is zero.
(b) If the message rate is at least �n and the number of memory bits is superlogarithmic in n, then the

asymptotic delay is zero.
(c) If the message rate is ↵n and the number of memory bits is c log2(n), we derive a closed form expression

for the (now positive) asymptotic delay, in terms of �, ↵, and c.
(d) For the same amount of resources as in (c), we show an interesting phase transition in the asymptotic

delay as the load approaches capacity (� "1). As long as a nontrivial linear message rate ↵n, with ↵ > 0, is used,
the asymptotic delay is uniformly upper bounded, over all � < 1. This is in sharp contrast to the delay obtained
if no messages are used (↵ ⇤ 0), which grows as 1/(1��) when � " 1. This suggests that for large systems, even
a small linear message rate provides significant improvements in the system’s delay performance when � " 1.

(e) Again for the same amount of resources as in (c), we show a phase transition in the scaling of the
asymptotic delay as a function of the memory parameter c, as we vary the message rate parameter ↵.

(i) If ↵ < �, then the asymptotic delay is uniformly bounded away from zero, for any c � 0.
(ii) If ↵ ⇤ �, then the asymptotic delay decreases as 1/c, when c !1.

(iii) If ↵ > �, then the queueing delay decreases as (�/↵)c , when c !1.
This suggests that a message rate of at least �n is required for the memory to have a significant impact on the
asymptotic delay.
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On the technical end, and for each one of three regimes corresponding to cases (a), (b), and (c) above, we show
the following:

(a) The queue length process converges (as n !1, and over any finite time interval) almost surely to the
unique solution to a certain fluid model.

(b) For any initial conditions that correspond to starting with a finite average number of jobs per queue, the
fluid solution converges (as time tends to 1) to a unique invariant state.

(c) The steady-state distribution of the finite system converges (as n !1) to the invariant state of the fluid
model.

1.2. Outline of the Paper
The rest of the paper is organized as follows. In Section 2 we introduce some notation. In Section 3 we present
the model and the main results, and also compare a particular regime of our policy to the so-called “power-of-
d-choices” policy. In Sections 4–6 we provide the proofs of the main results. Finally, in Section 7 we present our
conclusions and suggestions for future work.

2. Notation
In this section we introduce some notation that will be used throughout the paper. First, we define the notation
for the asymptotic behavior of positive functions. In particular,

f (n) 2 o(g(n)) , limsup
n!1

f (n)
g(n) ⇤ 0,

f (n) 2 O(g(n)) , limsup
n!1

f (n)
g(n) <1,

f (n) 2⇥(g(n)) , 0 < lim inf
n!1

f (n)
g(n)  limsup

n!1

f (n)
g(n) <1,

f (n) 2⌦(g(n)) , lim inf
n!1

f (n)
g(n) > 0,

f (n) 2 !(g(n)) , lim inf
n!1

f (n)
g(n) ⇤1.

We let [ · ]+ ,max{·, 0}, and denote by ⇢+ and ✓+ the sets of non-negative integers and real numbers, respectively.
The indicator function is denoted by ⌧, so that ⌧

A
(x) is 1 if x 2 A, and is 0 otherwise. The Dirac measure �

concentrated at a point x is defined by �
x
(A) , ⌧

A
(x). We also define the following sets:

S , {s 2 [0, 1]⇢+ : s0 ⇤ 1; s
i
� s

i+1 , 8 i � 0},

S 1 ,
⇢

s 2S :
1X

i⇤0
s

i
<1

�
,

I
n
,
⇢

x 2 [0, 1]⇢+ : x
i
⇤

k
i

n
, for some k

i
2 ⇢+ ,8 i

�
.

(1)

We define the weighted `2 norm k · k
w

on ✓⇢+ by

kx � yk2
w
,

1X
i⇤0

|x
i
� y

i
|2

2i
.

Note that this norm comes from an inner product, so (`2
w
, k · k

w
) is actually a Hilbert space, where

`2
w
, {s 2 ✓⇢+ : ksk

w
<1}.

We also define a partial order on S as follows:

x � y , x
i
� y

i
, 8 i � 1,

x > y , x
i
> y

i
, 8 i � 1.



Gamarnik et al.: Delay, Memory, and Messaging Tradeo�s in Distributed Service Systems
48 Stochastic Systems, 2018, vol. 8, no. 1, pp. 45–74, © 2018 The Author(s)

We will work with the Skorokhod spaces of functions

D[0,T] , { f : [0,T]!✓: f is right-continuous with left limits},

endowed with the uniform metric
d(x , y) , sup

t2[0,T]
|x(t)� y(t)|,

and
D

1[0,T] , { f : [0,T]!✓⇢+ : f is right-continuous with left limits},
with the metric

d
⇢+(x , y) , sup

t2[0,T]
kx(t)� y(t)k

w
.

3. Model and Main Results
In this section we present our main results. In Section 3.1 we describe the model and our assumptions. In Sec-
tion 3.2 we introduce three different regimes of a certain pull-based dispatching policy. In Sections 3.3 and 3.4
we introduce a fluid model and state the validity of fluid approximations for the transient and the steady-state
regimes, respectively. In Section 3.5, we discuss the asymptotic delay, and show a phase transition in its behavior
when � " 1.

3.1. Modeling Assumptions
We consider a system consisting of n parallel servers, where each server has a processing rate equal to 1.
Furthermore, each server is associated with an infinite capacity FIFO queue. We use the convention that a job
that is being served remains in queue until its processing is completed. We assume that each server is work
conserving: a server is idle if and only if the corresponding queue is empty.

Jobs arrive to the system as a single Poisson process of rate �n (for some fixed � < 1). Job sizes are i.i.d.,
independent from the arrival process, and exponentially distributed with mean 1.

There is a central controller (dispatcher), responsible for routing each incoming job to a queue, immediately
upon arrival. The dispatcher makes decisions based on limited information about the state of the queues, as
conveyed through messages from idle servers to the dispatcher, and which is stored in a limited local memory.
See the next subsection for the precise description of the policy.

We will focus on the steady-state expectation of the time between the arrival of a typical job and the time at
which it starts receiving service (to be referred to as “queueing delay” or just “delay” for short) and its limit as
the system size n tends to infinity (to be referred to as “asymptotic delay”). Furthermore, we are interested in the
amount of resources (memory size and message rate) required for the asymptotic delay to be equal to zero.

3.2. Policy Description and High-Level Overview of the Results
In this section we introduce our policy and state in a succinct form our results for three of its regimes.

3.2.1. Policy Description. For any fixed value of n, the policy that we study operates as follows.
(a) Memory: The dispatcher maintains a virtual queue comprised of up to c(n) server identity numbers (IDs),

also referred to as tokens, so that the dispatcher’s memory size is of order c(n) log2(n) bits. Since there are only
n distinct servers, we will assume throughout the rest of the paper that c(n)  n.

(b) Spontaneous messages from idle servers: While a server is idle, it sends messages to the dispatcher as a
Poisson process of rate µ(n), to inform or remind the dispatcher of its idleness. We assume that µ(n) is a
nondecreasing function of n. Whenever the dispatcher receives a message, it adds the ID of the server that sent
the message to the virtual queue of tokens, unless this ID is already stored or the virtual queue is full, in which
cases the new message is discarded.

(c) Dispatching rule: Whenever a new job arrives, if there is at least one server ID in the virtual queue, the
job is sent to the queue of a server whose ID is chosen uniformly at random from the virtual queue, and the
corresponding token is deleted. If there are no tokens present, the job is sent to a queue chosen uniformly at
random.

Note that under the above described policy, which is also depicted in Figure 2, no messages are ever sent
from the dispatcher to the servers. Accordingly, following the terminology of Badonnel and Burgess (2008), we
will refer to it as the Resource Constrained Pull-Based (RCPB) policy or Pull-Based policy for short.
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Figure 2. Resource constrained pull-based policy. Jobs are sent to queues associated with idle servers, based on tokens in
the virtual queue. If no tokens are present, a queue is chosen at random.

nÀ
Dispatcher

c(n)
Queue of IDs

Jobs to
empty queues

Messages from
idle servers

n servers

3.2.2. High-Level Summary of the Results. We summarize our results for the RCPB policy, for three different
regimes, in Table 1, where we also introduce some mnemonic terms that we will use to refer to these regimes.
Formal statements of these results are given later in this section. Furthermore, we provide a pictorial represen-
tation of the total resource requirements and the corresponding asymptotic delays in Figure 3.

The more interesting subcase of the High Memory regime is when µ � �/(1��), which results in zero asymp-
totic delay with superlogarithmic memory and linear overall message rate. Note that if we set µ ⇤ �/(1� �), and
use the fact that servers are idle a fraction 1� � of the time, the resulting time-average message rate becomes
exactly �n, i.e., one message per arrival.

3.3. Stochastic and Fluid Descriptions of the System
In this subsection, we define a stochastic process that corresponds to our model under the RCPB policy, as well
as an associated fluid model.
3.3.1. Stochastic System Representation. Let Q

n

i
(t) be the number of jobs in queue i (including the job currently

being served, if any), at time t, in a n-server system. We can model the system as a continuous-time Markov
process whose state is the queue length vector, Q

n(t) ⇤ (Qn

i
(t))n

i⇤1 2 ⇢n

+
, together with the number of tokens,

denoted by M
n(t) 2 {0, 1, . . . , c(n)}. However, as the system is symmetric with respect to the queues, we will

use instead the more convenient representation S
n(t)⇤ (Sn

i
(t))1

i⇤0, where

S
n

i
(t) , 1

n

nX
j⇤1

⌧[i ,1)(Qn

j
(t)), i 2 ⇢+ ,

is the fraction of queues with at least i jobs at time t. Once more, the pair (Sn(t),Mn(t)) is a continuous-time
Markov process, with a countable state space.

Finally, another possible state representation involves V
n(t)⇤ (Vn

i
(t))1

i⇤1, where

V
n

i
(t) ,

1X
j⇤i

S
n

j
(t)

can be interpreted as the average amount by which a queue length exceeds i � 1 at time t. In particular, V
n

1 (t)
is the total number of jobs at time t divided by n, and is finite, with probability 1.

Table 1. The three regimes of our policy, and the resulting asymptotic delays.

Regime Memory Idle message rate Delay

High memory c(n) 2 !(1) and c(n) 2 o(n) µ(n)⇤ µ � �/(1� �) 0
µ(n)⇤ µ < �/(1� �) > 0

High message c(n)⇤ c � 1 µ(n) 2 !(1) 0
Constrained c(n)⇤ c � 1 µ(n)⇤ µ > 0 > 0
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Figure 3. Resource requirements of the three regimes, and the resulting asymptotic delays.
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3.3.2. Fluid Model. We now introduce the fluid model of S
n(t), associated with our policy. Recall the definition

of the set S 1 in Equation (1).

Definition 3.1 (Fluid Model). Given an initial condition s
0 2S 1, a continuous function s(t): [0,1)!S 1 is said to

be a solution to the fluid model (or fluid solution) if:
1. s(0)⇤ s

0.
2. For all t � 0, s0(t)⇤ 1.
3. For all t � 0 outside of a set of Lebesgue measure zero, and for every i � 1, s

i
(t) is differentiable and

satisfies

ds1

dt
(t)⇤ �(1�P0(s(t)))+ �(1� s1(t))P0(s(t))� (s1(t)� s2(t)), (2)

ds
i

dt
(t)⇤ �(s

i�1(t)� s
i
(t))P0(s(t))� (s

i
(t)� s

i+1(t)) 8 i � 2, (3)

where P0(s) is given, for the three regimes considered, by:
(i) High Memory: P0(s)⇤ [1� µ(1� s1)/�]+;

(ii) High Message: P0(s)⇤ [1� (1� s2)/�]+⌧{s1⇤1};
(iii) Constrained: P0(s)⇤ [Pc

k⇤0(µ(1� s1)/�)k]�1.
We use the convention 00 ⇤ 1, so that the case s1 ⇤ 1 yields P0(s)⇤ 1.

A solution to the fluid model, s(t), can be thought of as a deterministic approximation to the sample paths of
the stochastic process S

n(t), for n large enough. Note that the fluid model does not include a variable associated
with the number of tokens. This is because, as we will see, the virtual queue process M

n(t) evolves on a faster
time scale than the processes of the queue lengths and does not have a deterministic limit. We thus have a
process with two different time scales: on the one hand, the virtual queue evolves on a fast time scale (at least n

times faster) and from its perspective the queue process S
n(t) appears static; on the other hand, the queue

process S
n(t) evolves on a slower time scale and from its perspective, the virtual queue appears to be at stochastic

equilibrium. This latter property is manifested in the drift of the fluid model: P0(s(t)) can be interpreted as the
probability that the virtual queue is empty when the rest of the system is fixed at the state s(t). Moreover, the
drift of s1(t) is qualitatively different from the drift of the other components s

i
(t), for i � 2, because our policy

treats empty queues differently.
We now provide some intuition for each of the drift terms in Equations (2) and (3).

(i) �(1�P0(s(t))): This term corresponds to arrivals to an empty queue while there are tokens in the virtual
queue, taking into account that the virtual queue is nonempty with probability 1�P0(s(t)), in the limit.

(ii) �(s
i�1(t)� s

i
(t))P0(s(t)): This term corresponds to arrivals to a queue with exactly i � 1 jobs while there

are no tokens in the virtual queue. This occurs when the virtual queue is empty and a queue with i � 1 jobs is
drawn, which happens with probability P0(s(t))(si�1(t)� s

i
(t)).

