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Abstract—We consider a class of continuous-time hybrid
dynamical systems that correspond to subgradient flows of a
piecewise linear and convex potential function with finitely many
pieces, and which include the fluid-level dynamics of the Max-
Weight scheduling policy as a special case. We study the effect
of an external disturbance/perturbation on the state trajectory,
and establish that the magnitude of this effect can be bounded
by a constant multiple of the integral of the perturbation.

I. Introduction
We consider a class of continuous-time, non-expansive,

hybrid systems that are subject to an external distur-
bance/perturbation, and develop a bound on the effect of the
perturbation on the state trajectory, in terms of the integral of
the perturbation.

In order to appreciate the issues that arise, and the useful-
ness of such a result, let us consider a discrete-time system of
the form x(t + 1) = f

(
x(t)

)
, t = 0, 1, . . . , and its perturbed

counterpart

x̃(t+ 1) = f
(
x̃(t)

)
+ u(t), t = 0, 1, . . . (1)

Here, x(t) and u(t) take values in Rn and we assume that the
mapping f : Rn → Rn is non-expansive, in the sense that

‖f(x)− f(y)‖ ≤ ‖x− y‖, ∀ x, y ∈ Rn,

for a given norm ‖ · ‖. A straightforward induction yields a
bound on the distance of the perturbed trajectory from the
original one: if x̃(0) = x(0), then∥∥x̃(t)− x(t)

∥∥ ≤ t−1∑
τ=0

∥∥u(t)
∥∥. (2)

However, our goal is to derive stronger bounds, of the form∥∥x̃(t)− x(t)
∥∥ ≤ C max

k<t

∥∥∥ k∑
τ=0

u(τ)
∥∥∥, (3)

for some constant C > 0 independent of u(·). Note that a
bound which is linear in the cumulative perturbation is clearly
the tightest possible, even for the trivial system f(x) = x.
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A bound of the form (3) is not valid in general, even for
non-expansive systems, or gradient fields of convex functions
[1]. Nevertheless, we show that such a bound is valid for
continuous-time hybrid systems driven by a piecewise con-
stant drift, determined by the subdifferential of a piecewise
linear and convex function with finitely many pieces. Within
this class of systems, the dynamics are automatically non-
expansive with respect to the Euclidean norm. Furthermore,
this class is fairly broad, in the sense that it actually contains a
seemingly larger class of non-expansive finite-partition hybrid
systems1 [2]. Finite-partition systems often arise in the context
of systems that are controlled through the selection of a
particular action at each time among the elements of a finite
set. They have attracted broad interest, due to numerous
applications to communication networks [3], [4], processing
systems [5], manufacturing systems, and inventory manage-
ment [6], [7], etc.

A prominent example to which our results apply are the
fluid-level dynamics of the celebrated Max-Weight policy for
real-time job scheduling [3]. This policy is used for scheduling
in queueing systems: at each time, it chooses a service vector
(from a finite set) that maximizes a weighted sum of the
current queue lengths (see Fig. 1 for a simple example). This
policy and its properties, e.g., stability [8], [9], [10], [11] and
state space collapse [12], [13], have been studied extensively
over the past three decades.

When the Max-Weight policy is applied to a discrete-
time stochastic setting, the perturbation u(·) in (1) is the
sample path of a stochastic process, and captures the
fluctuations in job arrivals. Under usual probabilistic as-
sumptions,

∑t−1
τ=0 ‖u(τ)‖ grows at the rate of t, whereas

maxk<t
∥∥∑k

τ=0 u(τ)
∥∥ only grows as (roughly)

√
t, with high

probability. This fact, in combination with the main result of
this paper, leads to tighter than earlier available probabilistic
bounds on the fluctuations of the Max-Weight trajectories from
their deterministic (fluid) counterparts, and opens the way for
new results [14], such as strengthening the state-space collapse
results in [13]. More specifically, in [14], we study in detail
the discrete-time Max-Weight dynamics: we use the results of
this paper to prove a bound similar to (3), and also address
a state-space collapse conjecture posed in [13]. Furthermore,
our approach also enables us to settle another open problem

1In a finite-partition hybrid system, the domain is partitioned into a finite
number of regions, and system trajectories have a constant drift in the interior
of each region.
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that was posed in [15], on delay-stability in the presence of
heavy-tailed traffic, as will be reported in a forthcoming paper.

As is apparent from our discussion of the Max-Weight
policy, one may be ultimately interested in a discrete-time
system, as opposed to the continuous-time systems considered
in this paper. However, we found it more natural to start with
the development of the core concepts and results within the
more elegant continuous-time framework in this paper, and
then translate them back to the discrete-time framework. For
instance, [1] shows that if a continuous-time system admits a
bound of the form (3), then its discrete-time counterpart obeys
a similar bound.

Regarding related literature, we are not aware of any work
that resembles the main result of this paper. Some seemingly
related research threads deal with input-to-state stability2 [16],
[17], [18], [19], [20], integral input-to-state stability [21],
incremental input-to-state stability [22], incrementally integral
input-to-state stability [23], and robust input-to-state stability
[24]. However, we note that integral input-to-state stability
[21] and incrementally integral input-to-state stability [23]
are concerned only with generalizations of the weak bound
in (2). Furthermore, incremental input-to-state stability [22]
involves generalizations of a sensitivity bound in terms of
b = maxk<t

∥∥u(k)
∥∥. A bound of the form Cb, for some

constant C that does not depend on t, would typically be
stronger than ours; however, such a bound does not hold in
our setting, even for the simplest system where f(x) = x.

It is worth pointing out that for systems with additive
disturbances, x(t+1) = f

(
x(t)

)
+u(t), input-to-state stability

and the bound (3) do not imply one another3.
Another key difference is that input-to-state stability results

usually rely on Lyapunov-type arguments [25]. However, Lya-
punov functions seem to be inadequate for our purposes. This
is because our bounds (as can be seen in the proof given in
Section IV) rely in a delicate manner on the relative orientation
of the two trajectories x(·) and x̃(·), in conjunction with the
local “landscape” of the potential function. Furthermore, as
shown in [1], the desired sensitivity bound (3) fails to carry
over if the number of constant-drift regions is not finite. This
means that a Lyapunov-based argument would have to make
essential use of our finiteness assumption, something for which
we are not aware of having any precedents in the literature.

The rest of this paper is organized as follows. In the next
section we discuss some preliminaries and our notational
conventions. In Section III we state our main theorem. In

2A discrete time dynamical system x(t+1) = f
(
x(t), u(t)

)
with state x(·)

and external disturbance (or control) u(·) is said to be input-to-state stable
if there exists a continuous and strictly increasing function γ : R+ → R+

with γ(0) = 0 and a function β : Rn × R+ → R+, strictly increasing in
the first argument and decreasing in the second argument with β(0, ·) = 0
and limt→∞ β(s, t) = 0, for all s ≥ 0; such that ‖x(t)‖ ≤ β

(
‖x(0)‖, t

)
+

maxk≤t γ
(
‖u(k)‖

)
, for all trajectories x(·), all disturbances u(·), and all

times t [16].
3For example, the discrete-time system x(t + 1) = x(t) satisfies (3),

but is not input-to-state stable. Conversely, the two-dimensional and two-
region discrete-time system with f(x, y) =

(
x/2, y/2

)
for x ≥ 0 and

f(x, y) =
(
x/4, y/4

)
for x < 0, is input-to-state stable but (3) fails to

hold. This is because, for a trajectory initialized at
(
x(0), y(0)

)
= (0, 4), a

small perturbation of the initial condition
(
x̃(0), ỹ(0)

)
= (−ε, 4), will result

in a distance larger than 1 at the next time step.

Section IV we provide the core of the proof, while relegating
some of the details to the Appendix. Finally, in Section V we
discuss possible extensions, open problems and challenges,
and directions for future research.

II. Preliminaries

A. Notation

We denote by R+ the set of non-negative real numbers.
For a column vector v ∈ Rn, we denote its transpose and
Euclidean norm by vT and

∥∥v∥∥, respectively. For any set
S ⊆ Rn, span(S) stands for the span of the vectors in S.
Furthermore, if p is a point in Rn, then p+ S stands for the
set
{
p + x

∣∣x ∈ S}, and d
(
p , S

)
for the Euclidean distance

between p and S, with the convention that d
(
p , S

)
=∞ if S

is empty. Similarly, we let d(p, {x}) =
∥∥p−x∥∥ for p, x ∈ Rn.

We finally let A\B = A
⋂
Bc, for any two sets A and B,

where Bc is the complement of B.

B. Perturbed Dynamical Systems

As in [26], we identify a dynamical system with a set-
valued function F : Rn → 2R

n

and the associated differential
inclusion ẋ(t) ∈ F (x(t)). We start with a formal definition,
which allows for the presence of perturbations.

Definition 1 (Perturbed Trajectories). Consider a dynamical
system F : Rn → 2R

n

, and let U : R → Rn be a right-
continuous function, which we refer to as the perturbation.
Suppose that there exist measurable and integrable functions
x̃(·) and ζ(·) of time that satisfy

x̃(t) =

∫ t

0

ζ(τ) dτ + U(t), ∀ t ≥ 0,

ζ(t) ∈ F
(
x̃(t)

)
, ∀ t ≥ 0.

(4)

We then call U the perturbation. Any such x̃ and ζ is called
a perturbed trajectory and a perturbed drift, respectively. In
the special case where U is identically zero, we also refer to
x̃ as an unperturbed trajectory.

Note that a perturbed trajectory is automatically right-
continuous. In the absence of the perturbation U(·), Eq. (4)
becomes the differential inclusion ẋ ∈ F (x(t)) (almost every-
where). When perturbations are present, U is often absolutely
continuous, of the form

∫ T
0
u(τ) dτ , for some measurable

function u(·). In this case, we are essentially dealing with
the differential inclusion ˙̃x(t) ∈ F (x̃(t)) +u(t). However, the
integral formulation in Definition 1 is more useful because it
also applies to cases where U is not absolutely continuous,
e.g., if U is a sample path of a Wiener or a jump process.

C. Classes of Systems

We now introduce some classes of systems of interest. A
dynamical system F is called non-expansive if for any pair
of unperturbed trajectories x(·) and y(·), and if 0 ≤ t1 ≤ t2,
then ∥∥x(t2)− y(t2)

∥∥ ≤ ∥∥x(t1)− y(t1)
∥∥. (5)
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Fig. 1. Consider a simple discrete-time network of two parallel queues with
no arrivals and a unit-rate server. The Max-Weight policy always serves a
longest queue. Part (a) illustrates the corresponding continuous-time (the so
called fluid-level) dynamics of this system. The state vector (x1, x2) describes
the workload at each queue. (To avoid dealing with differential inclusions
involving boundary constraints, we extend the naturally nonnegative state of
the system to all of R2.) We have three regions indicated in the figure. The
set F (x) is a singleton in the interior of each region and it is the convex
hull of multiple vectors on the boundaries of the regions. This dynamical
system is the subgradient field of the piecewise linear convex function Φ(x) =
max(−µT1 x, −µT2 x, 0) = max{x1, x2, 0}, and hence is an FPCS system.
Part (b) depicts an unperturbed (dashed line) and a perturbed (solid line)
trajectory. Our main result argues that the perturbed trajectory stays within a
distance of the unperturbed trajectory bounded by a constant multiple of the
size of the integral of the perturbation; cf. (3).

