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We consider the following distributed service model: jobs with unit
mean, general distribution, and independent processing times arrive as a re-
newal process of rate λn, with 0 < λ < 1, and are immediately dispatched
to one of several queues associated with n identical servers with unit pro-
cessing rate. We assume that the dispatching decisions are made by a central
dispatcher endowed with a finite memory, and with the ability to exchange
messages with the servers.

We study the fundamental resource requirements (memory bits and mes-
sage exchange rate), in order to drive the expected queueing delay in steady-
state of a typical job to zero, as n increases. We develop a novel approach
to show that, within a certain broad class of “symmetric” policies, every dis-
patching policy with a message rate of the order of n, and with a memory
of the order of logn bits, results in an expected queueing delay which is
bounded away from zero, uniformly as n → ∞. This complements existing
results which show that, in the absence of such limitations on the memory or
the message rate, there exist policies with vanishing queueing delay (at least
with Poisson arrivals and exponential service times).

1. Introduction. Distributed processing systems are ubiquitous, from passport control
at the airport and checkout lines at the supermarket, to call centers and server farms for
cloud computing. Many of these systems involve a stream of incoming jobs dispatched to
distributed queues, with each queue associated to a different server; see Figure 1 for a stylized
model. Naturally, the performance of such systems depends critically on the policy used to
dispatch jobs to queues.

In order to take full advantage of the multiple servers, the dispatcher can benefit from
information about the current state of the queues (e.g., whether they are empty or not). For
such information to be available when a job arrives to the system and a dispatching decision
is to be made, it is necessary that the dispatcher periodically obtain information about the
current queue states from the corresponding servers and/or have sufficient memory that allows
it to extrapolate from the available information. In this paper, we explore the tradeoff between
the performance of the system and the amount of resources used to gather and maintain
relevant information.

There is a variety of ways in which the system described above can be operated; these
correspond to different dispatching policies, and result in different performance and resource
utilization. At one extreme, the dispatcher can route incoming jobs to a queue chosen uni-
formly at random. This policy requires no information on the state of the queues, but the jobs
experience considerable delays. At the other extreme, the dispatcher can send incoming jobs
to a queue with the smallest number of jobs or to a queue with the smallest workload. The
jobs in these last two policies experience little or no delay, but substantial communication
overhead between the dispatcher and the servers is required.
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FIG. 1. Parallel server queueing system with a central dispatcher.

Many intermediate policies have been proposed and analyzed in the past (e.g., the power-
of-d-choices or join-an-idle-queue), and they use varying amounts of resources to achieve
different levels of delay performance. A more detailed discussion of the relevant literature
and the various schemes therein is deferred to Section 4.

Instead of focusing on yet another policy or decision making architecture, we step back
and address a more fundamental question: what is the minimum amount of resources required
to obtain the best possible performance, as the number of server increases? Regarding perfor-
mance, we focus on the expected time that a job has to wait before starting service. Regarding
resources, we focus on the average number of messages exchanged between the dispatcher
and the servers per unit of time, and on the number of bits of “long term” memory that the
dispatcher has at its disposal.

1.1. Relationship with the “balls into bins” model. Some performance-resources trade-
offs similar to the ones we study have been analyzed in the context of the balls into bins
model [2], in which n balls are to be placed sequentially into n bins. In particular, the trade-
off between the number of messages exchanged and the maximum number of balls in any
one bin was recently characterized in [10], showing that a constant maximum load can be
obtained using logn rounds of communication for each ball. Furthermore, the tradeoff be-
tween memory size and maximum number of balls in any one bin was studied in [1]. There,
the authors showed that if the dispatcher has m bits of memory, and is only given k random
choices of bins for each ball as destinations, then a constant load can only be achieved if
km � n.

Note that the balls into bins model and the dynamic model that we consider are similar in
that both involve sequential decisions about the destination of balls (or jobs). Furthermore,
the performance metric of interest for the balls into bins model is the maximum number of
balls placed in any one bin. Thus, there is the same incentive to send balls to bins with the
least amount of balls in them, as in our dynamic model. As a consequence, there are many
policies that are used and perform well in both settings. However, there are two fundamental
differences that make the two models substantially different.

1. Balls do not leave the system. While this may not seem like a major difference at first
glance, its impact is best highlighted by the following example: The Round-Robin policy is
optimal for the balls into bins model (all bins end up with exactly one ball), but it can be far
from optimal in the dynamic model.

2. Maximum load as a performance metric. This metric makes outliers extremely impor-
tant in the balls into bins model, whereas in our dynamic model we are concerned with the
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average load. Thus, a policy with a low average load and large outliers would be good for our
dynamic model, but poor for the balls into bins model.

Because of these differences, results from one setting cannot be translated into the other.

1.2. Our contribution. We consider a broad family of decision making architectures and
policies, which includes most of those considered in the earlier literature, and work toward
characterizing the attainable delay performance for a given level of resources. We allow the
dispatcher to have a limited memory, where it can store information on the state of the queues.
We also allow the exchange of messages, either from the dispatcher to the servers (queries),
or from the servers to the dispatcher (responses to queries or spontaneous status updates).

We show that if the average message rate is at most of the order of the arrival rate, and the
memory size (in bits) is at most of the order of the logarithm of the number of servers, then
every decision making architecture and policy, within a certain broad class of dispatching
policies, results in a queueing delay that does not vanish as the system size increases. In par-
ticular, we show that the expected queueing delay in steady-state of a typical job is uniformly
bounded away from zero as the number of servers goes to infinity. The main constraints that
we impose on the policies that we consider are: (i) there is no queueing at the dispatcher,
that is, each job is immediately dispatched to one of the parallel queues, and (ii) policies are
symmetric, in a sense to be made precise later.

REMARK 1.1. For the case of Poisson arrivals and exponential service times, if either
(i) the message rate is superlinear in the arrival rate [14], or if (ii) the memory size in bits
is superlogarithmic in the number of servers and the message rate is greater than or equal to
the arrival rate [7], then there exists a dispatching policy that results in a vanishing queueing
delay as the system size increases. This gives sufficient conditions to achieve a vanishing
queueing delay that are complementary to the necessary conditions obtained in this paper.

REMARK 1.2. The logarithmic threshold in the number of bits comes from the fact that
the number of bits required to store the ID of a server is of the order of the logarithm of the
number of servers. Thus, policies that have a logarithmic number of bits of memory can only
store a constant number of server IDs in memory.

1.3. Outline of the paper. The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce some notation. The model and the main result are presented in Section 3.
In Section 4 we discuss our result in the context of some concrete dispatching policies from
the earlier literature. In Section 5 we provide the proof of our main result. Finally, in Section 6
we present our conclusions and suggestions for future work.

2. Notation. In this section we introduce some notation that will be used throughout the
paper. For any positive functions f and g, we write

f (n) ∈ ω
(
g(n)

)
if and only if lim inf

n→∞
f (n)

g(n)
= ∞.