(iii) �(s
i
(t)� s

i+1(t)): This term corresponds to departures from queues with exactly i jobs, which after divid-
ing by n, occur at a rate equal to the fraction s

i
(t)� s

i+1(t) of servers with exactly i jobs.
(iv) Finally, the expressions for P0(s) are obtained through an explicit calculation of the steady-state distribu-

tion of M
n(t) when S

n(t) is fixed at the value s, while also letting n !1.
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Let us give an informal derivation of the different expressions for P0(s). Recall that P0(s) can be interpreted
as the probability that the virtual queue is empty when the rest of the system is fixed at the state s. Under this
interpretation, for any fixed state s, and for any fixed n, the virtual queue would behave like an M/M/1 queue
with capacity c(n), arrival rate µ(n)n(1 � s1), and departure rate �n. In this M/M/1 queue, the steady-state
probability of being empty is

P
(n)
0 (s)⇤


c(n)X
k⇤0

✓
µ(n)(1� s1)

�

◆ k��1

.

By taking the limit as n !1, we obtain the correct expressions for P0(s), except in the case of the High Message
regime with s1 ⇤ 1. In that particular case, this simple interpretation does not work. However, we can go one step
further and note that when all servers are busy (i.e., when s1 ⇤ 1), servers become idle at rate 1� s2, which is the
proportion of servers with exactly one job left in their queues. Since the high message rate assures that messages
are sent almost immediately after the server becomes idle, only a fraction [�� (1� s2)]/� of incoming jobs will
go to a non-empty queue, which is exactly the probability of finding an empty virtual queue in this case.

3.4. Technical Results
In this section we provide precise statements of our technical results.

3.4.1. Properties of the Fluid Solutions. The existence of fluid solutions will be established by showing that,
almost surely, the limit of every convergent subsequence of sample paths of S

n(t) is a fluid solution (Proposi-
tion 5.4). In addition, the theorem that follows establishes uniqueness of fluid solutions for all initial conditions
s

0 2 S 1, characterizes the unique equilibrium of the fluid model, and states its global asymptotic stability. The
regimes mentioned in the statement of the results in this section correspond to the different assumptions on
memory and message rates described in the 2nd and 3rd columns of Table 1, respectively.

Theorem 3.1 (Existence, Uniqueness, and Stability of Fluid Solutions). A fluid solution, as described in Definition �.�,
exists and is unique for any initial condition s

0 2S 1. Furthermore, the fluid model has a unique equilibrium s
⇤, given by

s
⇤
i
⇤ �(�P

⇤
0)i�1 , 8 i � 1,

where P
⇤
0 ⇤ P0(s⇤) is given, for the three regimes considered, by�

(i) High Memory� P
⇤
0 ⇤ [1� µ(1� �)/�]+�

(ii) High Message� P
⇤
0 ⇤ 0�

(iii) Constrained� P
⇤
0 ⇤ [Pc

k⇤0(µ(1� �)/�)k]�1.
This equilibrium is globally asymptotically stable, i.e.,

lim
t!1

ks(t)� s
⇤k

w
⇤ 0,

for any initial condition s
0 2S 1.

The proof is given in Sections 4 (uniqueness and stability) and 5 (existence).

Remark 3.1. Note that, if µ � �/(1� �), the High Memory regime also has P
⇤
0 ⇤ 0 in equilibrium.

3.4.2. Approximation Theorems. The three results in this section justify the use of the fluid model as an approx-
imation to the finite stochastic system. The first one states that the evolution of the process S

n(t) is almost surely
uniformly close, over any finite time horizon [0,T], to the unique fluid solution s(t).
Theorem 3.2 (Convergence of Sample Paths). Fix T > 0 and s

0 2S 1. Under each of the three regimes, if

lim
n!1

kS
n(0)� s

0k
w
⇤ 0, a.s.,

then
lim
n!1

sup
0tT

kS
n(t)� s(t)k

w
⇤ 0, a.s.,

where s(t) is the unique fluid solution with initial condition s
0.

The proof is given in Section 5.
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Remark 3.2. On the technical side, the proof is somewhat involved because the process (Sn(t),Mn(t)) is not the
usual density-dependent Markov process studied by Kurtz (1981) and which appears in the study of several
dispatching policies (e.g., Mitzenmacher 1996, Stolyar 2015, Ying et al. 2015). This is because M

n(t) is not
scaled by n, and consequently evolves in a faster time scale. We are dealing instead with an infinite-level
infinite-dimensional jump Markov process, which is a natural generalization of its finite-level finite-dimensional
counterpart studied in Chapter 8 of Shwartz and Weiss (1995). The fact that our process may have infinitely
many levels (memory states) and is infinite-dimensional prevents us from directly applying known results.
Furthermore, even if we truncated S

n(t) to be finite-dimensional as in Mitzenmacher et al. (2002), our process
still would not satisfy the more technical hypotheses of the corresponding result in Shwartz and Weiss (1995)
(Theorem 8.15). Finally, the large deviations techniques used to prove Theorem 8.15 in Shwartz and Weiss (1995)
do not directly generalize to infinite dimensions. For all of these reasons, we will prove our fluid limit result
directly, by using a coupling approach, as in Bramson (1998) and Tsitsiklis and Xu (2012). Our results involve a
separation of time scales similar to the ones in Xu and Yun (2017) and Hunt and Kurtz (1994).

If we combine Theorems 3.2 and 3.1, we obtain that after some time, the state of the finite system S
n(t) can

be approximated by the equilibrium of the fluid model s
⇤, because

S
n(t) n!1���! s(t) t!1���! s

⇤ ,

almost surely. If we interchange the order of the limits over n and t, we obtain the limiting behavior of the
invariant distribution ⇡n

s
of S

n(t) as n increases. In the next proposition and theorem, we show that the result
is the same, i.e., that

S
n(t) t!1���! ⇡n

s

n!1���! s
⇤ ,

in distribution, so that the interchange of limits is justified.
The first step is to show that for every finite n, the stochastic process of interest is positive recurrent.

Proposition 3.3 (Stochastic Stability). For every n, the Markov process (Sn(t),Mn(t)) is positive recurrent and therefore
has a unique invariant distribution ⇡n .

The proof is given in Section 6.1.
Given ⇡n , the unique invariant distribution of the process (Sn(t),Mn(t)), let

⇡n

s
( · )⇤

c(n)X
m⇤0
⇡n(·,m)

be the marginal for S
n . We have the following result concerning the convergence of this sequence of marginal

distributions.

Theorem 3.4 (Convergence of Invariant Distributions). We have

lim
n!1
⇡n

s
⇤ �

s⇤ , in distribution.

The proof is given in Section 6.2.
Putting everything together, we conclude that when n is large, the fluid model is an accurate approximation

to the stochastic system, for both the transient regime (Theorems 3.2 and 3.1) and the steady-state regime
(Theorem 3.4). The relationship between the convergence results is depicted in the commutative diagram of
Figure 4.

3.5. Asymptotic Delay and Phase Transitions
In this section we use the preceding results to conclude that in two of the regimes considered, the asymptotic
delay is zero. For the third regime, the asymptotic delay is positive and we examine its dependence on various
policy parameters.
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Figure 4. Relationship between the stochastic system and the fluid model.

Theorem 3.4

n T 1

Proposition 3.3
t T 1

S n(t)

Theorem 3.1
t T 1

s(t)
Theorem 3.2

n T 1

s*œn
s

3.5.1. Queueing Delay. Having shown that we can approximate the stochastic system by its fluid model for
large n, we can analyze the equilibrium of the latter to approximate the queueing delay under our policy.

For any given n, we define the queueing delay (more precisely, the waiting time) of a job, generically denoted
by ⇧[W n], as the mean time that a job spends in queue until its service starts. Here the expectation is taken
with respect to the steady-state distribution, whose existence and uniqueness is guaranteed by Proposition 3.3.
Then, the asymptotic delay is defined as

⇧[W] , limsup
n!1

⇧[W n].

This asymptotic delay can be obtained from the equilibrium s
⇤ of the fluid model as follows. For a fixed n, the

expected number of jobs in the system in steady-state is

⇧

 1X
i⇤1

nS
n

i

�
.

Furthermore, the delay of a job is equal to the total time it spends in the system minus the expected service
time (which is 1). Using Little’s Law, we obtain that the queueing delay is

⇧[W n]⇤ 1
�n

⇧

 1X
i⇤1

nS
n

i

�
� 1⇤ 1

�
⇧

 1X
i⇤1

S
n

i

�
� 1.

Taking the limit as n !1, and interchanging the limit, summation, and expectation, we obtain

⇧[W]⇤ 1
�

✓ 1X
i⇤1

s
⇤
i

◆
� 1. (4)

The validity of these interchanges is established in Appendix A.
As a corollary, we obtain that if we have a superlinear message rate or a superlogarithmic number of memory

bits, the RCPB policy results in zero asymptotic delay.
Corollary 3.5. For the High Memory regime with µ � �/(1� �), and for the High Message regime, the asymptotic delay
is zero, i.e., ⇧[W]⇤ 0.
Proof. From Theorem 3.1, we have P

⇤
0 ⇤ 0 and therefore, s

⇤
1 ⇤ � and s

⇤
i
⇤ 0, for i � 2. The result follows from

Equation (4). ⇤
3.5.2. The Asymptotic Delay in the Constrained Regime. According to Equation (4) and Theorem 3.1, the asymp-
totic delay is given by

⇧[W]⇤ 1
�

1X
i⇤1

s
⇤
i
� 1⇤

1X
i⇤1

(�P
⇤
0)i�1 � 1⇤

�P
⇤
0

1� �P
⇤
0
, (5)

and is positive in the Constrained regime. Nevertheless, the dependence of the delay on the various parameters
has some remarkable properties, which we proceed to study.

Suppose that the message rate of each idle server is µ⇤ ↵/(1��) for some constant ↵ > 0. Since a server is idle
(on average) a fraction 1� � of the time, the resulting average message rate at each server is ↵, and the overall
(system-wide) average message rate is ↵n. We can rewrite the equilibrium probability P

⇤
0 in Theorem 3.1 as

P
⇤
0 ⇤


1+ ↵
�
+ · · ·+

✓
↵
�

◆ c��1

.
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This, together with Equation (5) and some algebra, implies that

⇧[W]⇤ �

1� �+ ↵

�
+ · · ·+

✓
↵
�

◆ c��1

. (6)

Phase transition of the delay for � " 1. We have a phase transition between ↵ ⇤ 0 (which corresponds to uniform
random routing) and ↵ > 0. In the first case, we have the usual M/M/1-queue delay: �/(1��). However, when
↵ > 0, the delay is upper bounded uniformly in � as follows:

⇧[W] 
✓

cX
k⇤1
↵k

◆�1

. (7)

This is established by noting that the expression in Equation (6) is monotonically increasing in � and then
setting � ⇤ 1. Note that when ↵ is fixed, the total message rate is the same, ↵n, for all � < 1. This is a key
qualitative improvement over all other resource constrained policies in the literature; see our discussion of the
power-of-d-choices policy at the end of this subsection.
Phase transition in the memory-delay tradeo�. When � and ↵ are held fixed, the asymptotic delay in Equation (6)
decreases with c. This represents a tradeoff between the asymptotic delay ⇧[W], and the number of memory
bits, which is equal to dc log2(n)e for the Constrained regime. However, the rate at which the delay decreases
with c depends critically on the value of ↵, and we have a phase transition when ↵ ⇤ �.

(i) If ↵ < �, then
lim
c!1

⇧[W]⇤ �(�� ↵)
(1� �)(�� ↵)+ 1 .

Consequently, if ↵ < �, it is impossible to drive the delay to 0 by increasing the value of c, i.e., by increasing
the amount of memory available.

(ii) If ↵ ⇤ �, we have
⇧[W]⇤ 1

1� �+ c
 1

c
,

and thus the delay converges to 0 at the rate of 1/c, as c !1.
(iii) If ↵ > �, we have

⇧[W]⇤ �

1� �+ ↵

�
+ · · ·+

✓
↵
�

◆ c��1


✓
�
↵

◆ c

, (8)

and thus the delay converges exponentially fast to 0, as c !1.
This phase transition is due to the fact that the queueing delay depends critically on P

⇤
0, the probability that

there are no tokens left in the dispatcher’s virtual queue. In equilibrium, the number of tokens in the virtual
queue evolves as a birth-death process with birth rate ↵, death rate �, and maximum population c, and has
an invariant distribution which is geometric with ratio ↵/�. As a result, as soon as ↵ becomes larger than �,
this birth-death process has an upward drift, and the probability of being at state 0 (no tokens present) decays
exponentially with the size of its state space. This argument captures the essence of the phase transition at
µ ⇤ �/(1� �) for the High Memory regime.
Comparison with the power-of-d-choices. The power-of-d-choices policy queries d random servers at the time
of each arrival and sends the arriving job to the shortest of the queried queues. As such, it involves 2�dn

messages per unit time. For a fair comparison, we compare this policy to our RCPB policy with ↵ ⇤ 2�d, so that
the two policies have the same average message rate.

The asymptotic delay for the power-of-d-choices policy was shown in Mitzenmacher (1996), Vvedenskaya
et al. (1996) to be

⇧[WPod]⇤
1X

i⇤1
�(d

i�d)/(d�1) � 1 � �d .