For a convex function Φ : Rn → R, we denote its
subdifferential by ∂Φ(x). We say that F is a subgradient
dynamical system if there exists a convex function Φ(·), such
that for any x ∈ Rn, F (x) = −∂Φ(x). Furthermore, if Φ is
of the form

Φ(x) = max
i

(
− µTi x+ bi

)
,

for some µi ∈ Rn, bi ∈ R, and with i ranging over a finite set,
we say that F is a Finitely Piecewise Constant Subgradient
(FPCS, for short) system; cf. Fig. 1.

Subgradient systems are known to have several useful
properties: they are automatically non-expansive (cf. Part 5 of
Theorem 4.4 in [26]), a fact that we will be using in the sequel.
Existence and uniqueness results are also available [26].

Lemma 1 (Existence and Uniqueness of Solutions). For any
subgradient dynamical system F and any x0 ∈ Rn, there exists
a unique trajectory of F initialized at x0.

Proof. It follows from Lemma 2.30 of [26] that any subgra-

dient dynamical system is a maximal monotone map4. The
lemma then follows from Corollary 4.6 of [26].

III. Main Result
We now state the main result of the paper. Its proof is given

in Section IV.

Theorem 1 (Input Sensitivity of FPCS Systems). Consider
an FPCS system F . Then, there exists a constant C such that
for any unperturbed trajectory x(·), and for any perturbed
trajectory x̃(·) with corresponding perturbation U(·) and the
same initial conditions x̃(0) = x(0),∥∥x̃(t)− x(t)

∥∥ ≤ C sup
τ≤t

∥∥U(τ)
∥∥, ∀ t ∈ R+. (6)

Moreover, for any λ ∈ Rn, the bound (6) applies to the
(necessarily FPCS) system F (·)+λ with the same constant C.

Theorem 1 is limited to FPCS systems: if any of the
assumptions in the definition of FPCS systems is removed,
then a similar result is no longer possible. In [1] we discuss
several examples of dynamical systems for which no constant
C satisfies (6); cf. Section V.

We finally note that the vector λ in the dynamical system
F (·) +λ can be viewed as a constant external field. Thus, the
second part of the theorem asserts that the same bound holds
uniformly for all constant external fields.

The proof of Theorem 1, presented in the next section, is
fairly involved and so it is useful to provide some perspective
on the challenges that are involved. For a constant-drift system,
of the form ẋ(t) = µ+ u(t), the result is immediate, because
the state is fully determined by the integral

∫ t
0
u(τ) dτ . More

generally, the unperturbed system goes through successive
constant-drift regions, and one might expect that the result
can be obtained by deriving and patching together bounds
for each region encountered. There is however a difficulty,
because the unperturbed trajectory often lies at the intersection
of the boundaries of two or more constant drift regions. When
that happens, the perturbed trajectory may chatter between
different regions. As a consequence, the number of pieces and
bounds that would have to be patched together can become
arbitrarily large, and a bound of the desired form does not
follow. For this reason, we need a much more refined analysis
of the trajectories in the vicinity of the intersection of different
regions, as will be seen in the next section.

IV. Proof
In this section we present the proof of Theorem 1, orga-

nized in a sequence of three subsections. In Subsection IV-A
we present some notation, definitions, and lemmas, mostly
concerning the geometric properties of FPCS systems and

4A set valued function F : Rn → 2R
n

is a monotone map if for any
x1, x2 ∈ Rn and any v1 ∈ F (x1) and v2 ∈ F (x2), we have

(
v1 −

v2
)T (

x1−x2
)
≤ 0. It is called a maximal monotone map if it is monotone,

and for any monotone map F̃ , that satisfies F (x) ⊆ F̃ (x) for all x, we have
F̃ = F .
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unperturbed trajectories. In particular, we define critical points
(Definition 2) as the extreme points of constant-drift regions.

In Subsection IV-B we consider a time interval during
which the perturbed trajectory is far from the set of critical
points. Such an interval can be divided into subintervals with
an important property: the set of drifts encountered is low-
dimensional, in a sense to be defined below. Within each such
subinterval, we show in Lemma 5 that the local dynamics
are equivalent to the dynamics of a lower-dimensional FPCS
system, and employ a suitable induction on the system dimen-
sion to obtain a certain upper bound. Then, in Proposition 1,
we piece together the bounds for the different subintervals to
obtain an upper bound that applies as long as the perturbed
trajectory remains far from the set of critical points.

In Subsection IV-C we consider the case where the per-
turbed trajectory comes close to a critical point: we show, in
Proposition 2, that the unperturbed trajectory stays close to the
perturbed trajectory, as long as the perturbed trajectory remains
sufficiently close to that critical point. Finally, in Subsection
IV-D we combine the two cases and bound the distance of the
trajectories at all times.

From now on, we assume that x(0) = x̃(0) and that

sup
t

∥∥U(t)
∥∥ ≤ θ. (7)

We will show that for any t ≥ 0, we have
∥∥x̃(t)−x(t)

∥∥ ≤ Cθ,
for some constant C independent of U , θ, and x(0). It is not
hard to see that this implies the theorem in its original form.

The proof proceeds by induction on the system dimension
n. In particular, we make the following induction hypothesis,
which we assume to be in effect throughout the rest of this
section.

Induction
hypothesis : Theorem 1 holds for all

(n− 1)-dimensional FPCS systems. (8)

We then rely on the induction hypothesis to prove the
theorem for n-dimensional systems. For the basis of the
induction we consider the case of zero-dimensional systems.
In this case, the state space consists of a single point (the zero
vector), we have x(t) = x̃(t) = 0 at all times, and the result
in Theorem 1 holds trivially.

A. Properties of Unperturbed Dynamics

In this subsection we present some notation and definitions,
and prove some properties of unperturbed trajectories. We then
define and study critical points. Throughout the proof, we
assume that F is an FPCS system on Rn, with F = −∂Φ,
where Φ(x) = maxi=1,...,m

(
− µTi x + bi

)
. We assume that

the vectors µi in the definition of Φ are distinct. This entails
no loss of generality, because if µi = µj and bi > bj , then
−µTj x + bj is always dominated by −µTi x + bi and has no
effect on Φ(·).

Each vector µi is called a drift and we define M to be
the set

{
µi
}m
i=1

of all drifts. For each drift µ ∈ M, we use
the notation bµ to refer to the corresponding constant in the
expression for Φ. With these conventions, we have

Φ(x) = max
µ∈M

(
− µTx+ bµ

)
. (9)

For every x ∈ Rn, we define the set of active drifts at x as

M(x) ,
{
µ ∈M

∣∣Φ(x) = −µTx+ bµ
}
. (10)

If at some x the corresponding set M(x) consists of a single
element µ, we have ẋ = µ. However, the dynamics become
more interesting when M(x) contains multiple elements. For
that case, it follows from the definition of the subdifferential
that for any x ∈ Rn, F (x) is the convex hull of M(x).

For each µ ∈M, we define its effective region Rµ by

Rµ ,
{
x ∈ Rn

∣∣µ ∈M(x)
}
. (11)

Equivalently,

Rµ =
{
x
∣∣ − µTx+ bµ ≥ −νTx+ bν , ∀ ν ∈M

}
,

which establishes that each region Rµ is a polyhedron and, in
particular, closed and convex. We will be using R to denote
the collection of all effective regions: R ,

{
Rµ
∣∣µ ∈M}.

From now on, and with some abuse of traditional notation,
we will use ẋ(t) to denote the right-derivative of x(t),
whenever it exists. The lemma that follows shows that for
unperturbed trajectories this right derivative always exists and
has some remarkable properties.

Lemma 2 (Properties of Unperturbed Trajectories). Let x(·)
be an unperturbed trajectory of an FPCS system F . Then,
(a) (Minimum Norm) For every t ≥ 0, the right derivative

of x(t) exists and is given by

ẋ(t) = argmin
v∈F (x(t))

∥∥v∥∥, (12)

with the minimizer being unique.
(b) (Decreasing Drift Size) If t > s, then

∥∥ẋ(t)
∥∥ ≤ ∥∥ẋ(s)

∥∥,
and the inequality is strict if ẋ(t) 6= ẋ(s). Furthermore,
an unperturbed trajectory traverses a connected sequence
of at most 2m − 2 line segments, possibly followed by a
half-line.

Proof. The first part of the lemma is an immediate conse-
quence of Part 3 of Theorem 4.4 in [26]. For Part (b), we
invoke Part 4 of Theorem 4.4 in [26] which states that

∥∥ẋ(t)
∥∥

is a non-increasing function of time. Since for any x, F (x)
is the convex hull of M(x), it follows from (12) that ẋ(t) is
uniquely determined by M

(
x(t)

)
. There are at most 2m − 1

non-empty subsetsM(x) ofM. Hence, ẋ(t) can take at most
2m − 1 different values.

Fix a time s ≥ 0 and let t be the infimum of the times τ > s
for which ẋ(τ) 6= ẋ(s). The time function ẋ(·) is piecewise
constant and right-continuous (Part 4 of Theorem 4.4 in [26]).
This implies that t > s and ẋ(t) 6= ẋ(s). Furthermore, from
the strict convexity of the Euclidean norm we obtain∥∥(ẋ(s) + ẋ(t)

)
/2
∥∥ < max

(∥∥ẋ(s)
∥∥ , ∥∥ẋ(t)

∥∥). (13)

Since every region Rµ is closed, there exists a sufficiently
small neighbourhood B of x(t) such that if x(t) 6∈ Rµ,
then B does not intersect Rµ. Equivalently, for any y ∈ B,
we have M(y) ⊆ M

(
x(t)

)
, and F (y) ⊆ F

(
x(t)

)
. In

particular, consider a τ ∈
[
s, t
)

such that x(τ) ∈ B. Then,
ẋ(s) = ẋ(τ) ∈ F

(
x(τ)

)
⊆ F

(
x(t)

)
. Since F

(
x(t)

)
is

convex,
(
ẋ(s) + ẋ(t)

)
/2 ∈ F

(
x(t)

)
. Therefore, (12) implies
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that
∥∥ẋ(t)

∥∥ ≤ ∥∥(ẋ(s) + ẋ(t)
)
/2
∥∥. Together with (13), this

shows that
∥∥ẋ(t)

∥∥ < ∥∥ẋ(s)
∥∥.

For the last statement in Part (b) of the lemma, note that
there are at most 2m − 1 number of different possible sets
M(x), and therefore as many choices for F (x). Using (12),
there are at most 2m−1 possible values for ẋ(t). As we have
already shown that

∥∥ẋ(t)
∥∥ decreases strictly each time that it

changes, an unperturbed trajectory consists of at most 2m− 1
pieces, with a constant derivative on each piece. This implies
that the trajectory traverses a connected sequence of at most
2m − 2 line segments, possibly followed by a half-line.