We let [ · ]+ � max{ · ,0}. We let Z+ and R+ be the sets of nonnegative integers and real
numbers, respectively. The indicator function is denoted by 1, so that 1A(x) is 1 if x ∈ A,
and is 0 otherwise. Given a set A, its power set, the set of all subsets of A, is denoted by P(A).
Random variables will always be denoted by upper case symbols. Nonrandom quantities will
generally—but not always—be denoted by lower case symbols; exceptions will be pointed
out as necessary.
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We will use boldface fonts to denote vectors. If v is a vector, we denote its ith component
by vi . We will denote the (unordered) set of elements of a vector by using the superscript
“set”; for example, if v = (2,1,3,1), then vset = {1,2,3}. Furthermore, we will use |v| to
denote the dimension of a vector v. If v = (v1, . . . ,vm) is a vector, and u is a vector with
entries in {1, . . . ,m}, then vu is a |u|-dimensional vector whose ith component is vui

; for
example, if u = (3,1), then vu = (v3,v1).

For any positive integer n, we define the sets Nn � {1, . . . , n}, and

Sn �
{

s ∈
n⋃

i=0

(Nn)
i : there are no repeated elements in s

}
,

where (Nn)
0 = {∅}. We say that a permutation σ : Nn → Nn fixes a set R ⊂ Nn if σ(i) = i,

for all i ∈ R. Furthermore, we say that a permutation σ preserves the ordering of a subset
A ⊂ Nn if σ(i) < σ(j) whenever i, j ∈ A and i < j . If v = (v1, . . . ,vm) is a vector in (Nn)

m

and σ is a permutation of Nn, we denote by σ(v) the vector (σ (v1), . . . , σ (vm)). Finally, for
any function X(·) of time, and any t ∈ R, we let X(t−) = limτ↑t X(τ), as long as the limit
exists.

3. Model and main results. In this section we present our main result. We first present
a unified framework that defines a broad set of dispatching policies, which includes most of
the policies studied in previous literature. We then present our negative result on the expected
queueing delay under resource constrained policies within this set of policies.

3.1. Modeling assumptions. We consider a system consisting of n parallel servers, where
each server has a processing rate equal to 1. Furthermore, each server is associated with an
infinite capacity FIFO queue. Jobs arrive to the system as a single renewal process of rate
λn, for some fixed λ < 1. Job sizes are i.i.d., independent from the arrival process, and have
an arbitrary distribution with mean 1. We use the convention that a job that is being served
remains in queue until its processing is completed. We assume that each server is work-
conserving: a server is idle if and only if the corresponding queue is empty.

A central controller (dispatcher) is responsible for routing each incoming job to a queue,
immediately upon arrival. The dispatcher has limited information on the state of the queues;
it can only rely on a limited amount of local memory and on messages that provide partial
information about the state of the system. These messages (which are assumed to be instan-
taneous) can be sent from a server to the dispatcher at any time, or from the dispatcher to
a server (in the form of queries) at the time of an arrival. Messages from a server can only
contain information about the state of its own queue (number of remaining jobs and the re-
maining workload of each one). Within this context, a system designer has the freedom to
choose a messaging policy, as well as the rules for updating the memory and for selecting the
destination of an incoming job.

We are interested in the case where n is very large, in the presence of constraints on the
rate of message exchanges and on the memory size. The performance metric that we focus
on is the expected queueing delay in steady-state of a typical job, that is, the expected time
between its arrival and the time at which it starts receiving service. We will formalize this
definition in Section 3.3.

3.2. Unified framework for dispatching policies. In this subsection we present a unified
framework that describes memory-based dispatching policies. In order to do this, we intro-
duce a sample path construction of the evolution of the system under an arbitrary policy.

Let cn be the number of memory bits available to the dispatcher. We define the correspond-
ing set of memory states to be Mn � {1, . . . ,2cn}. Furthermore, we define the set of possible
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states at a server as the set of nonnegative sequences Q � R
Z++ , where a sequence specifies

the remaining workload of each job in that queue, including the one that is being served. (In
particular, an idle server is represented by the zero sequence.) As long as a queue has a finite
number of jobs, the queue state is a sequence that has only a finite number of nonzero entries.
The reason that we include the workload of the jobs in the state is that we wish to allow for
a broad class of policies, that can take into account the remaining workload in the queues. In
particular, we allow for information-rich messages that describe the full workload sequence
at the server that sends the message. We are interested in the process

Q(·) = (
Q1(·), . . . ,Qn(·)) = ((

Q1,j (·))∞j=1, . . . ,
(
Qn,j (·))∞j=1

) ∈ Qn,

which describes the evolution of the workload of each job in each queue. Here Qi,j (t) is the
remaining workload of the j th job in the ith queue, at time t , which for j ≥ 2 is simply the
job’s service time. We are also interested in the process M(·) that takes values in the set Mn

and describes the evolution of the memory state, and in the process Z(·) that describes the
remaining time until the next arrival of a job.

3.2.1. Fundamental processes and initial conditions. The processes of interest will be
driven by certain common fundamental processes.

1. Arrival process: A delayed renewal counting process An(·) with rate λn, and event
times {Tk}∞k=1, defined on a probability space (�A,AA,PA).

2. Spontaneous messages process: A Poisson counting process Rn(·) with rate μn, and
event times {T s

k }∞k=1, defined on a probability space (�R,AR,PR).
3. Job sizes: A sequence of i.i.d. random variables {Wk}∞k=1 with mean one, defined on a

probability space (�W,AW,PW).
4. Randomization variables: Four independent and individually i.i.d. sequences of random

variables {Uk}∞k=1, {Vk}∞k=1, {Xk}∞k=1, and {Yk}∞k=1, uniform on [0,1], defined on a common
probability space (�U,AU,PU).

5. Initial conditions: Random variables Q(0), M(0), and Z(0), defined on a common
probability space (�0,A0,P0).

The whole system will be defined on the associated product probability space

(�A × �R × �W × �U × �0,AA ×AR ×AW ×AU ×A0,

PA × PR × PW × PU × P0),

to be denoted by (�,A,P). All of the randomness in the system originates from these fun-
damental processes, and everything else is a deterministic function of them.

3.2.2. A construction of sample paths. We consider some fixed n, and provide a construc-
tion of a Markov process (Q(·),M(·),Z(·)), that takes values in the set Qn ×Mn ×R+. The
memory process M(·) is piecewise constant, and can only jump at the time of an event. All
processes to be considered will have the càdlàg property (right-continuous with left limits)
either by assumption (e.g., the underlying fundamental processes) or by construction.

There are three types of events: job arrivals, spontaneous messages, and service comple-
tions. We now describe the sources of these events, and what happens when they occur.

Job arrivals: At the time of the kth event of the arrival process An(·), which occurs at
time Tk and involves a job with size Wk , the following transitions happen sequentially but
instantaneously.
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1. First, the dispatcher chooses a vector of distinct servers Sk , from which it solicits infor-
mation about their state, according to

Sk = f1
(
M

(
T −

k

)
,Wk,Uk

)
,

where f1 : Mn × R+ × [0,1] → Sn is a measurable function defined by the policy. Note
that the set of servers that are sampled only depends on the current memory state and on the
size of the incoming job, but it is chosen in a randomized way, thanks to the independent
random variable Uk . Thus, we allow for randomized policies; for example, the dispatcher
might choose to sample a fixed number of servers uniformly at random.