Thus, the delay decreases at best exponentially with d, much like the delay decreases exponentially with c in
our scheme (cf. Equation (8)). However, increasing d increases the number of messages sent, unlike our policy
where the average message rate remains fixed at ↵n.

Furthermore, the asymptotic delay in the power-of-d-choices when � " 1 is shown in Mitzenmacher (1996) to
satisfy

lim
�"1

⇧[WPod]
log(1/(1� �)) ⇤

1
log d

.
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Figure 5. Average delay of the power-of-2-choices policy (red circles) vs. our policy (blue squares) vs. PULL (green
asterisks).
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For any fixed d, this is an exponential improvement over the delay of randomized routing, but the delay is still
unbounded as � " 1. In contrast, the delay of our scheme has a constant upper bound, independent of �.

In conclusion, if we set ↵ ⇤ 2d�, so that our policy and the power-of-d policy use the same number of
messages per unit of time, our policy results in much better asymptotic delay, especially when � " 1, even if c

is as small as 1.
Numerical results. We implemented three policies in Matlab: the power-of-2-choices (Mitzenmacher 1996,
Vvedenskaya et al. 1996), our RCPB policy, and the PULL policy (Stolyar 2015). We evaluate the algorithms in
a system with 500 servers. In our algorithm we used c ⇤ 2, and ↵ ⇤ �, so it has the same average message rate
as the PULL policy (500� messages per unit of time), which is 4 times less than what the power-of-2-choices
utilizes. In Figure 5 we plot the delay as a function of log(1/(1� �)).

As expected, the delay remains uniformly bounded under our RCPB policy (blue squares). This is achieved
with only d2 log2(500)e ⇤ 18 bits of memory. Furthermore, with this small amount of memory we are also close
to the performance of the PULL algorithm, which requires 500 bits of memory.

4. Fluid Model Analysis—Proof of Part of Theorem 3.1
The proof of Theorem 3.1 involves mostly deterministic arguments; these are developed in Lemmas 4.1 and 4.3,
and Proposition 4.5, which establish uniqueness of fluid solutions, existence and uniqueness of a fluid-model
equilibrium, and asymptotic stability, respectively. The proof of existence of fluid solutions relies on a stochastic
argument and is developed in Section 5, in parallel with the proof of Theorem 3.2.

4.1. Uniqueness of Solutions
Lemma 4.1. If there exists a fluid solution �cf. Definition �.�� with initial condition s

0 2S 1, it is unique.

Proof. The fluid model is of the form €s(t)⇤ F(s(t)), where the function F: S 1 ! [�1, �]⇢+ is defined by

F0(s)⇤ 0,
F1(s)⇤ �(1�P0(s))+ �(1� s1)P0(s)� (s1 � s2), (9)
F

i
(s)⇤ �(s

i�1 � s
i
)P0(s)� (s

i
� s

i+1), 8 i � 2,

and where P0(s) is given for the three regimes by:
(i) High Memory: P0(s)⇤ [1� µ(1� s1)/�]+.

(ii) High Message: P0(s)⇤ [1� (1� s2)/�]+⌧{s1⇤1}.
(iii) Constrained: P0(s)⇤ [Pc

k⇤0(µ(1� s1)/�)k]�1.
The function P0(s) for the High Memory regime is continuous and piecewise linear in s1, so it is Lipschitz

continuous in s, over the set S 1. Similarly, P0(s) for the Constrained regime is also Lipschitz continuous in s,
because P0(s) is a rational function of s1 and the denominator is lower bounded by 1. However, P0(s) for the



Gamarnik et al.: Delay, Memory, and Messaging Tradeo�s in Distributed Service Systems
56 Stochastic Systems, 2018, vol. 8, no. 1, pp. 45–74, © 2018 The Author(s)

High Message regime is only Lipschitz continuous “almost everywhere” in S 1; more precisely, it is Lipschitz
continuous everywhere except on the lower dimensional set

D , {s 2S 1: s1 ⇤ 1 and s2 > 1� �}.

Moreover, P0(s) restricted to D is also Lipschitz continuous.
Suppose that P0(s) is Lipschitz continuous with constant L on some subset S 0 of S 1. Then, for every s , s0 2S 0

and any i � 1, we have

|F
i
(s)� F

i
(s0)| ⇤ | � �P0(s)⌧i⇤1 + �(si�1 � s

i
)P0(s)� (s

i
� s

i+1)+ �P0(s0)⌧i⇤1 � �(s0i�1 � s
0
i
)P0(s0)+ (s0

i
� s

0
i+1)|

 |P0(s)�P0(s0)| + |(s
i�1 � s

i
)P0(s)� (s0

i�1 � s
0
i
)P0(s0)| + |s

i
� s

0
i
| + |s

i+1 � s
0
i+1 |

 2|P0(s)�P0(s0)| + |s
i�1 � s

0
i�1 | + 2|s

i
� s

0
i
| + |s

i+1 � s
0
i+1 |

 2Lks � s
0k

w
+ |s

i�1 � s
0
i�1 | + 2|s

i
� s

0
i
| + |s

i+1 � s
0
i+1 |.

Then,

kF(s)� F(s0)k
w
⇤

s
1X

i⇤0

|F
i
(s)� F

i
(s0)|2

2i


s

1X
i⇤1

(2Lks � s0k
w
+ |s

i�1 � s
0
i�1 | + 2|s

i
� s

0
i
| + |s

i+1 � s
0
i+1 |)2

2i


s

12
1X

i⇤1

4L2ks � s0k2
w
+ |s

i�1 � s
0
i�1 |2 + 4|s

i
� s

0
i
|2 + |s

i+1 � s
0
i+1 |2

2i

 ks � s
0k

w

p
12(4L2 + 2+ 4+ 1),

where the second inequality comes from the fact that (w+x+ y+ z)2  12(w2+x
2+ y

2+ z
2), for all (w , x , y , z) 2✓4.

This means that F is also Lipschitz continuous on the set S 0.
For the High Memory and Constrained regimes, we can set S 0 ⇤ S 1, and by the preceding discussion,

F is Lipschitz continuous on S 1. At this point we cannot immediately guarantee the uniqueness of solutions
because F is just Lipschitz continuous on a subset (S 1) of the Hilbert space (`2

w
, k · k

w
). However, we can use

Kirszbraun’s theorem (Kirszbraun 1934) to extend F to a Lipschitz continuous function F̄ on the entire Hilbert
space. If we have two different solutions to the equation €s ⇤ F(s) which stay in S 1, we would also have two
different solutions to the equation €s ⇤ F̄(s). Since F̄ is Lipschitz continuous, this would contradict the Picard-
Lindelöff uniqueness theorem (Lobanov and Smolyanov 1994). This establishes the uniqueness of fluid solutions
for the High Memory and Constrained regimes.

Note that the preceding argument can also be used to show uniqueness of solutions for any differential
equation with a Lipschitz continuous drift in an arbitrary subset of the Hilbert space (`2

w
, k · k

w
), as long as we

only consider solutions that stay in that set. This fact will be used in the rest of the proof.
From now on, we concentrate on the High Message regime. In this case, the drift F(s) is Lipschitz continuous

only “almost everywhere,” and a solution will in general be non-differentiable. In particular, results on the
uniqueness of classical (differentiable) solutions do not apply. Our proof will rest on the fact that non-uniqueness
issues can only arise when a trajectory hits the closure of the set where the drift F(s) is not Lipschitz continuous,
which in our case is just the closure of D:

D̄ ⇤ {s 2S 1: s1 ⇤ 1 and s2 � 1� �}.

We now partition the space S 1 into three subsets, S 1\D̄, D, and D̄\D, and characterize the behavior of potential
trajectories depending on the initial condition. Note that we only consider fluid solutions, and these always stay
in the set S 1, by definition. Therefore, we only need to establish the uniqueness of solutions that stay in S 1.

Claim 4.2. For any fluid solution s(t) in the High Message regime, and with initial condition s
0 2 D̄, we have the

following.
(i) If s

0 2 D, then s(t) either stays in D forever or hits D̄\D at some finite time. In particular, it cannot go directly
from D to S 1\D̄.

(ii) If s
0 2 D̄\D, then s(t) stays in S 1\D forever. In particular, it can never return to D.
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Proof.
(i) Suppose that s

0 2 D, i.e., s
0
1 ⇤ 1 and s

0
2 > 1 � �. Let t

Dc be the exit time from D, and suppose that it is
finite. Note that, by continuity of solutions, s1(tDc ) ⇤ 1. We will show that s2(tDc ) ⇤ 1� �, so that the trajectory
hits D̄\D. Suppose, in order to derive a contradiction, that this is not the case and, therefore, s2(tDc ) > 1 � �.
Then, due to the continuity of solutions, there exists some time t1 > t

Dc such that s1(t1) < 1 and s2(t) > 1� �, for
all t 2 [t

Dc , t1]. Let
t0 , sup{t  t1: s1(t)⇤ 1}

be the last time before t1 that s1(t) is equal to 1. Then we have s1(t0)⇤ 1, and s1(t)< 1 for all t 2 (t0 , t1]. Since the
drift F is continuous for all s1 < 1, all times in (t0 , t1] are regular. On the other hand, for all t 2 (t0 , t1], we have
s1(t) < 1 and thus P0(s(t))⇤ 0, which together with s2(t) > 1� � implies that

ds1(t)
dt

⇤ �� (s1(t)� s2(t)) > 0,

for all t 2 (t0 , t1]. This contradicts the relations s1(t1) < 1 ⇤ s1(t0), and establishes that s1(tD
) ⇤ 1. Therefore the

fluid solution s either stays in D forever or it exits D with s2 ⇤ 1� �.
(ii) Suppose now that s

0 2 D̄\D, i.e., s
0
1 ⇤ 1 and s

0
2 ⇤ 1 � �. It is enough to show that s2(t)  1 � �, for all

t � 0. Let
⌧2(✏) ,min{t � 0: s2(t)⇤ 1� �+ ✏}

be the first time s2 reaches 1��+ ✏. Suppose, in order to derive a contradiction, that there exists ✏⇤ > 0 such that
⌧2(✏⇤)<1. Then, due to the continuity of s2, we also have ⌧2(✏)<1, for all ✏  ✏⇤. Since s2 is differentiable almost
everywhere, we can choose ✏ such that ⌧2(✏) is a regular time with F2(s(⌧2(✏))) > 0. Using the expression (9)
for F2, we obtain

0 < �(s1(⌧2(✏))� s2(⌧2(✏)))
✓
1� 1� s2(⌧2(✏))

�

◆
⌧{s1(⌧2(✏))⇤1} � (s2(⌧2(✏))� s3(⌧2(✏)))

 �(1� s2(⌧2(✏)))
✓
1� 1� s2(⌧2(✏))

�

◆
� (s2(⌧2(✏))� s3(⌧2(✏)))

⇤ �� 1+ s3(⌧2(✏))+ s2(⌧2(✏))(1� �� s2(⌧2(✏)))
< �� 1+ s3(⌧2(✏)),

or s3(⌧2(✏)) > 1 � �. On the other hand, we have s3(0)  s2(0) ⇤ 1 � �. Combining these two facts, we obtain
that s3(⌧2(✏)) > s3(0), i.e., that s3 increased between times 0 and ⌧2(✏). As a result, and since s3 is differentiable
almost everywhere, there exists another regular time ⌧3(✏)  ⌧2(✏) such that s3(⌧3(✏))> 1�� and F3(s(⌧3(✏)))> 0.
Proceeding inductively, we can obtain a sequence of nonincreasing regular times ⌧2(✏) � ⌧3(✏) � · · · � 0 such that
s

k
(⌧

k
(✏)) > 1� �, for all k � 2. Let ⌧1(✏) be the limit of this sequence of regular times. Since all coordinates of

the fluid solutions are Lipschitz continuous with the same constant L, we have

s
k
(⌧1) > 1� �� L(⌧

k
(✏)� ⌧1),

for all k � 2. Since ⌧
k
(✏)! ⌧1, there exists some k

⇤ � 2 such that s
k
(⌧1) > (1� �)/2 > 0, for all k � k

⇤. But then,

ks(⌧1)k1 �
1X

k⇤k⇤

1� �
2 ⇤1.

This contradicts the fact that s(⌧1) 2S 1, and it follows that we must have s2(t)  1� � for all t � 0. ⇤
The uniqueness of a solution over the whole time interval [0,1) for the High Message regime can now be

obtained by concatenating up to three unique trajectories, depending on the initial condition s
0.