For any x ∈ Rn, consider the unperturbed trajectory z(·)
initialized with z(0) = x. We define the actual drift at x as
ξ(x) , ż(0), where we continue using the convention that ż
stands for the right derivative. According to Lemma 2(a), the
actual drift always exists and is uniquely determined by x.

We now proceed to define critical points, which will play
a central role in the sequel.

Definition 2 (Critical Points). A point p ∈ Rn is called a
critical point if span

({
µ − µ′

∣∣µ, µ′ ∈ M(p)
})

= Rn. The
set of critical points is denoted by C.

An equivalent condition is that for a critical point p, the
affine span of M(p), i.e., the smallest affine space that
contains M(p), is equal to the entire set Rn. For this to
happen,M(p) must have at least n+1 elements, and therefore
p must lie at the intersection of at least n+1 regions (although
the converse is not always true). For the example in Fig. 1,
p = 0 is the only candidate and is in fact a critical point
because the affine span condition is satisfied. Furthermore, it
will be shown in Lemma 3(a) that the critical points are the
extreme points of the regions Rµ.

Definition 3 (Basin of a Critical Point). Consider some ρ ∈
R+ ∪ {∞} and a critical point p, with actual drift ξ(p) equal
to ξ. The closed ball B of radius ρ centered at p is called a
basin of p (and ρ is called a basin radius for p) if for every
x ∈ B and every y ∈ F (x), we have ξT y ≥ ‖ξ‖2.

Note that the inequality ξT y ≥ ‖ξ‖2 implies that ‖ξ‖ ≤
‖y‖. As a result, ξ(p) has the minimum norm among all
possible drifts within the basin of a critical point p. Also note
that basins of a critical point p are not necessarily unique: if
the radius ρ is positive, another basin is obtained by reducing
the radius. Figure 2 shows an example of a two-dimensional
system with three critical points and some associated basins.
Basins of critical points will appear frequently in the sequel.

Before moving to study the properties of critical points, we
introduce one last definition.

Definition 4 (Conic Neighbourhood Constant). We define the
Conic Neighbourhood Constant (CNC), denoted by ρmin , as

ρmin ,
1

2
min

{
d
(
p,R

) ∣∣∣ p ∈ C, R ∈ R, p /∈ R} , (14)

i.e., ρmin is half of the minimum over all critical points, of the
distance of a critical point from the regions that do not contain
it. We use the convention that the minimum of an empty set
is infinite.
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Fig. 2. A two-dimensional FPCS system with four regions and three critical
points. The balls around the critical points show examples of associated basins.
Here, the basin of the rightmost critical point can be taken equal to Rn, thus
containing the basins of all other critical points; cf. Lemma 3(c). The CNC
ρmin (cf. Definition 4) is also shown.

Note that ρmin is always positive (and possibly infinite). We
say that a dynamical system F is conic if F = −∂Φ, where Φ
is of the form Φ(x) = maxi

{
−µTi

(
x−p

)}
, for some p ∈ Rn.

It is not hard to see that for such a conic system, either p is the
only critical point or no critical points exist. It turns out that
the “local” dynamics in the CNC-neighbourhood of a critical
point of a general system are conic, hence the name CNC.

The lemma that follows lists a number of useful properties
of critical points.

Lemma 3 (Properties of Critical Points). Consider an FPCS
system F , with an associated set of critical points C.
(a) A point in a region Rν is a critical point if and only if it

is an extreme point of Rν . In particular, there are finitely
many critical points.

(b) Consider a critical point p ∈ C and a basin radius ρ for
p. Let z(·) be the unperturbed trajectory with initial point
z(0) = p, and let ξ = ż(0) be the actual drift at p. Then,
before the time that z(·) exits the basin, ż(t) is constant,
and z(t) = p+ tξ, for all t ∈

[
0, ρ/‖ξ‖

]
.

(c) If C is non-empty, then there exists a critical point p ∈ C
such that the entire set Rn is a basin of p. In the special
case where F is conic with a unique critical point p, the
entire set Rn is a basin of p.

(d) The CNC, ρmin , defined in (14), is a basin radius for
every critical point.

(e) Consider a basin radius ρ of a critical point p ∈ C, an
unperturbed trajectory x(·), and times t1 < t2. Suppose
that

∥∥x(t1)− p
∥∥ ≤ ρ/3 and

∥∥x(t2)− p
∥∥ > ρ. Then, for

any t ≥ t2,
∥∥x(t)− p

∥∥ > ρ/3.

(f) Fix some λ ∈ Rn and consider F ′(·) , F (·) + λ, which
is also an FPCS system. Then, F and F ′ have the same
set of regions R, the same set of critical points C, and
the same CNC ρmin .

In words, part (e) states that an unperturbed trajectory that
starts near a critical point p and later goes sufficiently far from
p, will never come back close to p. The proof of Lemma 3 is
given in Appendix A.
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B. Bounding the Deviation when the Trajectories are Far from
the Set of Critical Points

In this subsection we bound the distance between perturbed
and unperturbed trajectories, for the case where the perturbed
trajectory stays far from the set of critical points. To do this,
we will show that when far from the set of critical points, the
local dynamics are similar to those of a lower-dimensional
system, and then use the induction hypothesis (8).

We start with some definitions. For any x ∈ Rn and r > 0,
let

Ur(x) ,
⋃

y: ‖y−x‖2≤r

M(y), (15)

which is the set of possible drifts in the r-neighbourhood of x.

Definition 5 (Low-Dimensional Sets). We call a subset U ⊆
Rn low-dimensional if span

{
x− y

∣∣x, y ∈ U} 6= Rn.

Equivalently, a set is low-dimensional if its affine span is
not the entire space. If x is a critical point, then, by definition,
the vectors in {µi − µj | µi, µj ∈M(x)} span Rn and the
set Ur(x) is not low-dimensional, for any r > 0. On the
other hand, as asserted by the next lemma, which is proved in
Appendix B, Ur(x) is low-dimensional when x is sufficiently
far from critical points.

Lemma 4. Consider an FPCS system with an associated set
of critical points C. There exists γ ≥ 1 such that if r > 0 and
d
(
x, C

)
> γr, then Ur(x) is low-dimensional.

In the sequel, it will be convenient to compare the perturbed
trajectory with an unperturbed trajectory that starts at the same
state at some intermediate time. This motivates the following
terminology.

Definition 6 (Coupled Trajectories). Let θ, T ≥ 0 be some
constants. Let x(·) be an unperturbed trajectory. Let x̃(·) be a
perturbed trajectory with a perturbation U(·) that satisfies (7).
If in addition we have x̃(T ) = x(T ), we then say that x(·)
and x̃(·) are θ-coupled at time T .

The proof will now continue along the following lines.
When far enough from the set of critical points, the set Ur(x)
is low-dimensional (Lemma 4). This yields a description of
the dynamics as the superposition of an essentially (n − 1)-
dimensional FPCS system and a constant drift.

Lemma 5. Consider an FPCS system. There exists a constant
σ ≥ 1 such that the following statement holds for all T, θ >
0. Let x(·) and x̃(·) be a pair of θ-coupled trajectories at
time 0. Suppose that U ⊆ M is low-dimensional, and that
Uσθ
(
x(t)

)
⊆ U , for all t ∈ [0, T ]. Then,∥∥x̃(t)− x(t)

∥∥ ≤ σθ, ∀ t ∈ [0, T ]. (16)

Moreover, for any λ ∈ Rn, the same constant σ also applies
to the FPCS system F (·) + λ.

Proof. Let us fix some µ ∈ U . Let U be the affine span of U :

U , µ+ span
{
ν − µ

∣∣ ν ∈ U}. (17)

Note that any choice of µ ∈ U leads to the same set U . Let w
be the projection of 0 onto U , i.e., the smallest norm element

of U ; cf. Fig. 3(a). Since w ∈ U , we have

w − µ ∈ span
{
ν − µ

∣∣ ν ∈ U}. (18)

Furthermore, by the orthogonality of projections, w is orthog-
onal to the difference of any two elements of U . In particular,

wT
(
µ− ν

)
= 0, ∀ ν ∈ U ,

wT
(
µ− w

)
= 0.

(19)

Since U is low-dimensional, span
{
ν−µ

∣∣ ν ∈ U} is a proper
subset of Rn. Let Y be a subspace of dimension n − 1 that
contains span

{
ν − µ

∣∣ ν ∈ U} and is orthogonal to w.5 Note
that by the definition of U ,

U − w = µ− w + span
{
ν − µ

∣∣ ν ∈ U}
= span

{
ν − µ

∣∣ ν ∈ U}
⊆ Y,

(20)

where the second equality is due to (18).
Any vector has an orthogonal decomposition as the sum

of its projections on Y ⊥ (the orthogonal complement of
Y ) and Y ; we use the subscripts w and Y to indicate the
corresponding components, e.g.,

x = xw + xY ,

x̃ = x̃w + x̃Y ,

U = Uw + UY .

(21)

We will now show that the w and Y components of a trajectory
evolve without interacting, according to a one-dimensional
system with drift w, and an (n− 1)-dimensional system FY ,
respectively; see Fig. 3(c) for an illustration.

Claim 1. Consider some x ∈ Rn, and suppose that M(x) ⊆
U . Then, F (x) = w + FY (xY ), where FY : Y → 2Y is an
FPCS system on the (n− 1)-dimensional subspace Y .

Proof of Claim. Let FY (x) = F (x) − w. Since F (x) is
contained in the convex hull of U , it is also in the affine span
of U , i.e., F (x) ⊆ U . Then, (20) implies that

FY (x) = F (x)− w ⊆ U − w ⊆ Y. (22)

On the other hand, FY (x), being equal to F (x) − w, is the
negative of the subdifferential of

ΦY (x) , max
µ∈U

[(
− (µ− w

)T
x+ bµ

]
; (23)

we used here the assumption M(x) ⊆ U . For any x ∈ Rn,

ΦY (x) = ΦY (xw + xY )

= max
µ∈U

[
−
(
µ− w

)T (
xw + xY

)
+ bµ

]
= max

µ∈U

[
−
(
µ− w

)T
xY + bµ

]
, ΦY (xY ),

(24)

5If w 6= 0, then Y must be the orthogonal complement of the one-
dimensional space spanned by w. If w = 0, then any (n − 1)-dimensional
subspace that contains span

{
ν − µ

∣∣ ν ∈ U} will do, and the choice of Y
need not be unique.
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(c)

Fig. 3. (a) Illustration of the affine space U and its minimum norm element w, when U consists of two elements µ1 and µ2. (b) Consider the intersection
S = {x | −µT1 x+bµ1 = −µT2 x+bµ2} of the two regions Rµ1 and Rµ2 , and note that S is orthogonal to the span of µ1−µ2. In this case, w is a direction
of motion along S. (c) The dynamics can be decomposed as the superposition of a movement along S, in the direction of w, together with lower-dimensional
hybrid dynamics in directions orthogonal to S.

where the third equality is due to (19). Let FY : Y → 2Y be
equal to −ΦY (·). Then, FY is an FPCS system on the (n−1)-
dimensional subspace Y . It follows from (24) that ΦY (x) only
depends on xY . Therefore, its negative subdifferential FY (x)
also only depends on xY , and FY (x) = FY (xY ). Hence,
the definition FY (x) = F (x) − w implies that F (x) = w +
FY (x) = w + FY (xY ), which establishes the claim.