2. Then, messages are sent to the servers in the vector Sk , and the servers respond with
messages containing their queue states; thus, the information received by the dispatcher is the
vector QSk

. This results in 2|Sk| messages exchanged. Using this information, the destination
of the incoming job is chosen to be

Dk = f2
(
M

(
T −

k

)
,Wk,Sk,QSk

(
T −

k

)
,Vk

)
,

where f2 : Mn ×R+ × Sn × (
⋃n

i=0 Qi ) × [0,1] → Nn is a measurable function defined by
the policy. Note that the destination of a job can only depend on the current memory state, the
job size, as well as the vector of queried servers and the state of their queues, but it is chosen
in a randomized way, thanks to the independent random variable Vk . Once again, we allow
for randomized policies that, for example, dispatch jobs uniformly at random.

3. Finally, the memory state is updated according to

M(Tk) = f3
(
M

(
T −

k

)
,Wk,Sk,QSk

(
T −

k

)
,Dk

)
,

where f3 : Mn × R+ × Sn × (
⋃n

i=0 Qi ) × Nn → Mn is a measurable function defined by
the policy. Note that the new memory state is obtained using the same information as for
selecting the destination, plus the destination of the job, but without randomization.

Spontaneous messages: At the time of the kth event of the spontaneous message process
Rn(·), which occurs at time T s

k , the ith server sends a spontaneous message to the dispatcher
if and only if

g1
(
Q

(
T s

k

)
,Xk

) = i,

where g1 : Qn × [0,1] → {0} ∪ Nn is a measurable function defined by the policy. In that
case, the memory is updated to the new memory state

M
(
T s

k

) = g2
(
M

(
T s

k
−)

, i,Qi

(
T s

k

))
,

where g2 : Mn ×Nn ×Q → Mn is a measurable function defined by the policy, and which
prescribes the server who sends a message. On the other hand, no message is sent when
g1(Q(T s

k ),Xk) = 0. Note that the dependence of g1 on Q allows the message rate at each
server to depend on the server’s current workload. For example, we could let idle servers
send repeated spontaneous messages (as a Poisson process) to inform the dispatcher of their
idleness.

Service completions: As time progresses, the remaining workload of each job that is at
the head of line in a queue decreases at a constant, unit rate. When a job’s workload reaches
zero, the job leaves the system and every other job advances one slot. Let {T d

k (i)}∞k=1 be the
sequence of departure times at the ith server. At those times, the ith server sends a message
to the dispatcher if and only if

h1
(
Qi

(
T d

k (i)
)
, Yk

) = 1,
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where h1 : Q × [0,1] → {0,1} is a measurable function defined by the policy. In that case,
the memory is updated to the new memory state

M
(
T d

k (i)
) = h2

(
M

(
T d

k (i)
−)

, i,Qi

(
T d

k (i)
))

,

where h2 : Mn ×Nn ×Q → Mn is a measurable function defined by the policy. On the other
hand, no message is sent when h1(Qi(T

d
k (i)), Yk) = 0.

REMARK 3.1. We have chosen to describe the collection of queried servers by a vector,
implying an ordering of the servers in that collection. We could have described this collection
as an (unordered) set. These two options are essentially equivalent but it turns out that the
ordering provided by the vector description allows for a simpler presentation of the proof.

REMARK 3.2. For any given n, a policy is completely determined by the spontaneous
message rate μ, and the functions f1, f2, f3, g1, g2, h1 and h2. Furthermore, many policies
in the literature that are described without explicit mention of memory or messages can be
cast within our framework, as we will see in Section 4.

REMARK 3.3. The memory update functions f3, g2 and h2 do not involve randomiza-
tion, even though our main result could be extended in that direction. We made this choice
because none of the policies introduced in earlier literature require such randomization, and
because it simplifies notation and the proofs.

REMARK 3.4. We only consider the memory used to store information in between ar-
rivals or messages. Thus, when counting the memory resources used by a policy, we do not
take into account information that is used in zero time (e.g., the responses from the queries at
the time of an arrival) or the memory required to evaluate the various functions that describe
the policy. If that additional memory were to be accounted for, then any memory constraints
would be more severe, and therefore our negative result would still hold.

The dispatching policies that we have introduced obey certain constraints:

(i) The dispatcher can only send messages to the servers at the time of an arrival, and in
a single round of communication. This eliminates the possibility of policies that sequentially
poll the servers uniformly at random until they find an idle one. Indeed, it can be shown that
such sequential polling policies may lead to asymptotically vanishing delays, without con-
tradicting our lower bounds. On the other hand, in practice, queries involve some processing
and travel time ε. Were we to consider a more realistic model with ε > 0, sequential polling
would also incur positive delay.

(ii) We assume that the dispatcher must immediately send an incoming job to a server
upon arrival. This prevents the dispatcher from maintaining a centralized queue and operating
the system as a G/G/n queue.

We now introduce a symmetry assumption on the policies. In essence it states that at the
time of a job arrival, and given the current memory state, if certain sampling and dispatch-
ing decisions and a certain memory update are possible, then a permuted version of these
decisions and updates is also possible (and equally likely), starting with a suitably permuted
memory state.

ASSUMPTION 3.1 (Symmetric policies). We assume that the dispatching policy is sym-
metric, in the following sense. For any given permutation of the servers σ , there exists a
corresponding (not necessarily unique) permutation σM of the memory states Mn that satis-
fies all of the following properties.
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1. For every m ∈ Mn and w ∈R+, and if U is a uniform random variable on [0,1], then

σ
(
f1(m,w,U)

) d= f1
(
σM(m),w,U

)
,

where d= stands for equality in distribution.
2. For every m ∈ Mn, w ∈ R+, s ∈ Sn, and q ∈ Q|s|, and if V is a uniform random variable

on [0,1], then1

σ
(
f2(m,w, s,q,V )

) d= f2
(
σM(m),w,σ(s),q,V

)
.

3. For every m ∈ Mn, w ∈ R+, s ∈ Sn, and q ∈ Q|s|, and d ∈ Nn, we have

σM

(
f3(m,w, s,q, d)

) = f3
(
σM(m),w,σ(s),q, σ (d)

)
.

As a concrete illustration, our symmetry assumption implies the following. If a certain
memory state mandates that the vector (2,4,5) of servers must be sampled (with probability
1), independently from the incoming job size, then there exists some other memory state
which mandates that the vector (1,5,7) will be sampled, independently from the incoming
job size, and the same holds for every 3-element vector with distinct entries. Since there are
n(n − 1)(n − 2) different vectors, there must be at least so many different memory states.
This suggests that if we have too few memory states, the number of “distinguished” servers,
that is, servers that are treated in a special manner is severely limited. This is a key element
of the proof of the delay lower bound that we present in the next subsection.

REMARK 3.5. One may contemplate a different (stronger) definition of symmetry. For
example, in the first part, we could have required that σ(f1(m,w,u)) = f1(σM(m),w,u),
for all u ∈ [0,1]. While this would lead to a simpler proof, this stronger definition would be
too restrictive, as explained in Appendix A.