(a) Suppose that s
0 2S 1\D̄, and let t

D̄
be the hitting time of D̄, i.e.,

t
D̄
⇤ inf{t � 0: s(t) 2 D̄ with s(0)⇤ s

0}.
Since F |S 1\D̄

(the restriction of the original drift F to the set S 1\D̄) is Lipschitz continuous, we have the unique-
ness of a solution over the time interval [0, t

D̄
), by using the same argument as for the other regimes. If t

D̄
⇤1,

then we are done. Otherwise, we have s(t
D̄
) 2 D̄; the uniqueness of a solution over the time interval [t

D̄
,1) will

immediately follow from the uniqueness of a solution with initial condition in D̄.
(b) Suppose that s

0 2 D. Due to part (i) of Claim 4.2, a solution can only exit the set D by hitting D̄\D, and
never by going back directly into S 1\D̄. Let t

D̄\D
be the hitting time of D̄\D. Since F |

D
is Lipschitz continuous,
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we have uniqueness of a solution over the time interval [0, t
D̄\D

). As in case (a), if t
D̄\D

⇤ 1 we are done.
Otherwise, the uniqueness of a solution over the time interval [t

D̄\D
,1) will immediately follow from the

uniqueness of a solution with initial condition in D̄\D.
(c) Suppose that s

0 2 D̄\D. Due to part (ii) of Claim 4.2, a solution stays in S 1\D forever. As a result, since
F |S 1\D

is Lipschitz continuous, uniqueness follows. ⇤
The intuition behind the preceding proof, for the High Message regime, is as follows. A non-differentiable

solution may arise if the system starts with a large fraction of the servers having at least two jobs. In that case,
the rate s1(t)� s2(t) at which the servers become idle is smaller than the rate � at which idle servers become
busy. As a consequence, the fraction s1(t) of busy servers increases until it possibly reaches its maximum of 1,
and stays there until the fraction of servers with exactly one job, which is now 1� s2(t), exceeds the total arrival
rate �; after that time servers become idle at a rate faster than the arrival rate. This scenario is illustrated in
Figure 6.

4.2. Existence, Uniqueness, and Characterization of an Equilibrium
Lemma 4.3. The fluid model has a unique equilibrium s

⇤ 2S 1, given by

s
⇤
i
⇤ �(�P

⇤
0)i�1 , 8 i � 1,

where P
⇤
0 , P0(s⇤) is given by

(i) High Memory� P
⇤
0 ⇤ [1� µ(1� �)/�]+.

(ii) High Message� P
⇤
0 ⇤ 0.

(iii) Constrained� P
⇤
0 ⇤ [Pc

k⇤0(µ(1� �)/�)k]�1.
Proof. A point s

⇤ 2S 1 is an equilibrium if and only if

0⇤ �(1�P0(s⇤))+ �(1� s
⇤
1)P0(s⇤)� (s⇤1 � s

⇤
2), 0⇤ �(s⇤

i�1 � s
⇤
i
)P0(s⇤)� (s⇤

i
� s

⇤
i+1), 8 i � 2.

Since s
⇤ 2 S 1, the sum P1

i⇤0(s⇤i � s
⇤
i+1) is absolutely convergent, even when we consider all the terms separately,

i.e., when we consider s
⇤
i

and �s
⇤
i+1 as separate terms, for each i � 0. Thus, we can obtain equivalent equilibrium

conditions by summing these equations over all coordinates j � i, for any fixed i � 1. We then obtain that s
⇤ is

an equilibrium if and only if

0⇤ �(1�P0(s⇤))+ �P0(s⇤)
1X
j⇤1

(s⇤
j�1 � s

⇤
j
)�

1X
j⇤1

(s⇤
j
� s

⇤
j+1), (10)

0⇤ �P0(s⇤)
1X
j⇤i

(s⇤
j�1 � s

⇤
j
)�

1X
j⇤i

(s⇤
j
� s

⇤
j+1), 8 i � 2. (11)

Figure 6. An example of a non-differentiable solution for the high message regime, with � ⇤ 0.9, s1(0)⇤ s2(0)⇤ s3(0)⇤ 0.7,
and si(0)⇤ 0 for all i � 4.
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Note. The solution is non-differentiable at the points indicated by the circles.
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Since the sums are absolutely convergent, we can rearrange the terms in Equations (10) and (11) to obtain that
s
⇤ 2S 1 is an equilibrium if and only if

0⇤ �� s
⇤
1 , 0⇤ �P0(s⇤)s⇤i�1 � s

⇤
i
, 8 i � 2.

These conditions yield s
⇤
1 ⇤ � < 1, and

s
⇤
i
⇤ �(�P0(s⇤))i�1 , 8 i � 1,

which concludes the proof. ⇤

4.3. Asymptotic Stability of the Equilibrium
We will establish global asymptotic stability by sandwiching a fluid solution between two solutions that con-
verge to s

⇤, similar to the argument in Vvedenskaya et al. (1996). Towards this purpose, we first establish a
monotonicity result.

Lemma 4.4. Suppose that s
1 and s

2 are two fluid solutions with s
1(0) � s

2(0). Then s
1(t) � s

2(t), for all t � 0.

Proof. It is known that uniqueness of solutions implies their continuous dependence on initial conditions, not
only for the classical solutions in the High Memory and Constrained regimes, but also for the non-differentiable
solutions of the High Message regime (see Chapter 8 of Filippov 1988). Using this fact, it can be seen that
it is enough to verify that s

1(t) � s
2(t) when s

1(0) > s
2(0), which we henceforth assume, under our particular

definition of “>" in Section 2. Let us define

t1 ⇤ inf{t � 0: s
1
k
(t) < s

2
k
(t), for some k � 1}.

If t1 ⇤1, then s
1(t) � s

2(t) for all t � 0, and the result holds. It remains to consider the case where t1 <1, which
we assume from now on.

By the definition of t1, we have s
1
i
(t) � s

2
i
(t) for all i � 1, and for all t  t1. Since P0(s) is nondecreasing in s,

this implies that P0(s1(t)) � P0(s2(t)), for all t  t1. Then, for all regular times t  t1 and any i � 2, and also using
the fact that s

i
is nonincreasing in i, we have

F
i
(s1(t))� F

i
(s2(t))⇤ �[s1

i�1(t)� s
1
i
(t)]P0(s1(t))+ [s1

i+1(t)� s
2
i+1(t)]� �[s2

i�1(t)� s
2
i
(t)]P0(s2(t))� [s1

i
(t)� s

2
i
(t)]

� �[s1
i�1(t)� s

1
i
(t)]P0(s2(t))� �[s2

i�1(t)� s
2
i
(t)]P0(s2(t))� [s1

i
(t)� s

2
i
(t)]

� ��P0(s2(t))[s1
i
(t)� s

2
i
(t)]� [s1

i
(t)� s

2
i
(t)]

� �2[s1
i
(t)� s

2
i
(t)].

Then, by Grönwall’s inequality we have

s
1
i
(t)� s

2
i
(t) � e

�2t[s1
i
(0)� s

2
i
(0)], 8 i � 2, (12)

for all t  t1. This implies that s
1
i
(t)� s

2
i
(t) > 0, for all i � 2 and for all t  t1. It follows that, at time t1, we must

have s
1
1(t1)⇤ s

2
1(t1). The rest of the proof considers separately two different cases.

Case 1: Suppose that we are dealing with the High Memory or the Constrained regime, or with the High
Message regime with s

1
1(t1) ⇤ s

2
1(t1) < 1. Since s

1
1(t1) ⇤ s

2
1(t1), we have P0(s1(t1)) ⇤ P0(s2(t1)). Then, due to the

continuity of s
1, s

2, and of P0 (local continuity for the High Message regime), there exists ✏ > 0 such that

�s
2
1(t)P0(s2(t))� �s

1
1(t)P0(s1(t))� [s1

1(t)� s
2
1(t)] > �✏,

and (using Equation (12)) s
1
2(t)� s

2
2(t) > ✏, for all t  t1 sufficiently close to t1. As a result, we have

F1(s1(t))� F1(s2(t))⇤ �s
2
1(t)P0(s2(t))� �s

1
1(t)P0(s1(t))� [s1

1(t)� s
2
1(t)]+ [s1

2(t)� s
2
2(t)] > 0, (13)

for all t < t1 sufficiently close to t1. Therefore, s
1
1 � s

2
1 was increasing just before t1. On the other hand, from the

definition of t1, we have s
1
1(t1) ⇤ s

2
1(t1) and s

1
1(t) � s

2
1(t) for all t < t1. This is a contradiction, and therefore this

case cannot arise.
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Case 2: Suppose now that we are dealing with the High Message regime, and that s
1
1(t1) ⇤ s

2
1(t1) ⇤ 1. Since

t1 <1, we can pick a time t2 > t1, arbitrarily close to t1, such that s
1
1(t2) < s

2
1(t2). Let us define

t
0
1 ⇤ sup{t  t2: s

1
1(t)⇤ s

2
1(t)}.

Due to the continuity of s
1 and s

2, and since s
1
1(t01) ⇤ s

2
1(t01) and s

1
2(t1) > s

2
2(t1), there exists ✏ > 0 such that

s
2
1(t)� s

1
1(t) < ✏ and s

1
2(t)� s

2
2(t) > ✏, for all t 2 [t01 , t2] (we can always take a smaller t2, if necessary, so that this

holds). Furthermore, since s
1
1(t) < 1 for all t 2 [t01 , t2], we have P0(s1(t)) ⇤ 0, for all t 2 [t01 , t2]. Using these facts

in Equation (13), we obtain F1(s1(t))� F1(s2(t)) � 0, for all t 2 [t01 , t2]. Therefore, s
1
1 � s

2
1 is nondecreasing in that

interval. This is a contradiction, because we have s
1
1(t01) ⇤ s

2
1(t01) and s

1
1(t2) < s

2
1(t2). Therefore, this case cannot

arise either. ⇤

We will now show that we can “sandwich” any given trajectory s(t) between a smaller one s
l(t) and a larger

one s
u(t) (according to our partial order �) and prove that both s

l(t) and s
u(t) converge to s

⇤, to conclude that
s(t) converges to s

⇤.

Proposition 4.5. The equilibrium s
⇤ of the fluid model is globally asymptotically stable, i.e.,

lim
t!1

ks(t)� s
⇤k

w
⇤ 0,

for all fluid solutions s( · ).
Proof. Suppose that s(0)⇤ s

0 2S 1. We define initial conditions s
u(0) and s

l(0) by letting

s
u

i
(0)⇤max{s

i
(0), s⇤

i
}, and s

l

i
(0)⇤min{s

i
(0), s⇤

i
},

for all i. We then have s
u(0)� s

0 � s
l(0), s

u(0)� s
⇤ � s

l(0), and s
u(0), sl(0) 2S 1. Due to monotonicity (Lemma 4.4),

we obtain that s
u(t) � s(t) � s

l(t) and s
u(t) � s

⇤ � s
l(t) for all t � 0. Thus it suffices to prove that ks

u(t)� s
⇤k

w
and

ks
l(t)� s

⇤k
w

converge to 0 as t !1.
For any s 2S 1, we introduce an equivalent representation in terms of a vector v with components v

i
defined by

v
i
,

1X
j⇤i

s
j
, i � 1.

Note that any s 2 S 1 can be fully recovered from v. Therefore, we can work with a representation v
u(t), v

l(t),
and v

⇤, of the vectors s
u(t), s

l(t), and s
⇤, respectively.

From the proof of Lemma 4.1, we know that a trajectory can be non-differentiable at most at a single point
in time. This can occur only for the High Message regime, and only if the trajectory hits the set

D ⇤ {s 2S 1: s1 ⇤ 1 and s2 > 1� �},

where the drift is discontinuous. In all other cases, the trajectories are not only differentiable, but also Lipschitz
continuous (in time), with the same Lipschitz constant for all coordinates. Therefore, in order to prove the
asymptotic stability of the solutions, which is a property of the limiting behavior as t !1, we can assume that
the trajectories are everywhere differentiable and Lipschitz continuous.

Our first step is to derive a differential equation for v
i
. This requires the interchange of summation and

differentiation, which we proceed to justify. For any i � 1, we define a sequence of functions { f
(i)
k
}1

k⇤1, as follows:

f
(i)
k
(t) ,

kX
j⇤i

ds
u

j

dt
(t).

Using Equations (2) and (3), we obtain

f
(1)
k
(t)⇤ �� s

u

1 (t)+ [su

n+1(t)� �s
u

k
(t)P0(su(t))],

f
(i)
k
(t)⇤ �s

u

i�1(t)P0(su(t))� s
u

i
(t)+ [su

k+1(t)� �s
u

k
(t)P0(su(t))], 8 i � 2.

Since s
u(t) 2S 1, for all t, we have the pointwise limits

lim
k!1

f
(1)
k
(t)⇤ �� s

u

1 (t), lim
k!1

f
(i)
k
(t)⇤ �s

u

i�1(t)P0(su(t))� s
u

i
(t), 8 i � 2.
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On the other hand, since all components of s
u( · ) are Lipschitz continuous with the same constant, and since

P0(s) is also Lipschitz-continuous, the functions in the sequence { f
(i)
k
}1

k⇤1 are equicontinuous, for any given i.
Then, the Arzelà-Ascoli theorem allows us to conclude that f

(i)
k
( · ) also converges uniformly, over any compact

interval of time, to their pointwise limits. Using the uniform convergence, and the fact that s
u(0) 2 S 1, we can

interchange summation and differentiation (Theorem 7.17 in Rudin 1976) to obtain

dv
u

1

dt
(t)⇤ d

dt

1X
j⇤1

s
u

j
(t)⇤

1X
j⇤1

ds
u

j

dt
(t)⇤ �� s

u

1 (t)

dv
u

i

dt
(t)⇤ d

dt

1X
j⇤i

s
u

j
(t)⇤

1X
j⇤i

ds
u

j

dt
(t)⇤ �s

u

i�1(t)P0(su(t))� s
u

i
(t), 8 i � 2.