We now appeal to the induction hypothesis (8), and let CU
be equal to the constant CY of Theorem 1 for the (n − 1)-
dimensional FPCS system FY . Let σ be the maximum of all
such constants CŨ plus 4, over all low-dimensional subsets
Ũ ⊆ M:

σ , max
{
CŨ
∣∣ Ũ ⊆ M and Ũ is low-dimensional

}
+ 4.

(25)
Suppose now that we add a constant drift λ to F . We observe
that for any given low-dimensional U , the resulting set-valued
mapping FY only changes through the addition of a constant
drift λY ; its structure remains otherwise the same. Hence,
according to the induction hypothesis (8), CU is not affected
when we add a constant drift λ ∈ Rn to the dynamics. As
a consequence, the value of σ associated with a system F (·)
remains the same when we consider the system F (·) + λ.

We now return to the main part of the proof of the lemma.
We argue by contradiction, and assume that (16) fails to hold.
Then, from the right-continuity of x(t) and x̃(t), there exists

a time T̃ ≤ T such that∥∥x̃(T̃ )− x(T̃ )∥∥ ≥ σθ,∥∥x̃(t)− x(t)∥∥ < σθ, ∀ t < T̃ .
(26)

It follows from (26) and the assumption Uσθ
(
x(t)

)
⊆ U that,

for any t < T̃ , M
(
x(t)

)
= U0

(
x(t)

)
⊆ Uσθ

(
x(t)

)
⊆ U .

Furthermore, M
(
x̃(t)

)
⊆ Uσθ

(
x(t)

)
⊆ U .

Consider some t < T̃ and let ζ̃(t) ∈ F
(
x̃(t)

)
be a

perturbed drift associated with the perturbed trajectory x̃(·)
(cf. Definition 1). It follows from Claim 1 that ζ̃(t) − w ∈
F
(
x̃(t)

)
− w = FY

(
x̃(t)

)
⊆ Y . Thus, the orthogonal

decomposition of ζ̃(t) yields ζ̃Y (t) = ζ̃(t)−w. This allows us
to develop an orthogonal decomposition of x̃(t), as follows:

x̃(t) = x̃(0) +

∫ t

0

ζ̃(τ) dτ + U(t)

= x̃(0) +

∫ t

0

(
w + ζ̃Y (τ)

)
dτ + U(t)

=
[
x̃w(0) + wt+ Uw(t)

]
+

[
x̃Y (0) +

∫ t

0

ζ̃Y (τ) dτ + UY (t)

]
= x̃w(t) + x̃Y (t),

(27)

where the last equality follows because the two terms inside
brackets belong to Y ⊥ and Y , respectively, and therefore
provide the orthogonal decomposition of x̃(t).
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Similarly, using also the assumption x(0) = x̃(0),

x(t) =
[
x̃w(0) + wt

]
+

[
x̃Y (0) +

∫ t

0

ζY (τ) dτ

]
= xw(t) + xY (t),

(28)

with ζY (t) ∈ FY
(
x(t)

)
.

Note that xY is an unperturbed trajectory of the FPCS
system FY , on the (n−1)-dimensional subspace Y . Moreover,
since ζ̃Y (t) ∈ FY

(
x̃(t)

)
, x̃Y is a perturbed trajectory of the

same system, associated with the perturbation UY (t). Since,∥∥UY (τ)
∥∥ ≤ ∥∥U(τ)

∥∥ ≤ θ, for all τ ≥ 0, it follows from the
induction hypothesis that

∥∥x̃Y (t)−xY (t)
∥∥ ≤ CUθ for t < T̃ .

Then, for t < T̃ ,∥∥x̃(t)− x(t)
∥∥ ≤ ∥∥x̃w(t)− xw(t)

∥∥+
∥∥x̃Y (t)− xY (t)

∥∥
≤
∥∥Uw(t)

∥∥+ CUθ

≤ θ +
(
σ − 4

)
θ

=
(
σ − 3

)
θ.

(29)

The proof at this point would have been complete, except
that in order to bound

∥∥x̃(T̃ ) − x(T̃ )
∥∥, we need to account

for the possibility that U(t) has a jump at time T̃ . We have∥∥x̃(T̃ )− x(T̃ )
∥∥ ≤ lim sup

t↑T̃

(∥∥x̃(T̃ )− x̃(t)
∥∥

+
∥∥x̃(t)− x(t)

∥∥+
∥∥x(t)− x(T̃ )

∥∥)
≤ lim sup

t↑T̃

∥∥x̃(T̃ )− x̃(t)
∥∥

+ lim sup
t↑T̃

∥∥x̃(t)− x(t)
∥∥

+ lim sup
t↑T̃

∥∥x(t)− x(T̃ )
∥∥

≤ lim sup
t↑T̃

(∫ T̃

t

ζ̃(τ) dτ + U(T̃ )− U(t)

)
+
(
σ − 3

)
θ + 0

≤ 2θ +
(
σ − 3

)
θ

= σθ − θ,
(30)

where the third inequality is due to (29) and the continuity of
x(t), and the last inequality is due to (7) and the integrability
of ζ̃(τ). Equation (30) contradicts (26), and the lemma follows.

Suppose now that the perturbed trajectory stays far from
the set of critical points throughout the time interval [0, T ].
In light of Lemma 2(b), we can divide [0, T ] into a finite
number of subintervals during which the unperturbed system
has a constant drift, use Lemma 5 to obtain bounds on the
distance of the perturbed and unperturbed trajectories during
each subinterval, and then combine them to obtain a bound
over the entire interval [0, T ].

Proposition 1. Fix an FPCS system F . Consider the con-
stant γ in Lemma 4, the constant σ in Lemma 5, and let
η = m2m+1σ, where m is the number of elements of the
set M of drifts. Let x(·) and x̃(·) be a pair of θ-coupled

trajectories at time 0. If d
(
x̃(t), C

)
≥ γηθ for all t ∈ [0, T ],

then
∥∥x̃(t)− x(t)

∥∥ ≤ ηθ for all t ∈ [0, T ].

Proof. As already mentioned, we will divide the interval [0, T ]
into at most m2m subintervals. We will then use Lemma 5 to
show that the distance between the two trajectories can only
increase by an additive factor of σθ in each subinterval.

We define a sequence of times τk by letting τ1 = 0 and

τk+1 , inf
{
t ∈ (τk, T ]

∣∣∣ Ukσθ(x(t)
)
6⊆ Ukσθ

(
x(τk)

)}
,

(31)
for k ≥ 1, with the convention that τk+1 = T if the set on the
right-hand side of (31) is empty. In words, τk+1 is the time
that the (kσθ)-neighbourhood of the unperturbed trajectory
touches a new region, which does not intersect with the (kσθ)-
neighbourhood of x(τk). Let Kmax be the maximum k such
that τk < T , so that τKmax +1 = T . For k ≤ Kmax , we refer to
the interval [τk, τk+1] as phase k; see Fig. 4 for an illustration.

First, we show that the number of phases, Kmax , is less than
m2m. According to Lemma 2(b), the time interval [0, T ] can
be partitioned into at most 2m−1 subintervals [zj , zj+1), 1 ≤
j ≤ 2m − 1, during each of which the unperturbed trajectory
x(t) is a line segment; that is, there exists a sequence of vectors
ξj , 1 ≤ j ≤ 2m − 1 such that

x(t) = x(zj) + (t− zj)ξj , ∀ t ∈ [zj , zj+1]. (32)

We argue that at most m phase changes are possible during a
subinterval [zj , zj+1], i.e., at most m of the times τks lie in
the interval [zj , zj+1]. Suppose that there are l phase changes
(for some l ≥ 0), at times τkj+1, . . . , τkj+l ∈ (zj , zj+1]. For
each k ∈

{
kj + 1, . . . , kj + l

}
, let µk ∈ M be a drift that

caused the phase change at time τk, i.e.,

µk ∈ U(k−1)σθ
(
x(τk)

)
\U(k−1)σθ

(
x(τk−1)

)
. (33)

Equivalently,

d
(
x(τk−1), Rk

)
> d

(
x(τk), Rk

)
= (k − 1)σθ, (34)

where Rk,Rµk
is the effective region of µk. We will now

show that these regions Rk, for k ∈
{
kj + 1, . . . , kj + l

}
,

are distinct for different k. In order to draw a contradiction,
suppose that there are k1, k2 ∈

{
kj + 1, . . . , kj + l

}
with

k1 < k2 such that µk1 = µk2 , or equivalently R , Rk1 = Rk2 .
Let f : [zj , zj+1]→ R+ be the distance between x(t) and the
region R:

f(t) , d
(
x(t) , R

)
, ∀ t ∈ [zj , zj+1]. (35)

The region R is a convex set. Therefore f(·) is the composition
of a convex function (the distance from R) and an affine
function x(t) : [zj , zj+1] → Rn (see (32)). Hence, f is also
convex. Moreover, it follows from (34) and the assumption
k1 < k2 that

f(τk2−1) > f(τk2) = (k2 − 1)σθ > (k1 − 1)σθ = f(τk1).
(36)

However, since f is convex and τk1 ≤ τk2−1 ≤ τk2 , we must
have f(τk2−1) ≤ max

(
f(τk1) , f(τk2)

)
, which contradicts

(36). Hence, each distinct ki ∈
{
kj + 1, . . . , kj + l

}
is

associated with a disticnt region Rki . On the other hand, since
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Fig. 4. An illustration of the different phases and variables used in the proof of Proposition 1 (not all regions are shown). A new phase begins at time
τk+1 when the (kσθ)-neighbourhood of the unperturbed trajectory, x(·), touches a new region, Rk+1. At the beginning of a phase, an auxiliary unperturbed
trajectory y(·) is coupled with the perturbed trajectory x̃(·). The dotted circle is a translation of a solid circle, centered at x(t). As soon as the dotted circle
touches a new region boundary, a new solid circle, with larger radius is created.

the number of different regions is at most m, there are at
most m phase changes during each of the at most 2m − 1
line segments in the trajectory of x(·), and the total number
of phases, Kmax , is smaller than m2m.