REMARK 3.6. Note that a symmetry assumption is imposed on the memory update func-
tion f3 at the time that a job is dispatched. However, we do not need to impose a similar as-
sumption on the memory update functions g2 and h2 at the times that the dispatcher receives
a message. Similarly, there is no symmetry assumption on the functions g1 and h1 that govern
the generation of server messages. In particular, we allow each server to send spontaneous
messages at its own identity-dependent, and hence asymmetric, rate.

3.3. Delay lower bound for resource constrained policies. Before stating the main re-
sult of this paper, we introduce formal definitions for the average message rate between the
dispatcher and the servers, and for our performance metric for the delay. Furthermore, we
introduce an assumption on the arrival process.

First, given a policy of the form specified in the previous subsection, we define the average
message rate between the dispatcher and the servers as

(3.1)

lim sup
t→∞

1

t

[
An(t)∑
k=1

2|Sk| +
Rn(t)∑
k=1

1Nn

(
g1

(
Q

(
T s

k

)
,Xk

))

+
n∑

i=1

∑
k:T d

k (i)<t

1{1}
(
h1

(
Qi

(
T d

k (i)
)
, Yk

))]
.

1Note that the argument on the right-hand side of the relation below involves q rather than a permuted version of
q, even though the vector s gets permuted. We are essentially comparing a situation where the dispatcher queries
a vector s and receives certain numerical values q with the situation where the dispatcher queries a vector σ(s)
and receives the same numerical values q.
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Second, we provide a formal definition of our performance metric for the delay. We assume
that the process (Q(·),M(·),Z(·)) is stationary, with invariant probability measure π . Since
the destinations of jobs (and their queueing delays) are deterministic functions of the state
and i.i.d. randomization variables, the point process of arrivals with the queueing delays as
marks, is also stationary. Using this, we define the expected queueing delay in steady-state
π of a typical job, denoted by E

0
π [L0], as follows. If Lk is the queueing delay of the kth job

under the stationary process (Q(·),M(·),Z(·)), then

(3.2) E
0
π [L0] � Eπ

[
1

λnt

An(t)∑
k=1

Lk

]
,

where the right-hand side is independent from t due to the stationarity of the processes in-
volved (see [3]). Furthermore, if the stationary process (Q(·),M(·),Z(·)) is ergodic (in the
sense that every invariant set has measure either 0 or 1 under π ), we have

E
0
π [L0] = lim

t→∞
1

An(t)

An(t)∑
k=1

Lk a.s.

Finally, we introduce an assumption on the arrival process.

ASSUMPTION 3.2. Let In be distributed as the typical inter-arrival times of the delayed
renewal process An(·). We assume that there exists a constant ε > 0, independent from n,
such that the following holds. For every ε ∈ (0, ε], there exists a positive constant δε such
that

δε ≤ P

(
In ≤ ε

n

)
≤ 1 − δε,

for all n.

This assumption implies that arbitrarily small inter-arrival times of order 
(1/n) occur
with a probability that is bounded away from 0, and from 1, for all n. In particular, this
excludes deterministic inter-arrival times, and inter-arrival times that can take values of order
o(1/n) with probability of order 1 − o(1). On the other hand, if A(·) is a delayed renewal
process, where the typical inter-arrival times are continuous random variables with positive
density around 0, then the process An(·), defined as An(t) � A(nt) for all t ≥ 0, satisfies
Assumption 3.2.

We are now ready to state the main result. It asserts that within the class of symmetric
policies that we consider, and under some upper bounds on the memory size (logarithmic)
and the message rate (linear), the expected queueing delay in steady-state of a typical job is
bounded below by a positive constant.

THEOREM 3.1 (Positive delay for resource constrained policies). For any constants λ ∈
(0,1), c,α > 0, and for every arrival process that satisfies Assumption 3.2, there exists a
constant ζ(λ, c,α) > 0 with the following property. For any fixed n, consider a symmetric
memory-based dispatching policy, that is, that satisfies Assumption 3.1, with at most c log2 n

bits of memory, with an average message rate (cf. equation (3.1)) upper bounded by αn in
expectation, and under which the process (Q(·),M(·),Z(·)) admits at least one invariant
probability measure πn. Then, for all n large enough, we have

E
0
πn

[L0] ≥ ζ(λ, c,α),

where E
0
πn

[L0] is the expected queueing delay in steady-state πn of a typical job.
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The proof is given in Section 5.

REMARK 3.7. Theorem 3.1 only deals with memory-based dispatching policies under
which (Q(·),M(·),Z(·)) admits at least one invariant probability measure. This is not a sub-
stantial restriction since there are many policies with this property, for example, all policies
reviewed in Section 4. On the other hand, policies without this property are not of interest.

4. Dispatching policies in the literature. In this section we put our results in perspec-
tive by showing that various dispatching policies considered earlier in the literature are special
cases of the class of symmetric dispatching policies described above. Most policies have only
been studied for the case of Poisson arrivals and exponential service times, so this review is
restricted to that case unless stated otherwise.

4.1. Open-loop policies.

4.1.1. Random routing. The simplest policy is to dispatch each arriving job to a random
queue, with each queue being equally likely to be selected. In this case, the system behaves
as n independent parallel M/M/1 queues. This policy needs no messages or memory, and has
a positive queueing delay independent of n.

4.1.2. Round Robin (RR). When the dispatcher has no access to the workload of incom-
ing jobs and no messages are allowed, it is optimal to dispatch arriving jobs to the queues
in a round-robin fashion [15]. This policy does not require messages but needs �log2 n� bits
of memory to store the ID of the next queue to receive a job. In the limit, each queue be-
haves like a D/M/1 queue (see [15]). While random routing is a symmetric policy, Round
Robin is not. To see this, note that a memory state i must be followed by state i + 1, and
such a transition is not permutation-invariant; in particular, the memory update function f3
does not satisfy the symmetry assumption. Round Robin can be made symmetric by using an
additional n�log2 n� bits of memory to specify the order with which the different servers are
selected. But in any case, this policy also has a positive queueing delay, that does not vanish
as n increases.

4.2. Policies based on queue lengths.

4.2.1. Join a shortest queue (SQ). If we wish to minimize the queueing delay and have
access to the queue lengths but not to the job sizes, an optimal policy is to have each incoming
job join a shortest queue, breaking any ties uniformly at random [18]. When n goes to infinity,
the queueing delay vanishes, but this policy requires a message rate of 2λn2 (n queries and n

responses for each arrival), and no memory. This policy is symmetric and achieves vanishing
delay, but uses a superlinear number of messages.

4.2.2. Join a shortest of d random queues (SQ(d)). In order to sharply decrease the num-
ber of messages sent, Mitzenmacher [12] and Vvedenskaya et al. [17] introduced the power-
of-d-choices policy. When there is an arrival, d servers are chosen uniformly at random, and
the job is sent to a shortest queue among those d servers. This policy fits our framework,
and in particular is symmetric; it uses 2λdn messages per unit of time, and zero memory.
This policy was also analyzed in the case of heavy-tailed service times by Bramson et al. [5],
yielding similar results. In any case, this policy has positive delay, which is consistent with
Theorem 3.1.
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4.2.3. Join a shortest of dn random queues (SQ(dn)). More recently, Mukherjee et al.
[14] analyzed a variation of the SQ(d) policy, which lets d be a function of the system size
n. This policy is symmetric, uses 2λdnn messages per unit of time and zero memory, and has
zero delay as long as dn → ∞, which is consistent with Theorem 3.1.