Turning the above differential equations into integral equations, and using the facts s
⇤
1 ⇤ � and �s

⇤
i�1P

⇤
0 � s

⇤
i
⇤ 0,

we have

v
u

1 (t)� v
u

1 (0) ⇤
π

t

0
(s⇤1 � s

u

1 (⌧)) d⌧,

v
u

i
(t)� v

u

i
(0) ⇤

π
t

0
(�(su

i�1(⌧)P0(su(⌧))� s
⇤
i�1P

⇤
0)� (su

i
(⌧)� s

⇤
i
)) d⌧, 8 i � 2.

Note that from the definition of v
i
, we have v

u

1 (t) � v
u

i
(t). Furthermore, from Lemma 4.4, we have s

u

1 (t) � s
⇤
1, so

that €vu

1 (t)  0, for all t � 0. It follows that

v
u

1 (0) � v
u

1 (t) � v
u

i
(t) � v

u

i
(t)� v

u

i
(0) � �v

u

i
(0),

for all t.
We will now use induction on i to prove coordinate-wise convergence, i.e., that |su

i
(t)� s

⇤
i
| converges to 0 for

all i � 1. We start with the base case, i ⇤ 1. We have s
u

1 (⌧)� s
⇤
1 � 0, for all ⌧ � 0. Using the fact €vu

1 (t)  0, we see
that v

u

1 (t) converges to some limit, which we denote by v
u

1 (1). Then,

0 
π 1

0
(su

1 (⌧)� s
⇤
1) d⌧ ⇤ v

u

1 (0)� v
u

1 (1)  v
u

1 (0) <1,

which, together with the fact that s1 is Lipschitz continuous, implies that (su

1 (⌧)� s
⇤
1)! 0 as ⌧!1.

We now consider some i � 2 and make the induction hypothesis thatπ 1

0
(su

k
(⌧)� s

⇤
k
) d⌧ <1, 8 k  i � 1. (14)

Then,

� v
u

i
(0)  v

u

i
(t)� v

u

i
(0)⇤

π
t

0
(�(su

i�1(⌧)P0(su(⌧))� s
⇤
i�1P

⇤
0)� (su

i
(⌧)� s

⇤
i
)) d⌧. (15)

Adding and subtracting �s
⇤
i�1P0(su(⌧)) inside the integral, we obtain

�v
u

1 (0) 
π

t

0
(�[su

i�1(⌧)� s
⇤
i�1]P0(su(⌧))+ �[P0(su(⌧))�P

⇤
0]s⇤i�1 � (su

i
(⌧)� s

⇤
i
)) d⌧. (16)

Using Lemma 4.4, we have s
u

i�1(⌧)� s
⇤
i�1 for all i � 1, and for all ⌧ � 0, which also implies that P0(su(⌧))� P

⇤
0 for all

⌧ � 0. Therefore, the two terms inside brackets are nonnegative. Using the facts � < 1, s
⇤
i�1  1, and P0(su(⌧))  1,

Equation (16) implies that

�v
u

i
(0) 

π
t

0
([su

i�1(⌧)� s
⇤
i�1]+ [P0(su(⌧))�P

⇤
0]� [su

i
(⌧)� s

⇤
i
]) d⌧,

or π
t

0
(su

i
(⌧)� s

⇤
i
) d⌧  v

i
(0)+

π
t

0
(su

i�1(⌧)� s
⇤
i�1) d⌧+

π
t

0
(P0(su(⌧))�P

⇤
0) d⌧. (17)

The first integral on the right-hand side of Equation (17) is upper-bounded uniformly in t, by the induction
hypothesis (Equation (14)). We now derive an upper bound on the last integral, for each one of the three
regimes.
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(i) High Memory regime: By inspecting the expression for P0(s) for the High-Memory variant, we observe that
it is monotonically nondecreasing and Lipschitz continuous in s1. Therefore, there exists a constant L such that

π
t

0
(P0(su(⌧))�P

⇤
0) d⌧ 

π
t

0
L(su

1 (⌧)� s
⇤
1) d⌧.

Using the induction hypothesis for k ⇤ 1, we conclude that the last integral on the right-hand side of Equa-
tion (17) is upper bounded, uniformly in t.

(ii) Constrained regime: For the Constrained regime, the function P0(s) is again monotonically nondecreasing
and, as remarked at the beginning of the proof of Lemma 4.1, it is also Lipschitz continuous in s1. Thus, the
argument is identical to the previous case.

(iii) High Message regime: We have an initial condition s
0 2S 1, and therefore 0  v

0
1 <1. As already remarked,

we have €vu

1 (t)⇤ �� s
u

1 (t)  0. It follows that s
u

1 can be equal to 1 for at most v
0
1/(1� �) units of time. Therefore,

P0(su(t)) ⇤ [1 � (1 � s
u

2 (t))/�]+⌧{s
u

1 (t)⇤1} can be positive only on a set of times of Lebesgue measure at most
v

0
1/(1� �). This implies the uniform (in t) upper bound

π
t

0
(P0(su(⌧))�P

⇤
0) d⌧ ⇤

π
t

0
P0(su(⌧)) d⌧  v

0
1

1� � .

For all three cases, we have shown that the last integral in Equation (17) is upper bounded, uniformly in t. It
follows from Equation (17) and the induction hypothesis that

π 1

0
(su

i
(⌧)� s

⇤
i
) d⌧ <1.

This completes the proof of the induction step. Using the Lipschitz-continuity of s
u

i
( · ), it follows that s

u

i
(t)

converges to s
⇤
i

for all i � 1. It is straightforward to check that this coordinate-wise convergence, together with
boundedness (su

i
(t)  1, for all i and t), implies that also

lim
t!1

ks
u(t)� s

⇤k
w
⇤ 0.

An analogous argument gives us the convergence

lim
t!1

ks
l(t)� s

⇤k
w
⇤ 0,

which concludes the proof. ⇤

5. Stochastic Transient Analysis—Proof of Theorem 3.2 and of the Rest of Theorem 3.1
We will now prove the convergence of the stochastic system to the fluid solution. The proof involves three steps.
We first define the process using a coupled sample path approach, as in Tsitsiklis and Xu (2012). We then show
the existence of limiting trajectories under the fluid scaling (Proposition 5.3). We finally show that any such
limit trajectory must satisfy the differential equations in the definition of the fluid model (Proposition 5.4).

5.1. Probability Space and Coupling
We will first define a common probability space for all n. We will then define a coupled sequence of processes
{(Sn(t),Mn(t))}1

n⇤1. This approach will allow us to obtain almost sure convergence in the common probability
space.
5.1.1. Fundamental Processes and Initial Conditions. All processes of interest (for all n) will be driven by certain
common fundamental processes.

(a) Driving Poisson processes: Independent Poisson counting processes N �(t) (process of arrivals, with
rate �), and N 1(t) (process of potential departures, with rate 1). A coupled sequence {N µ(n)(t)}1n⇤1 (processes
of potential messages, with nondecreasing rates µ(n)), independent of N �(t) and N 1(t), such that the events
in N µ(n)(t) are a subset of the events in N µ(n+1)(t) almost surely, for all n � 1. These processes are defined on a
common probability space (⌦

D
,A

D
,⇣

D
).

(b) Selection processes: Three independent discrete time processes U(k), V(k), and W(k), which are all i.i.d.
and uniform on [0, 1], defined on a common probability space (⌦

S
,A

S
,⇣

S
).
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(c) Initial conditions: A sequence of random variables {(S(0, n) ,M(0, n))}1
n⇤1 defined on a common probability

space (⌦0 ,A0 ,⇣ 0) and taking values in (S 1 \I
n
)⇥ {0, 1, . . . , c(n)}.

The whole system will be defined on the probability space

(⌦,A,⇣ )⇤ (⌦
D
⇥⌦

S
⇥⌦0 ,AD

⇥A
S
⇥A0 ,⇣D

⇥⇣
S
⇥⇣ 0).

All of the randomness in the system (for any n) will be specified by these fundamental processes, and everything
else will be a deterministic function of them.

5.1.2. A Coupled Construction of Sample Paths. Recall that our policy results in a Markov process
(Sn(t),Mn(t)) 2 (S 1 \I

n
)⇥ {0, 1, . . . , c(n)}, where S

n

i
(t) is the fraction of servers with at least i jobs and M

n(t)
is the number of tokens stored in memory, at time t. We now describe a particular construction of the process,
as a deterministic function of the fundamental processes. We decompose the process S

n(t) as the sum of two
non-negative and non-decreasing processes, A

n(t) and D
n(t), that represent the (scaled by n) total cumulative

arrivals to and departures from the queues, respectively, so that

S
n(t)⇤ S

(0, n)
+A

n(t)�D
n(t).

Let t
�,n
j

, t
1,n
j

, and t
µ,n
j

be the time of the j-th arrival of N �(nt), N 1(nt), and N µ(n)(nt), respectively. In order to
simplify notation, we will omit the superscripts �, 1, and µ, when the corresponding process is clear. We denote
by S

n(t�) the left limit lim
s"t

S
n(s), and similarly for M

n(t�). Then, the first component of A
n(t) is

A
n

1 (t)⇤
1
n

N �(nt)X
j⇤1

[⌧[1, c(n)](Mn(tn

j

�))+ ⌧{0}(Mn(tn

j

�))⌧[0, 1�S
n

1 (tn

j

�))(U( j))]. (18)

The above expression is interpreted as follows. We have an upward jump of size 1/n in A
n

1 every time that a
job joins an empty queue, which happens every time that there is an arrival and either (i) there are tokens in
the virtual queue (i.e., M

n > 0) or, (ii) there are no tokens and an empty queue is drawn uniformly at random,
which happens with probability 1� S

n

1 . Similarly, for i � 2,

A
n

i
(t)⇤ 1

n

N �(nt)X
j⇤1

⌧{0}(Mn(tn

j

�))⌧[1�S
n

i�1(tn

j

�), 1�S
n

i
(tn

j

�))(U( j)).

In this case we have an upward jump in A
n

i
of size 1/n every time that there is an arrival, there are no tokens

in the virtual queue (i.e., M
n ⇤ 0), and a queue with exactly i � 1 jobs is drawn uniformly at random, which

happens with probability S
n

i�1 � S
n

i
. Moreover, for all i � 1,

D
n

i
(t)⇤ 1

n

N 1(nt)X
j⇤1

⌧[1�S
n

i
(tn

j

�), 1�S
n

i+1(tn

j

�))(W( j)).

We have an upward jump in D
n

i
of size 1/n when there is a departure from a queue with exactly i jobs, which

happens with rate (Sn

i
� S

n

i+1)n.
Recall that µ(n) is the message rate of an empty server. In the High Memory and Constrained regimes, we

have µ(n) ⇤ µ, while in the High Message regime µ(n) is a nondecreasing and unbounded sequence. Potential
messages are generated according to the process N µ(n)(nt), but an actual message is generated only if a randomly
selected queue is empty. Thus, the number of tokens in the virtual queue evolves as follows:

M
n(t)⇤ M

(0, n) �
N �(nt)X

j⇤1
⌧[1, c(n)](Mn(tn

j

�))+
N µ(n)(nt)X

j⇤1
⌧[0, c(n)�1](Mn(tn

j

�))⌧[0, 1�S1(tn

j

�)�Mn (tn

j

�)/n)(V( j)). (19)

To see this, if the virtual queue is not empty, a token is removed from the virtual queue each time there is an
arrival. Furthermore, if the virtual queue is not full, a new token is added each time a new message arrives
from one of the n(1� S

n

1 )� M
n queues that do not have corresponding tokens in the virtual queue.

Remark 5.1. The desired result only concerns the convergence of the projection of the Markov process
(Sn(t),Mn(t)) onto its first component. However, the process of tokens M

n will still have an impact on that limit.
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As mentioned earlier, the proof involves the following two steps:
1. We show that there exists a measurable set C ⇢⌦ with ⇣ (C) ⇤ 1 such that for all ! 2 C, any sequence of

sample paths S
n(!, t) contains a further subsequence that converges to a Lipschitz continuous trajectory s(t),

as n !1.
2. We characterize the derivative of s(t) at any regular point and show that it is identical to the drift of our

fluid model. Hence s(t) must be a fluid solution for some initial condition s
0, yielding also, as a corollary, the

existence of fluid solutions.

5.2. Tightness of Sample Paths
We start by finding a set of “nice” sample paths ! for which any subsequence of the sequence {S

n(!, t)}1
n⇤1

contains a further subsequence {S
nk (!, t)}1

k⇤1 that converges to some Lipschitz continuous function s. The argu-
ments involved here are fairly straightforward and routine.