In our next step, we use induction on the phases to show
that if k ≤ Kmax , then∥∥x̃(t)− x(t)

∥∥ ≤ kσθ, ∀ t ∈ [τk, τk+1]. (37)

For any k ≥ 1, we consider the induction hypothesis∥∥x̃(τk)− x(τk)
∥∥ ≤ (k − 1)σθ. (38)

Note that (38) is automatically true for k = 1, because τ1 = 0
and x̃(0)− x(0) has been assumed to be zero. This provides
the basis of the induction. Using the triangle inequality and
the inequalities γ ≥ 1 and η = m2m+1σ ≥ 2Kmax σ ≥ 2kσ,
we obtain

d
(
x(τk), C

)
≥ d

(
x̃(τk), C

)
−
∥∥x(τk)− x̃(τk)

∥∥
≥ γηθ − (k − 1)σθ

≥ 2γkσθ − (k − 1)σθ

≥ γkσθ.

(39)

Let U = Ukσθ
(
x(τk)

)
. It follows from (39) and Lemma 4,

with r = kσθ, that U is low-dimensional. Furthermore, the
definition of τk+1 in (31) implies that

Ukσθ
(
x(t)

)
⊆ U , ∀ t ∈ [τk, τk+1). (40)

Let y(·) be an unperturbed trajectory with initial condition
y(τk) = x̃(τk). Since the unperturbed dynamics are non-
expansive, for any t ≥ τk, we have∥∥x(t)− y(t)

∥∥ ≤ ∥∥x(τk)− y(τk)
∥∥

=
∥∥x(τk)− x̃(τk)

∥∥
≤ (k − 1)σθ.

(41)

It is not hard to see that (41) and (40) imply that

Uσθ
(
y(t)

)
⊆ U , ∀ t ∈ [τk, τk+1), (42)

Hence, the conditions of Lemma 5 hold, with the initial time
being τk instead of zero. Therefore,

∥∥x̃(t) − y(t)
∥∥ ≤ σθ, for

all t ∈ [τk, τk+1]. As a result, for t ∈ [τk, τk+1],∥∥x̃(t)− x(t)
∥∥ ≤ ∥∥x̃(t)− y(t)

∥∥+
∥∥y(t)− x(t)

∥∥
≤ σθ + (k − 1)σθ

= kσθ,

(43)

where the second inequality is due to (41). This establishes
(37) and, in particular, that (38) holds with k replaced by k+1
(the induction step). Finally, the proposition follows from (37)
and the fact that k ≤ Kmax < m2m.

C. Proof of the Bound when Close to a Critical Point

In Proposition 1, we presented a bound on the distance
between the trajectories when there are no nearby critical
points. The next proposition deals with the other extreme,
where the trajectories are in a basin of a critical point.

Proposition 2. Consider two constants θ, T > 0, a critical
point p ∈ C and a basin Bρ of radius ρ for p. Let x(·) and x̃(·)
be a pair of θ-coupled trajectories at time 0, with x̃(t) ∈ Bρ,
for all t ∈ [0, T ]. Suppose that 0 < r < ρ, with ρ possibly
infinite, and that for the ball Br of radius r centered at p,

d
(
Bρ\Br , C

)
≥
(
γ + 1

)
ηθ, (44)

where η = m2m+1σ and γ are the constants defined in Propo-
sition 1 and Lemma 4, respectively. Then,

∥∥x̃(t)−x(t)
∥∥ ≤ 4r,

for all t ∈ [0, T ].

Proof. Since the balls Bρ and Br are centered at p, we have
d
(
Bρ\Br , C

)
≤ d

(
Bρ\Br , p

)
= r and, from (44), r > ηθ.

Let
r1 , r − ηθ, r2 , r1 + 3θ, (45)

and consider two balls Br1 and Br2 centered at p, with radii
r1 and r2, respectively. Since p is a critical point, it is in the
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intersection of at least two regions. Therefore, the number m
of elements of the set M of drifts is at least two, and

η = m2m+1σ ≥ m2m+1 ≥ 16. (46)

As a result, r2 ≤ r and Br1 ⊂ Br2⊂Br ⊂ Bρ; see Fig. 5.
Consider the region Bρ\Br1 between Br1 and Bρ. It follows

from (44) that

d
(
Bρ\Br1 , C

)
≥ d

(
Bρ\Br , C

)
−
(
r − r1

)
≥
(
γ + 1

)
ηθ − ηθ

= γηθ.

(47)

The high level idea is that for any t ∈ [0, T ], the perturbed
solution is either in Br2 or in Bρ\Br1 (or possibly in both).
When x̃(t) ∈ Br2 we will show that the unperturbed trajectory
is also close to the critical point p. But the more interesting
case is when x̃(t) ∈ Bρ\Br1 . The idea here is to look at
the perturbed solution, and at certain times that it hits the
boundary of Br2 , consider an auxiliary unperturbed trajectory
that is coupled with x̃(t) at that time. Using Proposition 1,
we can then show that these coupled trajectories stay close to
each other, as long as the perturbed trajectory stays in Bρ\Br1 .
As a result, and using also the fact that the dynamics are
non-expansive, the auxiliary trajectory x̃(t) will remain close
to x(t), and the distance

∥∥x̃(t) − x(t)
∥∥ stays bounded. The

various parameters and trajectories are illustrated in Fig. 5.
Let T out0 = 0, and for any i ≥ 1 let

T ini , inf
{
t ∈ (T outi−1, T ]

∣∣∣ x̃(t) ∈ Br1
}
, (48)

T outi , inf
{
t ∈ (T ini , T ]

∣∣∣ x̃(t) /∈ Br2
}
. (49)

If either set is empty, we let the left hand side be equal to
T . We consider a number of rounds. Round i starts at time
T outi and ends at time T ini+1. Note that the union of these
rounds does not necessarily cover [0, T ]. Also, note that since
there is a gap of size 3θ > 2θ between the boundaries of Br1
and Br2 , it takes some lower-bounded positive time for the
perturbed trajectory to travel from one boundary to the other,
and hence the length of each round is lower bounded by a
positive constant. So, the number of rounds during [0, T ] is
finite.

To each round i we associate an unperturbed trajectory, de-
noted by xi(t), t ∈ [T outi , T ini+1], with initial point xi(T outi ) =
x̃(T outi ), i.e., xi(·) is coupled with the perturbed trajectory at
time T outi . For any t ∈ [T outi , T ini+1], since x̃(t) ∈ Bρ\Br1 ,
(47) asserts that d

(
x̃(t), C

)
≥ γηθ. Therefore, it follows from

Proposition 1 that for any t ∈ [T outi , T ini+1],∥∥x̃(t)− xi(t)
∥∥ ≤ ηθ. (50)

Note that x0(t) = x(t), for all t ≥ 0. Thus, if T in1 = T ,
the inequality (50) together with the fact ηθ < r < 4r imply
that

∥∥x̃(t) − x(t)
∥∥ < 4r, for all t ∈ [0, T ], as desired. So, in

the following we assume that T in1 < T . Note that the right-
continuity of x̃(·) implies that

∥∥x̃(T in1 ) − p
∥∥ ≤ r1. Let z(·)

be an unperturbed trajectory that starts at the critical point p

at time T in1 , i.e., z
(
T in1
)

= p. It follows from (50) and the
non-expansive property of the dynamics that for any t ≥ T in1 ,

∥∥x(t)− z(t)
∥∥ ≤ ∥∥x(T in1 )− z(T in1 )

∥∥
=
∥∥x(T in1 )− p

∥∥
≤
∥∥p− x̃(T in1 )

∥∥+
∥∥x̃(T in1 )− x(T in1 )

∥∥
≤ r1 + ηθ

= r,

(51)

where in the last inequality we used (50) with i = 0 and
t = T in1 . We now proceed to derive a bound on

∥∥x̃(t)−x(t)
∥∥,

for t ≥ T in1 , by developing a bound on
∥∥x̃(t) − z(t)

∥∥. Let
ξ = ξ(p) be the actual drift at p. We consider two cases.

Case 1. (p is an equilibrium point, i.e., ξ = 0). In this case,
z(t) = p, for all t ≥ T in1 . Comparing with the unperturbed
trajectory xi(·) and using the non-expansive property and the
definition of T outi , it follows that for any round i ≥ 1 and any
t ∈ [T outi , T ini+1],

∥∥xi(t)− z(t)∥∥ ≤ ∥∥xi(T outi )− z(T outi )
∥∥

=
∥∥x̃(T outi )− p

∥∥
= r2 ≤ 3r2.

(52)

Combining this with (50) and (51), we get the following bound
for all i ≥ 1 and for all t ∈ [T outi , T ini+1],

∥∥x̃(t)− x(t)
∥∥ ≤ ∥∥x̃(t)− xi(t)

∥∥+
∥∥xi(t)− z(t)∥∥

+
∥∥z(t)− x(t)

∥∥
≤ ηθ + 3r2 + r

= ηθ + 3
(
r − ηθ + 3θ

)
+ r

= 4r + 2
(
4.5− η

)
θ

< 4r,

(53)

where the second inequality is due to (50), (52), and (51), and
the last inequality is due to (46).

Furthermore, for any t ∈ [T ini , T outi ), our definitions imply
that

∥∥x̃(t)− z(t)
∥∥ =

∥∥x̃(t)− p
∥∥ < r2. Hence, for such t,

∥∥x̃(t)−x(t)
∥∥ ≤ ∥∥x̃(t)−z(t)

∥∥+
∥∥z(t)−x(t)

∥∥ ≤ r2 +r < 4r,

where the second inequality is due to (51). Thus, the propo-
sition holds in this case.

Case 2. (p is not an equilibrium point, i.e., ξ 6= 0). The
dynamics in this case are illustrated in Fig. 5. Here, we need
to find an alternative derivation of (52), and also derive a new
bound for

∥∥x̃(t)− z(t)
∥∥ when t ∈ [T ini , T outi ).

Let ζ(·) be a perturbed drift associated with the perturbed
trajectory x̃(·). Since Bρ is a basin and ζ(t) ∈ F

(
x̃(t)

)
, it

follows from the definition of basins that for any t ∈ [0, T ],

ξT ζ(t) ≥
∥∥ξ∥∥2. (54)
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Fig. 5. An illustration of the balls, the different rounds, and the variables used in the proof of Proposition 2. Here, p and q are two critical points, and T ini
and T outi are defined in (48) and (49), respectively. There are four balls Br1 , Br2 , Br , and Bρ all centered at p, with radii r1, r2, r, and ρ, respectively.
Also, x(·) is an unperturbed trajectory that is coupled with the perturbed trajectory x̃(·) at time 0, z(·) is an unperturbed trajectory that starts at p at time
T in1 , and each xi(·) is an unperturbed trajectory that is coupled with x̃(·) at time T outi .

Hence, for any t ∈ [T in1 , T ],∥∥x̃(t)− p
∥∥ ≥ 1∥∥ξ∥∥ξT (x̃(t)− p

)
=

1∥∥ξ∥∥
(
ξT
(
x̃
(
T in1
)
− p
)

+

∫ t

T in
1

ξT ζ(τ) dτ

+ ξT
(
U(t)− U(T in1 )

))

≥ −
∥∥x̃(T in1 )− p∥∥+

1∥∥ξ∥∥
∫ t

T in
1

∥∥ξ∥∥2 dτ − 2θ

≥ −r1 + (t− T in1 )
∥∥ξ∥∥− 2θ.