4.2.4. Join a shortest of d queues, with memory (SQ(d, b)). Another improvement over
the power-of-d-choices, proposed by Mitzenmacher et al. in [13], is obtained by using extra
memory to store the IDs of the b (with b ≤ d) least loaded queues known at the time of the
previous arrival. When a new job arrives, d queues are sampled uniformly at random and the
job is sent to a least loaded queue among the d sampled and the b stored queues. This policy
is symmetric, needs 2λdn messages per unit of time and �(b log2 n) bits of memory, and has
positive delay, consistent with Theorem 3.1.

4.2.5. SQ(d) for divisible jobs. Recently, Ying et al. [19] considered the case of jobs
of size mn (with mn ∈ ω(1) and mn/n → 0) arriving as a Poisson process of rate nλ/mn,
where each job can be divided into mn tasks with mean size 1. Then, the dispatcher samples
dmn queues and does a water-filling of those queues with the mn tasks. In this case, the
number of messages sent per unit of time is 2λdn and no memory is used. Even though
this was not mentioned in [19], this policy can be shown to drive the queueing delay to 0
if d ≥ 1/(1 − λ). However, this model does not fall into our framework because it involves
divisible jobs.

4.3. Policies based on remaining workload.

4.3.1. Join a least loaded queue (LL). An appealing policy is the one that sends incoming
jobs to a queue with the least remaining workload, in which case the whole system behaves
as an M/M/n queue. This policy is symmetric and achieves a vanishing delay as n → ∞, but
it has the same quadratic messaging requirements as SQ.

4.3.2. Join a least loaded of d queues (LL(d)). A counterpart of SQ(d) is LL(d), in
which the dispatcher upon arrival chooses d queues uniformly at random and sends the job
to one of those queues with the least remaining workload, breaking any ties uniformly at
random. This setting was studied in [9], and it does not result in asymptotically vanishing
delay, consistent with Theorem 3.1.

4.4. Policies based on job size. The previous policies dispatched the incoming jobs based
on information about the state of the queues, obtained by dynamically exchanging messages
with the servers. Such information could include the remaining workload at the different
queues. On the other hand, if the dispatcher only knows the size of an incoming job (which
might be difficult in practice [6]), it could use a static and memoryless policy that selects
a target server based solely on the job size. Harchol–Balter et al. [8] showed that delay is
minimized over all such static policies by a nonsymmetric policy that partitions the set of
possible job sizes into consecutive intervals and assigns each interval to a different server.
This is especially effective when the jobs have highly variable sizes (e.g., heavy-tailed), yet
the resulting delay can be no better than that of an M/D/1 queue, and does not vanish as
n → ∞. This scheme does not require any message exchanges, and could be made symmetric
by using the memory to store a list of the n intervals of job sizes corresponding to each of the
n servers.
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4.5. Pull-based load balancing.

4.5.1. Join–idle–queue (JIQ). In order to reduce the message rate, Badonnel and Burgess
[4], Lu et al. [11] and Stolyar [16] propose a scheme where messages are sent from a server
to the dispatcher whenever the server becomes idle, so that the dispatcher can keep track of
the set of idle servers in real time. Then, an arriving job is to be sent to an empty queue (if
there is one) or to a queue chosen uniformly at random (if all queues are nonempty). This
policy requires at most λn messages per unit of time and exactly n bits of memory (one bit
for each queue, indicating whether it is empty or not). Stolyar [16] has shown that when n

goes to infinity, the average delay vanishes. This policy is symmetric. It has a vanishing delay
and a linear message rate, but uses superlogarithmic memory, consistent with Theorem 3.1.

4.5.2. Resource constrained pull-based (RCPB). In order to reduce the message rate and
the memory usage, Gamarnik et al. [7] propose a family of dispatching policies, similar to
Join–Idle–Queue, where the dispatcher keeps a small list of up to cn idle servers, and where
messages are sent from each idle server to the dispatcher as a Poisson process of rate νn. Then,
an arriving job is sent to an empty queue (if the dispatcher knows the ID of an idle server) or
to a queue chosen uniformly at random (if the dispatcher’s list is empty). This policy requires
(1 − λ)νnn messages per unit of time and cn log2 n bits of memory (the size of the list, cn,
times the number of bits required to store one ID, log2 n bits). Gamarnik et al. [7] showed
that, if we either have a high message rate regime (RCPB–HMess) with cn ≥ 1 and νn → ∞,
or a high memory regime (RCPB–HMem) with cn → ∞ and νn ≥ λ/(1 − λ), the expected
queueing delay vanishes as n → ∞. This policy is symmetric, and it only has a vanishing
delay when either the message rate is superlinear, or the memory is superlogarithmic. This is
consistent with Theorem 3.1.

4.6. Memory, messages and queueing delay. We now summarize the resource require-
ments (memory and message rate) and the asymptotic delay of the policies reviewed in this
section that fall within our framework.

Note that any one of the listed policies that achieves vanishing queueing delay (see Table 1)
falls into one (or both) of the following two categories:

(a) Those requiring ω(n) message rate, namely, SQ, SQ(dn) and LL.
(b) Those requiring ω(log2 n) bits of memory (JIQ, and RCPB–HMem).

Our main result effectively establishes this fundamental limitation of symmetric policies.

TABLE 1
Memory usage, average message rate, and limiting delay for various policies in the literature

Policy Memory (bits) Message rate Limiting delay

Random 0 0 >0
RR [15] log2 n 0 >0
SQ [18] 0 2λn2 0
SQ(d) [12] 0 2dλn >0
SQ(dn) [14] 0 ω(n) 0
SQ(d, b) [13] b log2 n 2dλn >0
LL 0 2λn2 0
LL(d) [9] 0 2dλn >0
JIQ [16] n λn 0
RCPB–HMess [7] log2 n ω(n) 0
RCPB–HMem [7] ω(log2 n) λn 0
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5. Proof of main result. Let us fix some n. In the sequel, we will assume that n is large
enough whenever needed for certain inequalities to hold. We fix a memory-based policy that
satisfies Assumption 3.1 (symmetry), with at most nc memory states, and which results in
the process (Q(·),M(·),Z(·)) having at least one invariant probability measure. Let us fix
such an invariant probability measure πn. We consider the process in steady-state; that is,
we assume that (Q(0),M(0),Z(0)) is distributed according to πn. Accordingly, probabilities
P(·) and expectations E[ · ] encountered in the sequel will always refer to the process in
steady-state.

The high-level outline of the proof is as follows. In Section 5.1 we show that under our
symmetry assumption, the dispatcher can give special treatment to at most c servers, which
we call distinguished servers. The treatment of all other servers, is symmetric, in some ap-
propriate sense.

In Section 5.2 we consider a sequence of bad events under which, over a certain time
interval, there are c + 1 consecutive arrivals, no service completions or messages from the
servers, and all sampled servers are “busy” with a substantial workload. Then, in Section 5.3,
we show that this sequence of bad events has nonnegligible probability.