Lemma 5.1. Fix T > 0. There exists a measurable set C ⇢⌦ such that ⇣ (C)⇤ 1 and for all ! 2C,

lim
n!1

sup
t2[0,T]

���� 1nN �(!, nt)� �t

����⇤ 0, (20)

lim
n!1

sup
t2[0,T]

���� 1nN 1(!, nt)� t

����⇤ 0, (21)

lim
n!1

1
n

nX
i⇤1

⌧[a , b)(U(!, i))⇤ b � a , for all [a , b) ⇢ [0, 1], (22)

lim
n!1

1
n

nX
i⇤1

⌧[c , d)(W(!, i))⇤ d � c , for all [c , d) ⇢ [0, 1]. (23)

Proof. Using the Functional Strong Law of Large Numbers for Poisson processes, we obtain a subset C
D
⇢⌦

D

such that ⇣
D
(C

D
)⇤ 1 on which Equations (20) and (21) hold. Furthermore, the Glivenko-Cantelli lemma gives us

another subset C
S
⇢⌦

S
such that ⇣

S
(C

S
)⇤ 1 and on which Equations (22) and (23) hold. Taking C ⇤C

D
⇥C

S
⇥⌦0

concludes the proof. ⇤

Let us fix an arbitrary s
0 2 [0, 1], sequences R

n
# 0 and �

n
# 0, and a constant L > 0. For n � 1, we define the

following subsets of D[0,T]:

E
n
(R

n
, �

n
) , {s 2 D[0,T]: |s(0)� s

0 |  R
n
, and |s(a)� s(b)|  L |a � b | + �

n
, 8 a , b 2 [0,T]}. (24)

We also define
E

c
, {s 2 D[0,T]: s(0)⇤ s

0 , |s(a)� s(b)|  L |a � b |, 8 a , b 2 [0,T]},
which is the set of L-Lipschitz continuous functions with fixed initial conditions, and which is known to be
sequentially compact, by the Arzelà-Ascoli theorem.

Lemma 5.2. Fix T > 0, ! 2C, and some s
0 2S 1. Suppose that

kS
n(!, 0)� s

0k
w
 R̃

n
,

for some sequence R̃
n
# 0. Then, there exist sequences {R

(i)
n # 0}1

i⇤0 and �
n
# 0 such that

S
n

i
(!, ·) 2 E

n
(R(i)

n , �n
), 8 i 2 ⇢+ , 8 n � 1,

with the constant L in the definition of E
n

equal to 1+ �.

Proof. Fix some ! 2 C. Based on our coupled construction, each coordinate of A
n (the process of cumulative

arrivals) and D
n (the process of cumulative departures) is non-decreasing, and can have a positive jump, of

size 1/n, only when there is an event in N � or N 1, respectively. As a result, for every i and n, we have

|An

i
(!, a)�A

n

i
(!, b)|  1

n
|N �(!, na)�N �(!, nb)|, 8 a , b 2 [0,T],

and
|Dn

i
(!, a)�D

n

i
(!, b)|  1

n
|N 1(!, na)�N 1(!, nb)|, 8 a , b 2 [0,T].
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Therefore,

|Sn

i
(!, a)� S

n

i
(!, b)|  1

n
|N �(!, na)�N �(!, nb)| + 1

n
|N 1(!, na)�N 1(!, nb)|.

Since ! 2C, Lemma 5.1 implies that (1/n)N �(!, nt) and (1/n)N 1(!, nt) converge uniformly on [0,T] to �t and
to t, respectively. Thus, there exists a pair of sequences �1

n
# 0 and �2

n
# 0 (which depend on !) such that for all

n � 1,
1
n
|N �(!, na)�N �(!, nb)|  � |a � b | + �1

n
,

and
1
n
|N 1(!, na)�N 1(!, nb)|  |a � b | + �2

n
,

which imply that
|Sn

i
(!, a)� S

n

i
(!, b)|  (1+ �)|a � b | + (�1

n
+ �2

n
).

The proof is completed by setting R
(i)
n ⇤ 2i

R̃
n
, �

n
⇤ �1

n
+ �2

n
, and L ⇤ 1+ �. ⇤

We are now ready to prove the existence of convergent subsequences of the process of interest.

Proposition 5.3. Fix T > 0, ! 2C, and some s
0 2S 1. Suppose �as in Lemma �.�� that kS

n(!, 0)� s
0k

w
 R̃

n
, where R̃

n
# 0.

Then, every subsequence of {S
n(!, ·)}1

n⇤1 contains a further subsequence {S
nk (!, ·)}1

k⇤1 that converges to a coordinate-wise
Lipschitz continuous function s(t) with s(0)⇤ s

0 and

|s
i
(a)� s

i
(b)|  L |a � b |, 8 a , b 2 [0,T], i 2 ⇢,

where L is independent of T, !, and s( · ).

Proof. As in Lemma 5.2, let L ⇤ 1+�. A standard argument, similar to the one in Bramson (1998) and Tsitsiklis
and Xu (2012), based on the sequential compactness of E

c
and the “closeness” of E

n
(R(i)

n , �n
) to E

c
establishes

the following. For any i � 1, every subsequence of {S
n

i
(!, ·)}1

n⇤1 contains a further subsequence that converges
to a Lipschitz continuous function y

i
(t) with y

i
(0)⇤ s

0
i
.

Starting with the existence of coordinate-wise limit points, we now argue the existence of a limit point of S
n

in D
1[0,T]. Let s1 be a Lipschitz continuous limit point of {S

n

1 (!, ·)}1n⇤1, so that there is a subsequence such that

lim
k!1

d(Sn
1
k

1 (!, ·), s1)⇤ 0.

We then proceed inductively and let s
i+1 be a limit point of a subsequence of {S

n
i

k

i+1(!, ·)}1k⇤1, where {n
i

k
}1

k⇤1 are
the indices of the subsequence of S

n

i
.

We now argue that s is indeed a limit point of S
n in D

1[0,T]. Fix a positive integer i. Because of the
construction of s, S

n
i

k

j
(!, ·) converges to s

j
, as k !1, for j ⇤ 1, . . . , i. In particular, there exists some n

i > i, for
which

d(Sn
i

j
(!, ·), s

j
)  1

i
, j ⇤ 1, . . . , i.

We then have

d
⇢+(Sn

i (!, ·), s)⇤ sup
t2[0,T]

s
1X
j⇤1

2� j |Sni

j
(!, t)� s

j
(t)|2  1

i
+

s
1X

j⇤ni+1
2� j+2.

We now let i increase to infinity (in which case n
i also increases to infinity), and we conclude that

d
⇢+(Sn

i (!, ·), s)! 0. ⇤

This concludes the proof of the tightness of the sample paths. It remains to prove that any possible limit
point is a fluid solution.
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5.3. Derivatives of the Fluid Limits
Proposition 5.4. Fix ! 2 C and T > 0. Let s be a limit point of some subsequence of {S

n(!, ·)}1
n⇤1. As long as !

does not belong to a certain zero-measure subset of C, s satisfies the differential equations that define a fluid solution
�cf. Definition �.��.

Proof. We fix some ! 2C and for the rest of this proof we suppress the dependence on ! in our notation. Let
{S

nk }1
k⇤1 be a subsequence that converges to s, i.e.,

lim
k!1

sup
0tT

kS
nk (t)� s(t)k

w
⇤ 0.

After possibly restricting, if necessary, to a further subsequence, we can define Lipschitz continuous functions
a

i
(t) and d

i
(t) as the limits of the subsequences of cumulative arrivals and departures processes {A

nk

i
(t)}1

k⇤1 and
{D

nk

i
(t)}1

k⇤1 respectively. Because of the relation S
n

i
(t)⇤ S

(0, n) +A
n

i
(t)�D

n

i
(t), it is enough to prove the following

relations, for almost all t:

da1

dt
(t)⇤ �[1�P0(s(t))]+ �[1� s1(t)]P0(s(t)),

da
i

dt
(t)⇤ �[s

i�1(t)� s
i
(t)]P0(s(t)), 8 i � 2,

dd
i

dt
(t)⇤ s

i
(t)� s

i+1(t), 8 i � 1.

We will provide a proof only for the first one, as the other proofs are similar. The main idea in the argument
that follows is to replace the token process M

n by simpler, time-homogeneous birth-death processes that are
easy to analyze.

Let us fix some time t 2 (0,T), which is a regular time for both a1 and d1. Let ✏ > 0 be small enough so that
t + ✏  T and so that it also satisfies a condition to be introduced later. Equation (18) yields

A
nk

1 (t + ✏)�A
nk

1 (t)⇤ 1
n

k

N �(nk (t+✏))X
j⇤N �(nk t)+1

[⌧[1, c(nk )](Mnk (tnk

j

�))+ ⌧{0}(Mnk (tnk

j

�))⌧[0, 1�S
n

k

1 (tn
k

j

�))(U( j))]. (25)

By Lemma 5.2, there exists a sequence �
nk
# 0 and a constant L such that

S
nk

1 (u) 2 [s1(t)� (✏L + �
nk
), s1(t)+ (✏L + �

nk
)), 8 u 2 [t , t + ✏].

Then, for all sufficiently large k, we have

S
nk

1 (u) 2 [s1(t)� 2✏L, s1(t)+ 2✏L)), 8 u 2 [t , t + ✏]. (26)

In particular, for k sufficiently large and for every event time t
nk

j

� 2 (t , t + ✏] of the driving process N �, we have

[0, 1� S
nk

1 (tnk

j

�)) ⇢ [0, 1� s1(t)+ 2✏L).

This implies that

A
nk

1 (t + ✏)�A
nk

1 (t)  1
n

k

N �(nk (t+✏))X
j⇤N �(nk t)+1

[⌧[1, c(nk )](Mnk (tnk

j

�))+ ⌧{0}(Mnk (tnk

j

�))⌧[0, 1�s1(t)+2✏L)(U( j))].

We wish to analyze this upper bound on A
nk

1 (t + ✏) � A
nk

1 (t), which will then lead to an upper bound on
(da

i
/dt)(t). Towards this purpose, we will focus on the empirical distribution of ⌧{0}(Mnk (tnk

j

�)), which depends
on the birth-death process M

nk (t), and which is in turn modulated by S
nk (t). In particular, we will define two

coupled time-homogeneous birth-death processes: M
nk

+ , which is dominated by M
nk ; and M

nk� , which dominates
M

nk over (t , t + ✏], i.e.,
M

nk

+ (u)  M
nk (u)  M

nk

� (u), 8 u 2 (t , t + ✏]. (27)

This is accomplished as follows. Using again Equation (26), when n
k

is sufficiently large, we get the set inclusion

0, 1� S

nk

1 (tnk

j

�)�
M

nk (tnk

j

�)
n

k

◆
⇢ [0, 1� s1(t)+ 2✏L),
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for all event times t
nk

j
2 [t , t + ✏). Furthermore, our assumptions on c(n

k
) imply that M

nk (t)/n
k
 c(n

k
)/n

k
goes

to zero as k !1. Thus, when n
k

is sufficiently large,

0, 1� S

nk

1 (tnk

j

�)�
M

nk (tnk

j

�)
n

k

◆
� [0, 1� s1(t)� 3✏L),

for all event times t
nk

j
2 [t , t + ✏). We now define intermediate coupled processes M̃

nk

+ and M̃
nk� by replacing the

last indicator set in the evolution equation for M
n(t) (cf. Equation (19)), by the deterministic sets introduced

above. Furthermore, we set M̃
nk

+ (t)⇤ 0  M
nk (t) and M̃

nk� (t)⇤ c(n
k
) � M

nk (t).
More concretely, for all u 2 [t , t + ✏], we let

M̃
nk

� (u) , c(n
k
)�

N �(nk u)X
j⇤N �(nk t)+1

⌧[1, c(nk )](M̃nk

� (tnk

j

�))+
N µ(n

k
)(nk u)X

j⇤N µ(n
k
)(nk t)+1

⌧[0, c(nk )�1](M̃nk

� (tnk

j

�))⌧[0, 1�s1(t)+2✏L)(V( j))

and

M̃
nk

+ (u) , 0�
N �(nk u)X

j⇤N �(nk t)+1
⌧[1, c(nk )](M̃

nk

+ (tnk

j

�))+
N µ(n

k
)(nk u)X

j⇤N µ(n
k
)(nk t)+1

⌧[0, c(nk )�1](M̃nk

+ (tnk

j

�))⌧[0, 1�s1(t)�3✏L)(V( j)).

We note that the processes M̃
nk� (u) and M̃

nk

+ (u) are plain, time-homogenous birth-death Markov processes, no
longer modulated by S

nk (t), and therefore easy to analyze. It can now be argued, by induction on the event
times, that M̃

nk� (u) � M
nk (u) for all u. We omit the details but simply note that (i) this inequality holds at time t;

(ii) whenever the process M
nk (u) has an upward jump, the same is true for M̃

nk� (u), unless M̃
nk� (u) is already

at its largest possible value, c(n
k
), in which case the desired inequality is preserved; (iii) as long as the desired

inequality holds, whenever the process M̃
nk� (u) has a downward jump, the same is true for M

nk (u), unless
M

nk (u) is already at its smallest possible value, 0, in which case the desired inequality is again preserved. Using
also a symmetrical argument for M̃

nk

+ (u), we obtain the domination relationship

M̃
nk

+ (u)  M
nk (u)  M̃

nk

� (u), 8 u 2 (t , t + ✏]. (28)

Even though M̃
nk

+ and M̃
nk� are simple birth-death processes, it is convenient to simplify them even further. We

thus proceed to define the coupled processes M
nk

+ and M
nk� by modifying the intermediate processes M̃

nk

+ and
M̃

nk� in a different way for each regime.
(i) High Memory regime: Recall that in this regime we have µ(n

k
)⇤µ for all k. Let us fix some l, independently

from k, and let c
l
⇤ c(n

l
). For every k, we define M

nk

+ and M
nk� by replacing the upper bound c(n

k
) on the number

of tokens in M̃
nk

+ and M̃
nk� , by c

l
and 1 respectively. More concretely, for u 2 [t , t + ✏] we let

M
nk

� (u) , c(n
k
)�

N �(nk u)X
j⇤N �(nk t)+1

⌧[1,1)(Mnk

� (tnk

j

�))+
N µ(nk u)X

j⇤N µ(nk t)+1
⌧[0, 1�s1(t)+2✏L)(V( j))

and

M
nk

+ (u) , 0�
N �(nk u)X

j⇤N �(nk t)+1
⌧[1, cl ](M

nk

+ (tnk

j

�))+
N µ(nk u)X

j⇤N µ(nk t)+1
⌧[0, cl�1](Mnk

+ (tnk

j

�))⌧[0, 1�s1(t)�3✏L)(V( j)).