(55)

The first inequality above is the Cauchy-Schwarz inequality;
the equality follows from the definition of perturbed trajecto-
ries (cf. Definition 1); the next inequality uses the Cauchy-
Schwarz inequality for the first term, (54) for the second, and
the bounds on U(·) for the third; the last inequality uses the
defining property

∥∥x̃(T in1 )− p∥∥ = r1 of T in1 .
We define an escape time T esc = T in1 +

(
r1+r2+3θ

)
/‖ξ‖.

The following claim suggests that if x̃(t) ever escapes Br2 , it
happens before time T esc.

Claim 2. If T ini < T for some i ≥ 1, then T outi ≤ T esc.

Proof of Claim. If T esc ≥ T , then T outi ≤ T ≤ T esc.
Suppose now that T esc < T . It follows from (55) and the
definition of T esc that

∥∥x̃(T esc) − p
∥∥ ≥ r2 + θ > r2.

Hence x̃(t) is outside of Br2 at time T esc, and by definition,
T outi ≤ T esc.

Since z(T in1 ) = p, we have
∥∥ż(0)

∥∥ = ξ. According to
Lemma 2(b),

∥∥ż(t)∥∥ is a non-increasing function of time,

and therefore
∥∥ż(t)∥∥ ≤ ∥∥ξ∥∥, for t ≥ T in1 . Hence, if t ∈[

T in1 , T esc
]
, then∥∥z(t)− p∥∥ ≤ (t− T in1 )∥∥ξ∥∥

≤
(
T esc − T in1

)∥∥ξ∥∥
= r2 + r1 + 3θ

= 2r2.

(56)

We now proceed by considering two cases: t ∈
[
T outi , T ini+1

)
and t ∈

[
T ini , T outi

)
. We first suppose that T outi < T , and

consider a t ∈
[
T outi , T ini+1

)
. Since T ini ≤ T outi < T , Claim 2

implies that T outi ≤ T esc. It then follows from (56) that∥∥z(T outi )− p
∥∥ ≤ 2r2. Then,∥∥xi(t)− z(t)∥∥ ≤ ∥∥xi(T outi

)
− z
(
T outi

)∥∥
≤
∥∥xi(T outi

)
− p
∥∥ +

∥∥p− z(T outi

)∥∥
≤ r2 + 2r2

= 3r2.

(57)

where the first inequality is due to the non-expansive property,
and the last inequality is due to the definition of T outi . Thus,
the bound (52) and the subsequent derivation of (53) remain
valid for this case as well, so that for every round i,∥∥x̃(t)− x(t)

∥∥ < 4r, ∀ t ∈
[
T outi , T ini+1

)
. (58)

We now discuss the case where t does not belong to a round,
i.e., t ∈

[
T ini , T outi

)
, for some i such that T ini < T . It follows

from Claim 2 that t < T outi ≤ T esc. Therefore, (56) implies
that if t ∈

[
T ini , T outi

)
, then

∥∥p− z(t)∥∥ ≤ 2r2. Therefore,∥∥x̃(t)− x(t)
∥∥ ≤ ∥∥x̃(t)− p

∥∥+
∥∥p− z(t)∥∥+

∥∥z(t)− x(t)
∥∥

≤ r2 + 2r2 + r

< 4r,
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where the second inequality is due to t ∈
[
T ini , T outi

)
and (51).

Together with (58), this completes the argument for Case 2,
and the proof of the proposition.

D. Completing the Proof of the Theorem

We now use the machinery developed in this section and
combine the results for the various cases to complete the proof
of Theorem 1.

If there are no critical points, then the perturbed trajectory
never gets close to a critical point, and the theorem follows
from Proposition 1. In the following, we assume that the set of
critical points is non-empty. Let M be the number of critical
points, let ρmin be the CNC, and let DC be the diameter of
the set of critical points:

DC , max
p,q∈C

∥∥p− q∥∥. (59)

According to Lemma 3(a), there are finitely many critical
points, so that DC is well-defined and finite. We define a
threshold parameter θ∗ as follows:

θ∗ ,
ρmin

40
(
M + 2

)(
γ + 1

)
η
, (60)

where γ and η are the constants defined in Lemma 4 and
Proposition 1, respectively. In what follows, we use Proposi-
tion 2 to prove that the following constant satisfies Theorem 1,

C =

{
4DC/θ∗ + 5

(
M + 2

)(
γ + 1

)
η, if θ∗ 6= 0,

4
(
γ + 1

)
η + 1, if θ∗ = 0.

(61)

As an example, for the system illustrated in Fig. 1, it can be
checked that the above constants are as follows: DC = θ∗ = 0,
M = 1, γ = 1, σ = 5, η = 240, and C = 1921.

We consider two cases, depending on whether the perturba-
tion bound θ is larger or smaller than the threshold θ∗.

Case 1 (θ ≥ θ∗). According to Lemma 3(c), there exists a
critical point p∗, for which the entire set Rn is a basin. We let
r = DC +

(
γ + 1

)
ηθ and ρ =∞. This choice of p∗, r, and ρ

observes the conditions of Proposition 2. Note that if θ∗ = 0,
then ρmin = 0, in which case there is at most one critical
point. Then, θ∗ = 0 implies DC = 0. Therefore, 4r < Cθ, for
all values of θ∗. It then follows from Proposition 2 that∥∥x̃(t)− x(t)

∥∥ ≤ 4r < Cθ, ∀t ≥ 0, (62)

which establishes the desired result.

Case 2 (θ < θ∗). Once again, we rely on Proposition
2, but in a local manner. We consider a “small” basin of
size ρmin /2 for each critical point, and define a number of
phases

[
T ini , T outi

]
so that throughout any particular phase,

the perturbed trajectory lies in one of these basins. We then
use Proposition 2 to bound the distance between the two
trajectories in each phase, and use Proposition 1 to bound their
distance while outside the basins. In the end, we use Lemma
3(e) to show that each basin is visited at most once, in a certain
sense, and finally put everything together to prove the desired
bound on the distance of the two trajectories. Figure 6 shows
an illustration of the different trajectories and variables that
we use in the argument that follows.

Let
r =

(
γ + 1

)
ηθ, ρ = ρmin /2. (63)

It follows from (60) and the assumption θ < θ∗ that r < ρ.
Moreover, based on Lemma 3(d), ρ is a basin radius for each
one of the critical points. For any critical point p ∈ C, let
Br(p) and Bρ(p) be the balls of radii r and ρ, respectively,
centered at p. We define two sequences of times T ini and T outi

as follows. Let T out0 = 0, and for any i ≥ 1, let

T ini , inf
{
t > T outi−1

∣∣∣ ∃ p ∈ C : x̃(t) ∈ Br(p)
}
. (64)

We denote by pi the critical point p in the right-hand side of
(64), so that x̃(T ini ) ∈ Br(pi). Note that the different balls
Br(p) do not intersect and therefore pi is uniquely defined;
we refer to it as the effective critical point at phase i. We then
define

T outi , inf
{
t > T ini

∣∣∣ x̃(t) /∈ Bρ(pi)
}
. (65)

In the above, we let T ini or T outi be infinite in case the set on
the right-hand side of (64) or (65) is empty.

Fix an i ≥ 1. We first derive a bound on
∥∥x̃(t)− x(t)

∥∥ for
t ∈

[
T outi−1, T

in
i

]
. Let yi(·) be an unperturbed trajectory with

yi
(
T outi−1

)
= x̃

(
T outi−1

)
. By definition, for any t ∈

[
T outi−1, T

in
i

]
,

d
(
x̃(t), C

)
≥ r =

(
γ + 1

)
ηθ. Therefore, it follows from

Proposition 1 that∥∥x̃(t)− yi(t)
∥∥ ≤ ηθ < r, ∀ t ∈

[
T outi−1, T

in
i

]
. (66)

Hence, from the non-expansive property of the unperturbed
dynamics, for any t ∈

[
T outi−1, T

in
i

]
, we obtain∥∥x̃(t)− x(t)

∥∥ ≤ ∥∥x(t)− yi(t)
∥∥+

∥∥x̃(t)− yi(t)
∥∥

≤
∥∥x(T outi−1

)
− yi

(
T outi−1

)∥∥+ r

=
∥∥x(T outi−1

)
− x̃
(
T outi−1

)∥∥+ r.

(67)

On the other hand, if t ∈
[
T ini , T outi

]
, for some i ≥ 1, we

have for any critical point p ∈ C other than pi,

d
(
p, Bρ(pi)

)
≥
∥∥p− pi∥∥− ρ

≥ ρmin − ρ

=
ρmin

2
≥
(
γ + 1

)
ηθ∗

> r,

(68)

where the second and third inequalities follow from the
definitions of ρmin and θ∗ in (14) and (60), respectively. Using
also the fact that d

(
pi, Bρ(pi)\Br(pi)

)
≥ r, we obtain

d
(
Bρ(pi)\Br(pi) , C

)
≥ r =

(
γ + 1

)
ηθ. (69)

Moreover, for any t ∈
[
T ini , T outi

]
, x̃(t) ∈ Bρ(pi). Hence,

the conditions of Proposition 2 are observed. Let xi(t) be an
unperturbed trajectory with xi

(
T ini
)

= x̃
(
T ini
)
. Proposition 2

implies that, for any t ∈
[
T ini , T outi

]
,
∥∥x̃(t) − xi(t)

∥∥ ≤ 4r.
Hence, from the non-expansiveness of the dynamics, we have
for any t ∈

[
T ini , T outi

]
,∥∥x̃(t)− x(t)

∥∥ ≤ ∥∥x(t)− xi(t)
∥∥+

∥∥x̃(t)− xi(t)
∥∥

≤
∥∥x(T ini )− xi(T ini )∥∥+ 4r

=
∥∥x(T ini )− x̃(T ini )∥∥+ 4r.

(70)
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Fig. 6. Illustration of the different trajectories and variables in Case 2 of the proof of Theorem 1. The figure shows a two-dimensional FPCS system with
four regions and two critical points, p1 and p2. There are two balls of radii r and ρ, defined in (63), centered at each critical point. The solid curved line
x̃(·) is a perturbed trajectory, coupled with an unperturbed trajectory x(·) at time 0. Times T ini and T outi , defined in (64) and (65), are the first times
that the perturbed trajectory hits the ball of radius r or leaves the larger ball of radius ρ around pi, respectively. In this example, T out2 = ∞, because the
perturbed trajectory never leaves the ρ-neighbourhood of p2. For each i, xi(·) and yi(·) are unperturbed trajectories coupled with x̃(·) at times T ini and
T outi−1, respectively. These unperturbed trajectories are shown by dashed lines.