In Section 5.4, we develop some further consequences of the symmetry assumption, which
we use to constrain the information available to the dispatcher at the time of the (c + 1)st
arrival. Loosely speaking, the idea is that during the interval of interest, the server only has
information on c distinguished servers together with (useless) information on some busy
servers. This in turn implies (Section 5.5) that at least one of the first c + 1 arrivals must be
dispatched to a server on which no useful information is available, and which therefore has a
nonnegligible probability of inducing a nonnegligible delay, thus completing the proof.

5.1. Local limitations of finite memory. We consider the (typical) case where a relatively
small number of servers (

√
n or less) are sampled. We will use the symmetry assumption to

show that except for a small set of distinguished servers, of size at most c, all other servers
must be treated as indistinguishable.

PROPOSITION 5.1. Let U be a uniform random variable over [0,1]. For all n large
enough, for every memory state m ∈ Mn and every possible job size w ∈ R+, the following
holds. Consider any vector of servers s ∈ Sn (and its associated set of servers sset) with
|s| ≤ √

n, and any integer � with |s|+1 ≤ � ≤ n. Consider the event B(m,w; s, �) that exactly
� servers are sampled and that the first |s| of them are the same as the vector s, that is,

B(m,w; s, �) = {∣∣f1(m,w,U)
∣∣ = �

} ∩
|s|⋂

i=1

{
f1(m,w,U)i = si

}
,

and assume that the conditional probability measure

P
( · | B(m,w; s, �)

)
is well defined. Then, there exists a unique set R(m,w, s, �) ⊂Nn \sset of minimal cardinality
such that

(5.1) P
(
f1(m,w,U)|s|+1 = j | B(m,w; s, �)

)
is the same for all j /∈ R(m,w, s, �) ∪ sset. Furthermore, |R(m,w, s, �)| ≤ c.

REMARK 5.1. With some notational abuse, the measure P in Proposition 5.1 need not
correspond to the measure P that describes the process. We are simply considering probabil-
ities associated with a deterministic function of the uniform random variable U .
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PROOF OF PROPOSITION 5.1. Throughout the proof, we fix a particular memory state
m, job size w, vector of servers s with |s| ≤ √

n, and an integer � in the range |s|+ 1 ≤ � ≤ n.
To simplify notation, we will suppress the dependence on w.

Consider the random vector S(m) � f1(m,U). Let v be the vector whose components are
indexed by j ranging in the set (sset)c = Nn \ sset, and defined for any such j , by

vj = P
(
S(m)|s|+1 = j | B(m; s, �)

)
.

We need to show that for j outside a “small” set, all of the components of v are equal. Let
z1, . . . , zd be the distinct values of vj , as j ranges over (sset)c, and let Aα = {j ∈ (sset)c |
vj = zα}. The sequence of sets (A1, . . . ,Ad) provides a partition of (sset)c into equivalence
classes, with vj = vj ′ = zα , for all j , j ′ in the αth equivalence class Aα . Let k1, . . . , kd be the
cardinalities of the equivalence classes A1, . . . ,Ad . Without loss of generality, assume that
kd is a largest such cardinality. We define

R = {
j ∈ (

sset)c | vj �= vd

} = A1 ∪ · · · ∪ Ad−1,

so that Rc ∩ (sset)c = Ad . For every j, j ′ ∈ Ad , we have vj = vj ′ = vd , and therefore the
condition (5.1) is satisfied by R. Note that by choosing vd to be the most common value, we
are making the cardinality of the set Rc ∩ (sset)c = {j /∈ sset | vj = vd} as large as possible,
from which it follows that the set R ∩ (sset)c is as small as possible, and therefore R, as
defined, is indeed a minimal cardinality subset of (sset)c that satisfies (5.1).

We now establish the desired upper bound on the cardinality of R. Let �sset be the set of
permutations that fix the set sset. Consider an arbitrary permutation σ ∈ �sset and let σM be a
corresponding permutation of the memory states, as defined by Assumption 3.1. We let vσ−1

be the vector with components (vσ−1)j = vσ−1(j), for j /∈ sset. Note that as we vary σ over
the set �sset , vσ−1 ranges over all possible permutations of the vector v. We also have, for
j /∈ sset,

(vσ−1)j

= vσ−1(j)

= P
(
S(m)|s|+1 = σ−1(j) | B(m; s, �)

)

= P

(
S(m)|s|+1 = σ−1(j)

∣∣∣ {∣∣S(m)
∣∣ = �

} ∩
|s|⋂

i=1

{
S(m)i = si

})

= P

(
σ

(
S(m)|s|+1

) = j
∣∣∣ {∣∣S(m)

∣∣ = �
} ∩

|s|⋂
i=1

{
S(m)i = si

})

= P

(
σ

(
S(m)|s|+1

) = j
∣∣∣ {∣∣σ (

S(m)
)∣∣ = �

} ∩
|s|⋂

i=1

{
σ

(
S(m)i

) = σ(si )
})

= P

(
σ

(
S(m)|s|+1

) = j
∣∣∣ {∣∣σ (

S(m)
)∣∣ = �

} ∩
|s|⋂

i=1

{
σ

(
S(m)i

) = si

})

= P

(
S
(
σM(m)

)
|s|+1 = j

∣∣∣ {∣∣S(
σM(m)

)∣∣ = �
} ∩

|s|⋂
i=1

{
S
(
σM(m)

)
i = si

})
.

Note that in the above expressions, the only random variables are S(m) and S(σM(m)), while
s is a fixed vector. The next to last equality above holds because σ fixes the elements in the
vector s; the last equality follows because the random variables σ(S(m)) and S(σM(m)) are
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identically distributed, according to Part 1 of the symmetry Assumption 3.1. The equality
that was established above implies that σM(m) completely determines the vector vσ−1 . As
σ ∈ �sset changes, σM(m) can take at most nc distinct values, due to the assumed bound on
the memory size, and this leads to a bound on the number of possible permutations of the
vector v: ∣∣{vσ−1 : σ ∈ �sset}∣∣ ≤ nc.

We now argue that since v has relatively few distinct permutations, most of its entries vi

must be equal. Recall the partition of the set (sset)c of indices into equivalence classes, of
sizes k1, . . . , kd , with kd being the largest cardinality. Note that there is a one-to-one corre-
spondence between distinct permutations vσ−1 of the vector v and distinct partitions of (sset)c

into a sequence of subsets of cardinalities k1, . . . , kd , with the value zα being taken on the
αth subset. It follows that the number of different partitions of Sc into sets with the given
cardinalities, which is given by the multinomial coefficient, satisfies(

n − |s|
k1!k2! · · ·kd !

)
= ∣∣{vσ−1 : σ ∈ �sset}∣∣ ≤ nc.

The number of choices of a kd -element subset is no larger than the number of partitions.
Therefore, (

n − |s|
kd

)
≤ nc.

An elementary calculation (cf. Lemma B.1) implies that when n is large enough, we must
have either (i) kd ≥ n − |s| − c or (ii) kd ≤ c. We argue that the second possibility cannot
occur. Indeed, if kd ≤ c, and since kd is the largest cardinality, it follows that kα ≤ c for
every α. Since k1 + · · · + kd = n − |s|, we obtain that the number of classes, d , is at least
�(n − |s|)/c�. When dealing with d different classes, the number of possible partitions is
at least d!; this can be seen by focusing on the least-indexed entry in each of the d classes
and noting that these d entries may appear in an arbitrary order. Since |s| ≤ √

n, we have
n − |s| ≥ n/2, and putting everything together, we obtain

⌈
(n/2c)

⌉! ≤ ⌈
n − |s|

c

⌉
! ≤ nc.