When k is large enough, we have c(n
k
) � c

l
, and as we are replacing c(n

k
) by c

l
in M̃

nk

+ , we are reducing the
state space of the homogeneous birth-death process M̃

nk

+ . It is easily checked (by induction on the events of the
processes) that we have the stochastic dominance M̃

nk

+ � M
nk

+ . Using a similar argument, we obtain M̃
nk�  M

nk� .
These facts, together with Equation (28), imply the desired dominance relation in Equation (27).

(ii) High Message regime: Recall that in this regime we have c(n
k
)⇤ c, for all k. Let us fix some l, independently

from k, and let µ
l
⇤µ(n

l
). We define M

nk

+ by replacing the process N µ(nk ) that generates the spontaneous messages
in M̃

nk

+ , by N µl
. More concretely, for u 2 [t , t + ✏] we let

M
nk

+ (u) , 0�
N �(nk u)X

j⇤N �(nk t)+1
⌧[1, c](Mnk

+ (tnk

j

�))+
N µ

l
(nk u)X

j⇤N µ
l
(nk t)+1

⌧[0, c�1](Mnk

+ (tnk

j

�))⌧[0, 1�s1(t)�3✏L)(V( j)).
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Recall that we assumed that the event times in the Poisson process N µ(nk ) are a subset of the event times
of N µ(nk+1), for all k. As a result, when k � l, the process M

nk

+ only has a subset of the upward jumps in M̃
nk

+ , and
thus (using again a simple inductive argument) satisfies M̃

nk

+ � M
nk

+ . Furthermore, we define M
nk� (u) , c, which

clearly satisfies M̃
nk�  M

nk� . Combining these facts with Equation (28), we have again the desired dominance
relation in Equation (27).

(iii) Constrained regime: Recall that in this regime we have c(n
k
) ⇤ c and µ(n

k
) ⇤ µ, for all k � 1. For this case,

we define M
nk� ⇤ M̃

nk� and M
nk

+ ⇤ M̃
nk

+ , which already satisfy the desired dominance relation in Equation (27).
For all three regimes, and having fixed l, the dominance relation in Equation (27) implies that when k is large

enough (k � l), we have
⌧{0}(Mnk

� (tnk

j

�))  ⌧{0}(Mnk (tnk

j

�))  ⌧{0}(Mnk

+ (tnk

j

�))
for all t

nk

j

� 2 (t , t + ✏]. Consequently,

A
nk

1 (t + ✏)�A
nk

1 (t)  1
n

k

N �(nk (t+✏))X
j⇤N �(nk t)+1

[1� ⌧{0}(Mnk

� (tnk

j

�))+ ⌧{0}(Mnk

+ (tnk

j

�))⌧[0, 1�s1(t)+2✏L)(U( j))]. (29)

Note that the transition rates of the birth-death processes M
nk� and M

nk

+ , for different n
k
, involve n

k
only as a

scaling factor. As a consequence, the corresponding steady-state distributions are the same for all n
k
.

Let P
�
0 (s(t)) and P

+

0 (s(t)) be the steady-state probabilities of state 0 for M
nk� and M

nk

+ , respectively. Then, using
the PASTA property, we have that as n

k
!1, the empirical averages

1
n

k

N �(nk (t+✏))X
j⇤N �(nk t)+1

⌧{0}(Mnk

� (tnk

j

�))

and
1
n

k

N �(nk (t+✏))X
j⇤N �(nk t)+1

⌧{0}(Mnk

+ (tnk

j

�)) (30)

converge almost surely to ✏�P
�
0 (s(t)) and ✏�P

+

0 (s(t)), respectively.
We now continue with the explicit calculation of P

�
0 (s(t)) and P

+

0 (s(t)).
(i) High Memory regime:

P
�
0 (s(t))⇤


1� µ ·min{1� s1(t)+ 2✏L, 1}

�

�+
and P

+

0 (s(t))⇤


clX
k⇤0

✓
µ(1� s1(t)� 3✏L)+

�

◆ k��1

,

(ii) High Message regime: If s1(t) < 1, then we assume that ✏ has been chosen small enough so that 1� s1(t)�
3✏L > 0. We then obtain

P
�
0 (s(t))⇤ 0 and P

+

0 (s(t))⇤


cX
k⇤0

✓
µ

l
[1� s1(t)� 3✏L]+

�

◆ k��1

.

Suppose now that s1(t) ⇤ 1. In this case, the approach based on the processes M
nk� and M

nk

+ is not useful,
because it yields P

�
0 (s(t))⇤ 0 and P

+

0 (s(t))⇤ 1, for all ✏ > 0 and for all µ
l
. This case will be considered separately

later.
(iii) Constrained regime:

P
�
0 (s(t))⇤


cX

k⇤0

✓
µ ·min{1� s1(t)+ 2✏L, 1}

�

◆ k��1

and P
+

0 (s(t))⇤


cX
k⇤0

✓
µ(1� s1(t)� 3✏L)+

�

◆ k��1

,

We now continue by considering all three regimes, with the exception of the High Message regime with
s1(t) ⇤ 1, which will be dealt with separately. We use the fact that the random variables U( j) are independent
from the process M

nk

+ . Using an elementary argument, which is omitted, it can be seen that

1
n

k

N �(nk (t+✏))X
j⇤N �(nk t)+1

⌧{0}(Mnk

+ (tnk

j

�))⌧[0, 1�s1(t)+2✏L)(U( j))
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converges to the limit of the empirical average in Equation (30), which is the product of ✏�P
+

0 (s(t)) times the
expected value of ⌧[0, 1�s1(t)+2✏L)(U( j)). That is, it converges to ✏P+

0 (s(t))min{1� s1(t)+ 2✏L, 1}, ⇣ -almost surely.
Recall that we have fixed some ✏ > 0 and some l and, furthermore, that P

�
0 and P

+

0 depend on l for the High
Memory and High Message regimes, and on ✏ for all regimes. We will first take limits, as k !1, while holding
✏ and l fixed. Using the inequality in Equation (29), and the fact that the left-hand side converges to the fluid
limit a(t + ✏)� a(t) as k !1, we obtain

a1(t + ✏)� a1(t)  ✏�[1�P
�
0 (s(t))]+ ✏�P

+

0 (s(t))min{1� s1(t)+ 2✏L, 1}.

An analogous argument yields

a1(t + ✏)� a1(t) � ✏�[1�P
+

0 (s(t))]+ ✏�P
�
0 (s(t))[1� s1(t)� 2✏L]+.

We now take the limit as l !1, so that c
l
!1 for the High Memory regime and µ

l
!1 for the High Message

regime, and then take the limit as ✏! 0. Some elementary algebra shows that in all cases, P
+

0 (s(t)) and P
�
0 (s(t))

both converge to P0(s(t)), as defined in the statement of the proposition. We thus obtain

da1(t)
dt

⇤ �[1�P0(s(t))]+ �[1� s1(t)]P0(s(t)), (31)

as desired.
We now return to the exceptional case of the High Message regime with s1(t)⇤ 1, and find the derivative of

a1(t) using a different argument. Recall that we have the hard bound S
n

1 (t)  1, for all t and for all n. This leads
to the same bound for the fluid solutions, i.e., s1(t)  1 for all t. As a result, since t > 0 is a regular time, we
must have €s1(t)⇤ 0. Furthermore, we also have the formula

€d1(t)⇤ s1(t)� s2(t)⇤ 1� s2(t),

which is established by an independent argument, using the same proof technique as for €a1, but without the
inconvenience of having to deal with M

nk . Then, since €s1(t)⇤ €a1(t)� €d1(t), we must also have

€a1(t)⇤ 1� s2(t). (32)

On the other hand, it can be easily checked that €a1(t)  � for all regular t, and thus we must have s2(t) � 1� �.
We have thus established that at all regular times t > 0 with s1(t)⇤ 1, s2(t) must be at least 1��. Then it follows
(cf. Definition 3.1) that at time t, we have

P0(s(t))⇤

1� 1� s2(t)

�

�+
⌧{s1(t)⇤1} ⇤ 1� 1� s2(t)

�
.

It is then easily checked that Equation (32) is of the form

€a1(t)⇤ �(1�P0(s(t)))+ �(1� s1(t))P0(s(t)),

exactly as in Equation (31), where the last equality used the property s1(t)⇤ 1.
The derivatives of a

i
, for i > 1, and of d

i
, for i � 1, are obtained using similar arguments, which are omitted. ⇤

For every sample path outside a zero-measure set, we have established the following. Proposition 5.3 implies
the existence of limit points of the process S

n . Furthermore, according to Proposition 5.4 these limit points
verify the differential equations of the fluid model. Since all stochastic trajectories S

n(t) take values in S (which
is a closed set), their limits are functions taking values in S as well. We will now show that the limit s(t)
actually belongs to the smaller set S 1, which is a requirement in our definition of fluid solutions. Using the
same argument as in the proof of Proposition 4.5, it can be shown that

d

dt
ks(t)k1  �,

for all regular times t. Since the trajectories s are continuous with respect to our weighted norm k · k
w
, but not

necessarily with respect to the 1-norm, it now remains to be checked that the 1-norm cannot become infinite at
a nonregular time.
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Suppose that t1 is a nonregular time. Recall, from the proof of Proposition 4.5, that such a time may occur
only once, and only in the High Message regime, if trajectory hits the set

D ⇤ {s 2S : s1 ⇤ 1, s2 > 1� �}.

For all t < t1, we have P0(s(t))⇤ 0, and thus €s
i
(t) 0, for all t < t1 and all i � 2. Combining this with the continuity

of the coordinates, we obtain s
i
(t1)  s

i
(0), for all i � 2. It follows that

ks(t1)k1  1+ s1(t1)+
1X

i⇤2
s

i
(0)  2+ ks(0)k1.

Combining this with the fact that ks(0)k1 <1, we get that ks(t)k1 <1, for all t � 0, and thus s(t) 2 S 1, for all
t � 0. This implies the existence of fluid solutions, thus completing the proof of Theorem 3.1.

Moreover, we have already established a uniqueness result in Theorem 3.1: for any initial condition s
0 2 S 1,

we have at most one fluid solution. We also have (Proposition 5.3) that every subsequence of S
n has a further

subsequence that converges—by necessity to the same (unique) fluid solution. It can be seen that this implies
the convergence of S

n to the fluid solution, thus proving Theorem 3.2.

6. Stochastic Steady-State Analysis—Proofs of Proposition 3.3 and Theorem 3.4
In this section, we prove Proposition 3.3 and Theorem 3.4, which assert that for any finite n, the stochastic system
is positive recurrent with some invariant distribution ⇡n and that the sequence of the marginals of the invariant
distributions, {⇡n

s
}1

n⇤1, converges in distribution to a measure concentrated on the unique equilibrium of the
fluid model. These results guarantee that the properties derived from the equilibrium s

⇤ of the fluid model, and
specifically for the asymptotic delay, are an accurate approximation of the steady state of the stochastic system
for n large enough.

6.1. Stochastic Stability of the n-th System
We will use the Foster-Lyapunov criterion to show that for any fixed n, the continuous-time Markov process
(Sn(t),Mn(t)) is positive recurrent.

Our argument is developed by first considering a detailed description of the system:

(Q1(t), . . . ,Qn
(t),Mn(t)),

which keeps track of the size of each queue, but without keeping track of the identities of the servers with
associated tokens in the virtual queue. As hinted in Section 3.3.1, this is a continuous-time Markov process, on
the state space

Z
n
,
⇢
(q1 , . . . , qn

,m) 2 ⇢n

+
⇥ {0, 1, . . . , c(n)}:

nX
i⇤1

⌧{qi⇤0} � m

�
.

The transition rates, denoted by r
n

·! · are as follows, where we use e
i

to denote the i-th unit vector in ⇢n

+
.

1. When there are no tokens available (m ⇤ 0), each queue sees arrivals with rate �:

r
n

(q , 0)!(q+ei , 0) ⇤ �, i ⇤ 1, . . . , n.

2. When there are tokens available (m > 0), the arrival stream, which has rate n�, is divided equally between
all empty queues:

r
n

(q ,m)!(q+ei ,m�1) ⇤
n�⌧{qi⇤0}P

n

j⇤1 ⌧{q j⇤0}
⌧{m>0} , i ⇤ 1, . . . , n.

3. Transitions due to service completions occur at a uniform rate of 1 at each queue, and they do not affect
the token queue:

r
n

(q ,m)!(q�ei ,m) ⇤ ⌧{qi>0} , i ⇤ 1, . . . , n.

4. Messages from idling servers are sent to the dispatcher (hence resulting in additional tokens) at a rate
equal to µ(n) times the number of empty servers that do not already have associated tokens in the virtual
queue:

r
n

(q ,m)!(q ,m+1) ⇤ µ(n)
✓

nX
i⇤1

⌧{qi⇤0} � m

◆
⌧{m<c(n)} .
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Note that the Markov process of interest, (Sn(t),Mn(t)), is a function of the process (Q(t),Mn(t)). Therefore,
to establish positive recurrence of the former, it suffices to establish positive recurrence of the latter, as in the
proof that follows.