Combining (70) and (67) and a straightforward inductive
argument, it follows that for any i ≥ 0, and for any t ∈
[0, T outi ] (where T outi can be infinite), we have∥∥x̃(t)− x(t)

∥∥ ≤ 5ir. (71)

Let i∗ be the maximum i such that T ini < ∞, with the
convention that i∗ = 0 if T in1 = ∞. Equivalently, when i∗ is
non-zero, it is the maximum i such that the set on the right
hand side of (64) is non-empty. We show that i∗ is finite and
in fact upper bounded by the number of critical points, M . In
order to draw a contradiction, suppose that i∗ ≥M+1. In this
case, there is a repeated critical point p ∈ C that is effective
in at least two phases; that is, there exist i, j, and p, such that
1 ≤ i < j ≤M + 1, T inj <∞, and pi = pj = p. Then,∥∥x(T ini )− p∥∥ ≤ ∥∥x(T ini )− x̃(T ini )∥∥+

∥∥x̃(T ini )− pi∥∥
≤ 5ir + r

< 5(M + 2)r,
(72)

where the second inequality is due to (71) and the definition
of T ini . The same bound also holds for

∥∥x(T inj )−p∥∥. On the
other hand,∥∥x(T outi

)
− p
∥∥ ≥ ∥∥pi − x̃(T outi

)∥∥− ∥∥x(T outi

)
− x̃
(
T outi

)∥∥
≥ ρ− 5ir

≥ ρmin

2
− 5(M + 1)r

= 20(M + 2)(γ + 1)ηθ∗ − 5(M + 1)r

≥ 20(M + 2)(γ + 1)ηθ − 5(M + 1)r

= 20(M + 2)r − 5(M + 1)r

> 15(M + 2)r,
(73)

where the second and third inequalities are due to (71) and
the definition of ρ, respectively. Let α = 15(M + 2)r. Using

the Definitions of θ∗ and r, and the assumption θ < θ∗, we
see that α < ρmin . From Lemma 3(d), α is a basin radius
for every critical point. It follows from (72), (73), and again
(72) that

∥∥x(T ini ) − p
∥∥ < α/3,

∥∥x(T outi

)
− p

∥∥ > α, and∥∥x(T inj )− p∥∥ < α/3, respectively. Since T ini ≤ T outi ≤ T inj ,
this contradicts Lemma 3(e). Therefore, the initial hypothesis
i∗ ≥ M + 1 cannot be true, and we conclude that i∗ ≤ M .
Hence, T outM+1 =∞. It follows from (71) and the definition of
C in (61) that for any t ≥ 0,∥∥x̃(t)− x(t)

∥∥ ≤ 5(M + 1)r ≤ Cθ, (74)

which shows that the Theorem also holds for Case 2.
We now prove the last statement in Theorem 1, namely,

that the bound (6) applies to the system ẋ ∈ F (x) + λ, with
the same constant C. Let F ′(·) = F (·) + λ. According to
Lemma 3(f), the systems F and F ′ have identical effective
regions and critical points. It follows that the constants ρmin ,
DC , M (number of critical points), and m (number of regions)
are also the same. As a consequence, the constants γ and σ,
defined in Lemmas 4 and 5, respectively, are also identical for
the two systems, and the same is true for the constant η =
m2m+1σ, defined in Proposition 1, the constant θ∗ defined in
(60), and finally for the constant C in (61). In other words,
the same constant C also works for the dynamical system F ′.
This completes the proof of Theorem 1.

V. Discussion
In this section we review our main results and their implica-

tions, and also discuss the extent to which they can or cannot
be generalized to broader classes of systems.

We have established a bounded input sensitivity property of
FPCS (finitely piecewise constant subgradient) systems, in a
strong sense. In particular, we have shown that the increase in
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the distance between perturbed and unperturbed trajectories
is upper-bounded by a constant multiple of the magnitude
of the integral of the instantaneous perturbations; cf. (6). As
discussed in the introduction, this is much stronger than the
elementary upper bounds which involve the integral of the
magnitude of the instantaneous perturbations. As an example,
for the system illustrated in Fig. 1, and with i.i.d. Bernoulli
perturbations, the naive bound in (3) grows at the rate of
t/2, whereas the bound in (6) only grows as (C/2)

√
t log t,

for some C < 2000, with high probability. Thus, over short
time scales, the naive bound is stronger, but in the regime of
large t (which is the relevant one for heavy-traffic asymptotic
analysis) our bound is tighter. Furthermore, the best constant
C for that example is likely to be much smaller.6 In any case,
our work carries out the important first step, that of showing
that C is in fact finite. We finally note that our definitions are
broad enough to include as possible perturbations the sample
paths of jump or Brownian motion processes.

A. Implications

FPCS systems arise in many contexts. As discussed in
Section I, a prominent example is the celebrated Max-Weight
policy for scheduling in queueing networks. Having made this
connection, we can (cf. [14]) apply a variant of our result
to the Max-Weight policy, establish bounds on the distance
between the actual discrete-time stochastic system and its fluid
approximation, and also obtain state space collapse results that
are stronger than available ones [13], [27].

More broadly, flows or algorithms that evolve along the
subgradient of a potential function are a fairly natural model,
likely to arise in many other contexts. Recall also that, as
mentioned in Section I, the FPCS class has been shown [2]
to contain all non-expansive finite-partition hybrid systems
that obey some minimal well-formedness and uniqueness
properties.

B. Generalizations

Broad generalizations that assume only a subset of the
properties of FPCS systems are not possible. In [1] we provide
(counter)examples that show that a sensitivity bound of the
form (6) does not hold for various classes of systems. Our
counterexamples include:

1) A non-expansive system; hence the non-expansiveness
property is not sufficient by itself.

2) A system that moves along the gradient of a twice contin-
uously differentiable strictly convex function; hence the
subgradient property is not sufficient by itself.

3) A system that moves along the subgradient of a piecewise
linear convex function with infinitely many number of
pieces; hence the finiteness of the number of pieces is
essential.

Even though our main result cannot be extended by weak-
ening its assumptions, it may still be possible to derive similar
sensitivity bounds for other classes of systems. For example,

6Using a variant of our proof, tailored to that example, it can be shown
that C can be set to 6.5.

[1] provides necessary and sufficient conditions for linear
systems ẋ = Ax, in terms of the spectrum of A. It will be
interesting to explore whether there are some other natural
classes of systems that do not have the non-expansiveness
property but for which the conclusions in Theorem 1 are valid.

C. Some open problems

Besides attempts to obtain bounded sensitivity results for
other types of systems, there are some interesting open prob-
lems for FPCS systems specifically.

1) The bound in Theorem 1 involves a constant C which
grows exponentially with the number of regions. It is not
known whether this is unavoidable or whether a smaller
(polynomial) constant is possible.

2) Theorem 1 studies the distance between a perturbed and
an unperturbed trajectory, but this does not necessarily
provide a strong bound on the distance between two
perturbed trajectories. Consider an FPCS system and two
different perturbations U1(·) and U2(·) that are close at all
times. Whether the perturbed trajectories are guaranteed
to stay close is an open problem.
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APPENDIX A
Proof of Lemma 3

Proof of Lemma 3(a). We fix some ν and p ∈ Rν = {x |
−νTx+ bν ≥ −µTx+ bµ, ∀ µ}. Suppose that p is a critical
point. By the definition of M(p), we have −νTx + bν =
−µTx+ bµ for every µ ∈M(p), i.e., these constraints are all
active at p. Furthermore, by the definition of critical points, the
vectors {µ−µ′ | µ, µ′ ∈M(p)} span Rn. It is not hard to see
that this implies that the vectors {µ−ν | µ ∈M(p)} also span
Rn, so that n of them are linearly independent. Using linear
programming terminology, out of the constraints that define
Rν , there are n linearly independent active constraints at p,
and p is a “basic feasible solution” in Rν . This is equivalent
to p being an extreme point of Rν ; cf. Theorem 2.3 in [28].

For the converse implication, suppose that p is an extreme
point of Rν . Using again Theorem 2.3 in [28], n of the vectors
µ − ν, associated with active constraints at p (i.e., with µ ∈
M(p)) are linearly independent. It follows that the vectors
µ− µ′, for µ, µ′ ∈ M(p) span Rn, and (by the definition), p
is a critical point.

Proof of Lemma 3(b). In order to draw a contradiction, con-
sider a time t > 0 where z(t) is in the basin and ż(t) 6= ξ.
It follows from Lemma 2(b) that

∥∥ż(t)∥∥ <
∥∥ξ∥∥. Hence,

ξT ż(t) ≤
∥∥ξ∥∥·∥∥ż(t)∥∥ < ∥∥ξ∥∥2, which contradicts the definition

of a basin.

Proof of Lemma 3(c). We assume that the set C of critical
points is non-empty. We will first show that there exists a
critical point p such that

∥∥ξ(p)∥∥ ≤ ∥∥ξ(x)
∥∥, for all x ∈ Rn.

We will then show that Rn is a basin for this particular p.
Since there exists a critical point, Part (a) implies that some

Rν has an extreme point. Using linear programming theory
(cf. Theorem 2.6 in [28]) it follows that all of the non-empty
regions Rµ also have extreme points7.

7This is because the regions are defined in terms of constraints aT x ≤ b or
aT x ≥ b, where each a is of the form a = µ−µ′, for some µ, µ′; different
regions correspond to different choices in the direction of the inequalities, but
the vectors a are the same or every region.
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Consider some x in some region Rν . Let x′ be an extreme
point of that region, chosen so that all constraints that were
active at x are also active at x′. (This can be done by moving
inside Rν while respecting active constraints, until additional
constraints are made active, exactly as in the proof of Theorem
2.6 in [28].) The resulting extreme point x′ satisfiesM(x′) ⊇
M(x). Since F (x) is the convex hull of M(x), it follows
that F (x′) ⊇ F (x). From Lemma 2(a), ξ(x) is the minimum
norm element of F (x), which implies that

∥∥ξ(x′)∥∥ ≤ ∥∥ξ(x)
∥∥.

We conclude that when we minimize the function
∥∥ξ(x)

∥∥ over
all x ∈ Rn, it suffices to restrict to the (finite) set of extreme
points of the different regions, or equivalently the set of critical
points (cf. Part (a)). This concludes the proof that there exists
a critical point, p, such that

∥∥ξ(p)∥∥ ≤ ∥∥ξ(x)
∥∥, for all x ∈ Rn.

Let ξ∗ = ξ(p).

We now proceed to show that Rn is a basin of p. Let z(t) be
an unperturbed trajectory with initial point z(0) = p. Similar
to the proof of Part (b), if for some t > 0, ż(t) 6= ξ∗, then
it follows from Lemma 2(b) that

∥∥ξ(z(t))∥∥ =
∥∥ż(t)∥∥ <∥∥ż(0)

∥∥ =
∥∥ξ∗∥∥, which contradicts the definition of ξ∗.

Hence, for any t ≥ 0, z(t) = p + tξ∗, which implies that
−ξ∗ ∈ ∂Φ

(
p+tξ∗

)
, where Φ is the convex function for which

F is the subdifferential.