This is clearly impossible when n is large enough, and case (ii) can therefore be eliminated.
We conclude that |Ad | = kd ≥ n−|s|−c. Since |A1 ∪· · ·∪Ad | = |(sset)c| = n−|s|, it follows
that |R| = |A1 ∪ · · · ∪ Ad−1| ≤ c, which is the desired cardinality bound on R.

It should be apparent that any minimal cardinality set R that satisfies (5.1) must be con-
structed exactly as our set Ad . Thus, nonuniqueness of the set R with the desired properties
will arise if and only if there is another subset Aα , with α �= d , with the same maximal cardi-
nality kd . On the other hand, since |s| ≤ √

n, we have kd ≥ n− |s| − c > n/2, when n is large
enough. But having two disjoint subsets, Ad and Aα , each of cardinality larger than n/2 is
impossible, which proves uniqueness. �

Using a similar argument, we can also show that the distribution of the destination of the
incoming job is uniform (or zero) outside the set of sampled servers and a set of at most c

distinguished servers.

PROPOSITION 5.2. Let V be a uniform random variable over [0,1]. For all n large
enough, for every memory state m ∈ Mn, every vector of indices s ∈ Sn with |s| ≤ √

n, every
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queue vector state q ∈ Q|s|, and every job size w ∈ R+, the following holds. There exists a
unique set R′(m,w, s,q) ⊂ Nn \ sset of minimal cardinality such that

P
(
f2(m,w, s,q,V ) = j

) = P
(
f2(m,w, s,q,V ) = k

)
,

for all j, k /∈ R′(m,w, s,q) ∪ sset. Furthermore, |R′(m,w, s,q)| ≤ c.

PROOF. The proof is analogous to the proof of the previous proposition. We start by
defining a vector v, whose components are again indexed by j ranging in the set Nn \ sset, by

vj = P
(
f2(m,w, s,q,V ) = j

)
.

Other than this new definition of the vector v, the rest of the proof follows verbatim the one
for Proposition 5.1. �

5.2. A sequence of “bad” events. In this subsection we introduce a sequence of “bad”
events that we will be focusing on in order to establish a positive lower bound on the delay.

Recall that T s
1 is the time of the first event of the underlying Poisson process of rate μn that

generates the spontaneous messages from the servers. Recall also that we denote by Qi,1(t)

the remaining workload of the job being serviced in server i, at time t , with Qi,1(t) = 0 if no
job is present at server i. Let

B �
{
i :

∞∑
j=1

Qi,j (0) ≥ 2γ

}
,

which is the set of servers with at least 2γ remaining workload in their queues, and let Nb =
|B|, where γ ≤ 1 is a small positive constant, independent of n, to be specified later.

Consider the following events:

(i) the first c + 1 jobs after time 0 are all of size at least 2γ ,

Aw � {W1, . . . ,Wc+1 ≥ 2γ };
(ii) the first potential spontaneous message occurs after time γ /n, and the (c+1)st arrival

occurs before time γ /n,

Aa �
{
T s

1 >
γ

n

}
∩

{
Tc+1 <

γ

n

}
;

(iii) there are no service completions before time γ /n,

As �
{

Qi,1(0) /∈
(

0,
γ

n

)
,∀i

}
;

(iv) there are at least γ n servers that each have at least 2γ remaining workload at time
zero,

Ab � {Nb ≥ γ n}.
For an interpretation, the event

H+
0 �Aw ∩Aa ∩As ∩Ab,

corresponds to an unfavorable situation for the dispatcher. This is because, at time zero, the
dispatcher’s memory contains possibly useful information on at most c distinguished servers
(Propositions 5.1 and 5.2), and has to accommodate c + 1 arriving jobs by time γ /n. On
the other hand, a nontrivial fraction of the servers are busy and will remain so until time
γ /n (event Ab), and it is possible that sampling will not reveal any idle servers (as long as
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the number of sampled servers is not too large). Thus, at least one of the jobs may end up
at a busy server, resulting in positive expected delay. In what follows, we go through the
just outlined sequence of unfavorable events, and then, in Section 5.3, we lower bound its
probability.

Starting with H+
0 , we define a nested sequence of events, after first introducing some more

notation. For k = 1, . . . , c+1, let Sk be the random (hence denoted by an upper case symbol)
vector of servers that are sampled upon the arrival of the kth job; its components are denoted
by (Sk)i . For i = 0,1, . . . , |Sk|, we let

Rk,i �R
(
M

(
T −

k

)
,Wk,

(
(Sk)1, . . . , (Sk)i−1

)
, |Sk|)

be the (random) subset of servers defined in Proposition 5.1 (whenever M(T −
k ), Wk ,

((Sk)1, . . . , (Sk)i−1), and |Sk| are such that the proposition applies), with the convention that
((Sk)1, . . . , (Sk)i−1) =∅ when i = 1. Otherwise, we let Rk,i �∅. Furthermore, we define

Rk �
|Sk |⋃
i=1

Rk,i .

Moreover, let Dk be the destination of the kth job, and let

R′
k � R′(M(

T −
k

)
,Wk,Sk,QSk

(
T −

k

))
be the (random) subset of servers defined in Proposition 5.2 (whenever M(T −

k ), Wk , Sk and
QSk

(T −
k ) are such that the proposition applies). Otherwise, we let R′

k � ∅. Finally, given a
collection of constants ξ1, . . . , ξc+1, independent of n and to be determined later, we define a
nested sequence of events recursively, by

H−
k �H+

k−1 ∩ {|Sk| ≤ ξk

}
,

Hk �H−
k ∩ {

(Sk)i ∈ Rk,i ∪ B, i = 1, . . . , |Sk|},(5.2)

H+
k �Hk ∩ {

Dk ∈ Sset
k ∪ R′

k ∪ B
}
,

for k = 1, . . . , c + 1.

5.3. Lower bound on the probability of “bad” events. In this subsection, we establish a
positive lower bound, valid for all n large enough, for the probability of the event H+

c+1. In
order to do this, we will obtain such uniform lower bounds for the probability of H+

k , for
k ≥ 0, by induction. We start with the base case.

LEMMA 5.3. There exists a constant α+
0 > 0, independent of n, such that

P
(
H+

0

) ≥ α+
0 .

PROOF. Note that the event Aa only depends on the processes of arrivals and sponta-
neous messages after time zero, Aw only depends on the i.i.d. workloads W1, . . . ,Wc+1, and
As ∩Ab only depends on the initial queue length vector Q(0). It follows that

P
(
H+

0

) = P(Aa)P(Aw)P(As ∩Ab).