Proof of Proposition 3.3. The Markov process (Q(t),Mn(t)) on the state space Z
n

is clearly irreducible, with all
states reachable from each other. To show positive recurrence, we define the quadratic Lyapunov function

�(q ,m) , 1
n

nX
i⇤1

q
2
i
, (33)

and note that X
(q0 ,m0),(q ,m)

�(q0,m0)rn

(q ,m)!(q0 ,m0) <1, 8 (q ,m) 2 Z
n
.

We also define the finite set
F

n
,
⇢
(q ,m) 2 Z

n
:

nX
i⇤1

q
i
<

n(�+ 2)
2(1� �)

�
.

As q
i

can change but at most 1 during a transition, we use the relations (q
i
+ 1)2 � q

2
i
⇤ 2q

i
+ 1 and (q

i
� 1)2 � q

2
i
⇤

�2q
i
+ 1. For any (q ,m) outside the set F

n
, we have

X
(q0 ,m0)2Zn

[�(q0,m0)��(q ,m)]rn

(q ,m)!(q0 ,m0) ⇤
1
n

nX
i⇤1


(2q

i
+ 1)�

✓
n⌧{qi⇤0}P
n

j⇤1 ⌧{q j⇤0}
⌧{m>0} + ⌧{m⇤0}

◆
� (2q

i
� 1)⌧{qi>0}

�

⇤ �+
1
n

nX
i⇤1

[⌧{qi>0} � 2q
i
(1� �⌧{m⇤0})]

 �+ 1� 2(1� �)
n

nX
i⇤1

q
i
 �1, 8 (q ,m)2 Z

n
\F

n
.

The last equality is obtained through a careful rearrangement of terms; the first inequality is obtained by
replacing each indicator function by unity. Then, the Foster-Lyapunov criterion (Foster 1953) implies positive
recurrence. ⇤

6.2. Convergence of the Invariant Distributions
As a first step towards establishing the interchange of limits result, we start by establishing some tightness
properties, in the form of uniform (over all n) upper bounds for ⇧⇡n [kS

n k1] and for ⇡n(Qn

1 � k). One possible
approach to obtaining such bounds is to use an appropriate coupling and show that our system is stochastically
dominated by a system consisting of n independent parallel M/M/1 queues. However, we follow an easier
approach based on a simple linear Lyapunov function and the results in Hajek (1982) and Bertsimas et al. (2002).

Lemma 6.1. Let ⇡n be the unique invariant distribution of the process (Qn(t),Mn(t)). We then have the uniform upper
bounds

⇡n(Qn

1 � k) 
✓

1
2� �

◆ k/2

, 8 n , 8 k ,

and
⇧⇡n [kS

n k1]  2+ 2
1� � , 8 n.

Proof. Consider the linear Lyapunov function

 (q ,m)⇤ q1.

Under the terminology in Bertsimas et al. (2002), this Lyapunov function has exception parameter B ⇤ 1, drift
� ⇤ 1 � �, maximum jump ⌫max ⇤ 1, and maximum rate pmax  1. Note that this function is not a witness of
stability because the set {(q ,m) 2 Z

n
:  (q ,m) < 1} is not finite. However, the boundedness of the upward jumps

allows us to use Theorem 2.3 from Hajek (1982) to obtain that ⇧⇡n [Qn

1 ] <1. Thus, all conditions in Theorem 1
in Bertsimas et al. (2002) are satisfied, yielding the upper bounds

⇡n(Qn

1 � 1+ 2m) 
✓

1
2� �

◆m+1

, 8m � 1,
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and
⇧⇡n [Qn

1 ]  1+ 2
1� � .

The first part of the result is obtained by letting m ⇤ (k �1)/2 if k is odd or m ⇤ k/2�1 if k is even. Finally, using
the definition kS

n k1 ⇤ 1+ (1/n)Pn

i⇤1 Q
i
, which, together with symmetry yields

⇧[kS
n k1]⇤ 1+ 1

n

nX
i⇤1

⇧[Q
i
]⇤ ⇧[Q1],

and concludes the proof. ⇤

We now prove our final result on the interchange of limits.

Proof of Theorem 3.4. Consider the set ⇢+ [ {1} endowed with the topology of the Alexandroff compactifi-
cation, which is known to be metrizable. Moreover, it can be seen that the topology defined by the norm
k · k

w
on [0, 1]⇢+ is equivalent to the product topology, which makes [0, 1]⇢+ compact. As a result, the product

{s 2 S 1: ksk1  M} ⇥ (⇢+ [ {1}) is closed, and thus compact, for all M. Note that, for each n, the invariant
distribution ⇡n is defined over the set (S 1 \I

n
)⇥ {0, 1, . . . , c(n)}. This is a subset of S 1 ⇥ (⇢+ [ {1}), so we can

extend the measures ⇡n to the latter, larger set.
Let {S

n(0)}1
n⇤1 be a sequence of random variables distributed according to the marginals {⇡n

s
}1

n⇤1. From
Lemma 6.1, we have

⇧⇡n [kS
n(0)k1]  2+ 2

1� � , 8 n. (34)

Using Markov’s inequality, it follows that for every ✏ > 0, there exists a constant M such that

⇡n

s
({s 2S 1: ksk1  M}) � 1� ✏, 8 n ,

which implies that
⇡n({s 2S 1: ksk1  M}⇥ (⇢+ [ {1})) � 1� ✏, 8 n.

Thus, the sequence {⇡n}1
n⇤1 is tight and, by Prohorov’s theorem (Billingsley 1999), it is also relatively compact in

the weak topology on the set of probability measures. It follows that any subsequence has a weakly convergent
subsequence whose limit is a probability measure over S 1 ⇥ (⇢+ [ {1}).

Let {⇡nk }1
k⇤1 be a weakly convergent subsequence, and let ⇡ be its limit. Let S(0) be a random variable

distributed according to ⇡
s
, where ⇡

s
is the marginal of ⇡. Since S 1 ⇥ (⇢+ [ {1}) is separable, we invoke

Skorokhod’s representation theorem to construct a probability space (⌦0 ,A0 ,⇣ 0) and a sequence of random
variables (Snk (0),Mnk (0)) distributed according to ⇡nk , such that

lim
k!1

kS
nk (0)� S(0)k

w
⇤ 0 ⇣ 0-a.s . (35)

We use the random variables (Snk (0),Mnk (0)) as the initial conditions for a sequence of processes
{(Snk (t),Mnk (t))}1

k⇤1, so that each one of these processes is stationary. Note that the initial conditions, distributed
as ⇡nk , do not necessarily converge to a deterministic initial condition (this is actually part of what we are
trying to prove), so we cannot use Theorem 3.2 directly to find the limit of the sequence of processes {S

nk (t)}1
k⇤1.

However, given any ! 2⌦0 outside a zero ⇣ 0-measure set, we can restrict this sequence of stochastic processes
to the probability space

(⌦! ,A! ,⇣!)⇤ (⌦
D
⇥⌦

S
⇥ {!},A

D
⇥A

S
⇥ {;, {!}},⇣

D
⇥⇣

S
⇥ �!)

and apply Theorem 3.2 to this new space, to obtain

lim
k!1

sup
0tT

kS
nk (t ,!)� S(t ,!)k

w
⇤ 0, ⇣!-a.s .,

where S(t ,!) is the fluid solution with initial condition S(0,!). Since this is true for all ! 2⌦0 except for a set
of zero P0-measure, it follows that

lim
k!1

sup
0tT

kS
nk (t)� S(t)k

w
⇤ 0, ⇣ -a.s .,
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where ⇣ ⇤ ⇣
D
⇥ ⇣

S
⇥ ⇣ 0 and where S(t) is another stochastic process whose randomness is only in the initial

condition S(0) (its trajectory is the deterministic fluid solution for that specific initial condition).
We use Lemma 6.1 once again to interchange limit, expectation, and infinite summation in Equation (34)

(using the same argument as in Lemma A.1) to obtain

⇧⇡s
[kS(0)k1]  2+ 2

1� � .

Using Markov’s inequality now in the limit, it follows that for every ✏ > 0, there exists a constant M such that

⇡
s
(kS(0)k1  M) � 1� ✏. (36)

Recall that the uniqueness of fluid solutions (Theorem 3.1) implies the continuous dependence of solutions
on initial conditions (Filippov 1988). Moreover, Theorem 3.1 implies that any solution s(t) with initial conditions
s(0) 2S 1 converges to s

⇤ as t !1. As a result, there exists T✏ > 0 such that

sup
s(0): ks(0)k1M

ks(T✏)� s
⇤k

w
< ✏.

Combining this with Equation (36), we obtain

⇧⇡s
[kS(T✏)�s

⇤k
w
]⇤⇧⇡s

[kS(T✏)�s
⇤k

w
| kS(0)k1M]⇡

s
(kS(0)k1M)+⇧⇡s

[kS(T✏)�s
⇤k

w
| kS(0)k1>M]⇡

s
(kS(0)k1>M)

<✏+
⇣
sup
s2S

ks�s
⇤k

w

⌘
✏2✏, (37)

where the expectations ⇧⇡s
are with respect to the random variable S(0), distributed according to ⇡

s
, even

though the dependence on S(0) is suppressed from our notation and is left implicit. On the other hand, due to
the stationarity of S

nk ( · ), the random variables S
nk (0) and S

nk (T✏) have the same distribution, for any k. Taking
the limit as k !1, we see that S(0) and S(T✏) have the same distribution. Combining this with Equation (37),
we obtain

⇧⇡s
[kS(0)� s

⇤k
w
]  2✏.

Since ✏ was arbitrary, it follows that S(0) ⇤ s
⇤, ⇡

s
-almost surely, i.e., the distribution ⇡

s
of S(0) is concentrated

on s
⇤. We have shown that the limit ⇡

s
of a convergent subsequence of ⇡n is the Dirac measure �

s⇤ . Since this
is true for every convergent subsequence and ⇡n is tight, this implies that ⇡n converges to �

s⇤ , as claimed. ⇤

7. Conclusions and Future Work
The main objective of this paper was to study the tradeoff between the amount of resources (messages and
memory) available to a central dispatcher, and the expected queueing delay as the system size increases. We
introduced a parametric family of pull-based dispatching policies and, using a fluid model and associated
convergence theorems, we showed that with enough resources, we can drive the queueing delay to zero as the
system size increases.

We also analyzed a resource constrained regime of our pull-based policies that, although it does not have
vanishing delay, it has some remarkable properties. We showed that by wisely exploiting an arbitrarily small
message rate (but still proportional to the arrival rate) we obtain a queueing delay which is finite and uniformly
upper bounded for all � < 1, a significant qualitative improvement over the delay of the M/M/1 queue (obtained
when we use no messages). Furthermore, we compared it with the popular power-of-d-choices and found
that while using the same number of messages, our policy achieves a much lower expected queueing delay,
especially when � is close to 1.

Moreover, in a companion paper we show that every dispatching policy (within a broad class of policies) that
uses the same amount of resources as our policy in the constrained regime, results in a non-vanishing queueing
delay. This implies that our family of policies is able to achieve vanishing delay with the minimum amount of
resources in some sense.

There are several interesting directions for future research.
(i) It would be interesting to extend these results to the case of different service disciplines such as processor

sharing or LIFO, or to the case of general service time distributions, as these are prevalent in many applications.
(ii) We have focused on a system with homogeneous servers. For the case of nonhomogeneous servers, even

stability can become an issue, and there are interesting tradeoffs between the resources used and the stability
region.

(iii) Another interesting line of work is to consider a reverse problem, in which we have decentralized arrivals
to several queues, a central server, and a scheduler that needs to decide which queue to serve. In this context
we expect to find again a similar tradeoff between the resources used and the queueing delay.
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Appendix A. Interchange of Limit, Expectation, and Infinite Summation
Lemma A.1. We have

lim
n!1

⇧

 1X
i⇤1

S
n

i

�
⇤

1X
i⇤1

s
⇤
i
.

Proof. By Fubini’s theorem, we have

lim
n!1

⇧

 1X
i⇤1

S
n

i

�
⇤ lim

n!1

1X
i⇤1

⇧[Sn

i
].

Due to the symmetric nature of the invariant distribution ⇡n , we have

⇧[Sn

i
]⇤ ⇧


1
n

nX
j⇤1

⌧[i ,1)(Qn

j
)
�
⇤ ⇧[⌧[i ,1)(Qn

1 )]⇤ ⇡n(Qn

1 � i) 
✓

1
2� �

◆ i/2

,

where the inequality is established in Lemma 6.1. We can therefore apply the Dominated Convergence Theorem to inter-
change the limit with the first summation, and obtain

lim
n!1

1X
i⇤1

⇧[Sn

i
]⇤

1X
i⇤1

lim
n!1

⇧[Sn

i
],

We already know that S
n

i
converges to s

⇤, in distribution (Theorem 3.4). Then, using a variant of the Dominated Convergence
Theorem for convergence in distribution, and the fact that we always have S

n

i
 1, we can finally interchange the limit and

the expectation and obtain
1X

i⇤1
lim
n!1

⇧[Sn

i
]⇤

1X
i⇤1

s
⇤
i
. ⇤
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