For any x ∈ Rn, let Φ̃(x) = Φ(x) + tξ∗T (x − p), so that
∂Φ̃(x) = ∂Φ(x) + ξ∗. Since −ξ∗ ∈ ∂Φ(p+ ξ∗), we have 0 ∈
∂Φ̃
(
p+ tξ∗

)
, which implies that p+ tξ∗ is a minimizer of Φ̃.

Consider an x ∈ Rn and a y ∈ F (x). Then, y−ξ∗ ∈ −∂Φ̃(x).
It follows from the supporting hyperplane theorem that, for any
t ≥ 0, (ξ∗ − y)T (p + tξ∗ − x) ≤ Φ̃(p + tξ∗) − Φ̃(x) ≤ 0,
where the last inequality is because p+ tξ∗ is a minimizer of
Φ̃. Then, by letting t go to infinity, we obtain

(
ξ∗ − y

)T
ξ∗ = lim

t→∞

1

t

(
ξ∗ − y

)T (
p+ tξ∗ − x

)
≤ 0. (75)

Hence,
∥∥ξ∗∥∥2 ≤ ξ∗T y, which shows that Rn is a basin of p.

In the special case where F is conic and has a critical point,
then this is the only critical point and therefore has Rn for a
basin.

Proof of Lemma 3(d). Consider a critical point p ∈ C, and let

Φ̃(x) = max
µ∈M(p)

{
− µT

(
x− p

)}
, ∀ x ∈ Rn. (76)

Hence, the dynamical system ẋ ∈ F̃ (x) , −∂Φ̃(x) is conic.
Since the vectors

{
µ − µ′ | µ ∈ M(p)

}
span Rn, it follows

that p is also a critical point of the system ẋ ∈ F̃ (x). Lemma
3(c) then implies that the entire set Rn is a basin for p, for
the system ẋ ∈ F̃ (x).

Let B be the ball of radius ρmin centred at p, where ρmin

is the CNC. By the definition of the CNC, if B
⋂
Rµ is non-

empty for some µ ∈M, then p ∈ Rµ. Hence, for any x ∈ B,

we must have M(x) ⊆M(p). Therefore, for any x ∈ B,

Φ(x) = max
µ∈M

(
−µTx+ bµ

)
= max
µ∈M(p)

(
−µTx+ bµ

)
= max
µ∈M(p)

(
−µT

(
x− p

)
−µT p+ bµ

)
= Φ(p) + max

µ∈M(p)

(
−µT

(
x− p

))
= Φ(p) + Φ̃(x).

(77)

where the second equality is because the set M(x) of max-
imizers of −µTx + bµ is a subset of M(p). Hence, for
any x ∈ B, F (x) = F̃ (x). As a result, for x ∈ B, ξ(x)
for the system ẋ ∈ F (x) is equal to ξ(x) for the system
ẋ ∈ F̃ (x). Since Rn is a basin of p for the system ẋ ∈ F̃ (x),
it follows that for any x ∈ B and any y ∈ F (x) = F̃ (x), we
have yT ξ(p) ≥

∥∥ξ(p)∥∥. Hence, B is a basin for the system
ẋ ∈ F (x).

Proof of Lemma 3(e). The result will be derived by com-
paring the trajectory x(t) of interest to another unperturbed
trajectory, z(t), initialized with z(t1) = p. According to the
non-expansive property of the dynamics, we have

∥∥x(t) −
z(t)

∥∥ ≤ ∥∥x(t1)− z(t1)
∥∥ ≤ ρ/3, for every t ≥ t1. Hence,∥∥z(t2)−p

∥∥ ≥ ∥∥x(t2)−p
∥∥−∥∥x(t2)−z(t2)

∥∥ > ρ− ρ
3

= 2ρ/3.

In order to draw a contradiction, suppose that there is a time
t3 > t2 such that

∥∥x(t3)− p
∥∥ ≤ ρ/3. In this case,∥∥z(t3)−p

∥∥ ≤ ∥∥z(t3)−x(t3)
∥∥+
∥∥x(t3)−p

∥∥ ≤ ρ

3
+
ρ

3
=

2

3
ρ.

Hence, z(t3) is in the basin of p, which implies that
ξ(p)T ξ

(
z(t3)

)
≥
∥∥ξ(p)∥∥ and∥∥ξ(z(t3)

)∥∥ ≥ ∥∥ξ(p)∥∥. (78)

The trajectory z(t) starts inside the 2ρ/3-neighbourhood of
p at time t1, leaves this neighbourhood before time t2, and
returns back to it by time t3. Since the 2ρ/3-neighbourhood is
convex, z(t) must have changed its direction in the meanwhile,
and there exists a time t′ ∈ (t1, t3) such that ż(t′) 6= ż(t1) =
ξ(p). Then, using Lemma 2(b),∥∥ξ(z(t3)

)∥∥ ≤ ∥∥ż(t′)∥∥ < ∥∥ż(t1)
∥∥ =

∥∥ξ(p)∥∥. (79)

This contradicts (78) and concludes the proof.

Proof of Lemma 3(f). For every drift µ ∈ M of F , µ + λ is
a drift of F ′. The associated effective region R′µ+λ of F ′ is
given by R′µ+λ =

{
x ∈ Rn

∣∣−(µ+λ)Tx+bµ ≥ −(ν+λ)Tx+

bν , ∀ν ∈M
}

=
{
x ∈ Rn

∣∣ − µTx+ bµ ≥ −νTx+ bν , ∀ν ∈
M
}

= Rµ. Hence, the regions associated with F and F ′ are
the same. Consider a point p ∈ Rn and letM′(p) =M(p)+λ
be the set of active drifts of p in system F ′. The affine span
of M′(p) is Rn if and only if the affine span of M(p) is Rn.
Hence, p is a critical point for the system F ′ if and only if it is
a critical point for the system F . Finally, by the definition of
the CNC, since F and F ′ have the same set of regions and the
same set of critical points, they also have the same CNC.
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APPENDIX B
Proof of Lemma 4

We provide here the proof of Lemma 4. We will make use
of an auxiliary result, proved in [29], which states that if a
point is close to each of several half-spaces, then that point is
also close to the intersection of those half-spaces.

Lemma 6 ([29], Lemma 5.1). Given a finite collection of half-
spaces Wi ⊂ Rn, with non-empty intersection, there exists a
finite constant c > 0 such that

d
(
x ,
⋂
i

Wi

)
≤ c ·max

i
d
(
x , Wi

)
, ∀ x ∈ Rn. (80)

Proof of Lemma 4. For any x ∈ Rn, let r(x) = sup
{
r :

Ur is low-dimensional
}

. By definition, if x is not a critical
point, then r(x) > 0, and if r ≥ r(x), then Ur is not low-
dimensional. We will show that

γ , inf
x6∈C

r(x)

d
(
x, C

) > 0. (81)

In order to draw a contradiction, suppose that there exists a
sequence of points yk ∈ Rn\C such that

r(yk)

d
(
yk, C

) −−−−→
k→∞

0. (82)

Since Ur(yk)(yk) is not low-dimensional, there exist n + 1
drifts µ1, . . . , µn+1 ∈ Ur(yk)(yk) such that

span
{
µi − µj

∣∣ i, j ≤ n+ 1
}

= Rn. (83)

Because the setM of all drifts is finite, there exists an infinite
subsequence

{
xk
}

of
{
yk
}

for which (83) holds for the same
set of drifts. We fix this set of drifts

{
µi
}n+1

i=1
. Then, for any

k,
{
µi
}n+1

i=1
⊆ Ur(xk)(xk). It follows from the definition of

r(x) that for any k,

r(xk) = max
i≤n+1

d
(
xk , Ri

)
, (84)

where Ri = Rµi is the effective region of µi. We define n(n+
1) half-spaces Wi,j as follows. For any i, j ≤ n+1 with i 6= j,
let

Wi,j ,
{
x ∈ Rn

∣∣∣ − (µi − µj)Tx + bi − bj ≥ 0
}
, (85)

where bi is a shorthand for bµi
. Then, for any i ≤ n+ 1,

Ri ⊆
⋂
j 6=i

Wi,j . (86)

Hence, for any i ≤ n + 1 and any x ∈ Rn, d
(
x,Ri

)
≥

maxj≤n+1 d
(
x,Wi,j

)
. Then, it follows from (84) that for any

k ≥ 1,

r(xk) = max
i≤n+1

d
(
xk , Ri

)
≥ max

i,j≤n+1
i6=j

d
(
x,Wi,j

)
(87)

It follows from (83) that the following system of n linear
equations is non-degenerate:

− (µi − µn+1)Tx + bi − bn+1 = 0, i = 1, . . . , n. (88)

Hence, it has a unique solution, which we denote by p. Note
that Wi,j and Wj,i are different, and their intersection is{
x
∣∣ − (µi − µj)Tx + bi − bj = 0

}
. Therefore,

{p} =
⋂

i,j≤n+1
i6=j

Wi,j . (89)

It follows from Lemma 6, with δ = 1/c, that there exists a
constant δ > 0 such that for any x ∈ Rn,

max
i,j≤n+1
i 6=j

d
(
x,Wi,j

)
≥ δ d

(
x,

⋂
i,j≤n+1
i6=j

Wi,j

)
= δ d

(
x, p
)
.

(90)
Combining (87) and (90), we have for any k,

r(xk) ≥ max
i,j≤n+1
i 6=j

d
(
xk,Wi,j

)
≥ δ d

(
xk, p

)
. (91)

Back to the hypothesis (82), there are two possible cases:
(a)
{
xk
}

has a subsequence
{
zk
}

with d
(
zk, C

)
→∞, or (b)

xk has a subsequence zk with r(zk)→ 0.
In the first case, where d

(
zk, C

)
→∞, it follows from (91)

that

lim
k→∞

r(zk)

d
(
zk, C

) ≥ δ lim
k→∞

d
(
zk, p

)
d
(
zk, C

)
≥ δ lim

k→∞

d
(
zk, C

)
− d
(
p, C
)

d
(
zk, C

)
= δ > 0,

(92)

which contradicts (82).
In the second case, where r(zk)→ 0, it follows from (91)

and (84) that for any i ≤ n+ 1,

d
(
p,Ri

)
≤ d

(
p, zk

)
+d
(
zk, Ri

)
≤ r(zk)

δ
+r(zk) −−−−→

k→∞
0.

(93)
Then, since each Ri is a closed set, we must have p ∈ Ri.
Hence, p ∈

⋂
i≤n+1Ri which together with (83) implies that

p is a critical point. Using this fact, and then (91), we obtain

lim
k→∞

r(zk)

d
(
zk, C

) ≥ lim
k→∞

r(zk)

d
(
zk, p

) ≥ δ > 0, (94)

which again contradicts (82). Hence, (82) is contradicted in
both cases, and (81) follows.

Let γ = max{1, 1/γ}. It follows from (81) that γr(x) ≥
d
(
x, C

)
, for all x 6∈ C. Hence, if γr < d

(
x, C

)
, then r < r(x),

and by the definition of r(x), Ur(x) is low-dimensional.
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