We will now lower bound each of these probabilities.
Note that P(Aa) is the intersection of two independent events. The first is the event that

the first arrival in a Poisson process with rate μn happens after time γ /n, or equivalently, it
is the event that the first arrival of a Poisson process of rate μ happens after time γ , which



A LOWER BOUND ON THE QUEUEING DELAY IN LOAD BALANCING 887

has positive probability that does not depend on n. The second is the event that c + 1 ar-
rivals of the delayed renewal process An(·) occur before time γ /n, that is, the event that
Tc+1 < γ/n. Since the process (Q(·),M(·),Z(·)) is stationary, the first arrival time (T1) is
distributed according to the residual time of typical inter-arrival times. In particular, if F is
the cumulative distribution function of typical inter-arrival times of An(t) (which have mean
1/λn), the well-known formula for the distribution of residual times gives

P

(
T1 <

γ

n(c + 1)

)
= λn

∫ γ
n(c+1)

0

(
1 − F(u)

)
du

= λ

∫ γ
c+1

0

(
1 − F

(
v

n

))
dv.

Recall that Assumption 3.2 states that 1 − F(v/n) ≥ δv > 0, for all v > 0 sufficiently small,
and for all n. As a result, we have

(5.3)
λ

∫ γ
c+1

0

(
1 − F

(
v

n

))
dv ≥ λ

∫ γ
c+1

0

(
1 − F

(
γ

n(c + 1)

))
dv

= λγ

c + 1
δ γ

c+1
,

for all γ sufficiently small. On the other hand, for k = 2, . . . , c + 1, Assumption 3.2 also
implies that

P

(
Tk − Tk−1 ≤ γ

n(c + 1)

)
≥ δ γ

(c+1)
.

Combining this with equation (5.3), and using the fact that the first arrival time and the sub-
sequent inter-arrival times are independent, we obtain

P

(
Tc+1 <

γ

n

)
≥ P

({
T1 <

γ

n(c + 1)

}
∩

c+1⋂
k=2

{
Tk − Tk−1 ≤ γ

n(c + 1)

})

≥ P

(
T1 <

γ

n(c + 1)

) c+1∏
k=2

P

(
Tk − Tk−1 ≤ γ

n(c + 1)

)

≥ λγ

c + 1
(δ γ

c+1
)c+1,

which is a positive constant independent from n.
We also have

P(Aw) =
c+1∏
i=1

P(Wi ≥ 2γ )

= P(Wi ≥ 2γ )c+1,

which is independent of n, and positive for γ small enough.
We now consider the event As . If Ac

s holds, then there exists a server i such that 0 <

Qi,1(0) ≤ γ /n, and thus we have a job departure during (0,
γ
n
]. Let X be the number of

service completions during (0,
γ
n
]. The occurrence of Ac

s implies X ≥ 1. Furthermore, the
expected number of service completions in steady-state during any fixed interval must be
equal to the expected number of arrivals, so that

(5.4) P
(
Ac

s

) ≤ E[X] = (nλ)
γ

n
= λγ.
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We now consider the event Ab. Recall that

Nb =
∣∣∣∣∣
{
i :

∞∑
j=1

Qi,j (0) ≥ 2γ

}∣∣∣∣∣.
Let

NI =
∣∣∣∣∣
{
i :

∞∑
j=1

Qi,j (0) = 0

}∣∣∣∣∣
and

Nd =
∣∣∣∣∣
{
i : 0 <

∞∑
j=1

Qi,j (0) < 2γ

}∣∣∣∣∣.
Then, n = Nb + NI + Nd . Furthermore, all servers with 0 <

∑∞
j=1 Qi,j (0) < 2γ will have a

departure in (0,2γ ). Let Y be the number of departures (service completions) during (0,2γ ).
Then, Y ≥ Nd . We use once more that the expected number of service completions in steady-
state during any fixed interval must be equal to the expected number of arrivals, to obtain

nλ2γ = E[Y ] ≥ E[Nd ].
Furthermore, by applying Little’s law to the number of busy servers, in steady-state, we obtain

E[NI ] = (1 − λ)n.

Hence

E[Nb] = n −E[NI ] −E[Nd ] ≥ n(λ − 2λγ ).

On the other hand, we have

E[Nb] ≤ P(Nb ≤ γ n)γ n + P(Nb > γn)n

≤ γ n + P(Nb ≥ γ n)n

= γ n + P(Ab)n.

Combining these last two inequalities, we obtain

(5.5) P(Ab) ≥ λ − 2λγ − γ.

Finally, using equations (5.4) and (5.5), we have

P(As ∩Ab) = P(Ab) − P
(
Ab ∩Ac

s

)
≥ P(Ab) − P

(
Ac

s

)
≥ λ − 2λγ − γ − γ λ,

which is a positive constant if γ is chosen small enough. �

We now carry out the inductive step, from k − 1 to k, in a sequence of three lemmas. We
make the induction hypothesis that there exists a positive constant α+

k−1 such that P(H+
k−1) ≥

α+
k−1, and we sequentially prove that there exist positive constants α−

k , αk , and α+
k such that

P(H−
k ) ≥ α−

k (Lemma 5.4), P(Hk) ≥ αk (Proposition 5.5), and P(H+
k ) ≥ α+

k (Lemma 5.7).

LEMMA 5.4. Suppose that P(H+
k−1) ≥ α+

k−1 > 0 and that the constant ξk is chosen to be
large enough. Then, there exists a constant α−

k > 0, such that for all n large enough, we have
P(H−

k ) ≥ α−
k .
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PROOF. First, recall our assumption that the average message rate (cf. equation (3.1)) is
upper bounded by αn in expectation. Therefore,

E

[
lim sup
t→∞

1

t

An(t)∑
j=1

2|Sj |
]

≤ αn,

where An(t) is the number of arrivals until time t . By Fatou’s lemma, we also have

lim sup
t→∞

E

[
1

t

An(t)∑
j=1

2|Sj |
]

≤ αn.

Recall that the process (Q(·),M(·),Z(·)) is stationary. Then, since the sampled vectors are
a deterministic function of the state, and i.i.d. randomization variables, the point process of
arrivals with the sampled vectors as marks, is also stationary. As a result, the expression

E

[
1

t

An(t)∑
j=1

2|Sj |
]

is independent from t (see equation (1.2.9) of [3]). In particular, for t = γ /n, we have that

(5.6) E

[
1

γ

An(
γ
n
)∑

j=1

2|Sj |
]

≤ α.

Moreover, since k ≤ c + 1, we have

E

[An(
γ
n
)∑

j=1

|Sj |
]

≥ E

[An(
γ
n
)∑

j=1

|Sj |
∣∣∣∣ An

(
γ

n

)
≥ c + 1

]
P

(
An

(
γ

n

)
≥ c + 1

)

≥ E

[
|Sk|

∣∣∣ An

(
γ

n

)
≥ c + 1

]
P

(
An

(
γ

n

)
≥ c + 1

)
.

Combining this with equation (5.6), we obtain

E

[
2

γ
|Sk|

∣∣∣ An

(
γ

n

)
≥ c + 1

]
P

(
An

(
γ

n

)
≥ c + 1

)
≤ α.

This yields the upper bound

(5.7) E

[
|Sk|

∣∣∣ An

(
γ

n

)
≥ c + 1

]
≤ αγ

2P(An(
γ
n
) ≥ c + 1)

.

On the other hand, using the fact that H+
k−1 ⊂ {An(γ /n) ≥ c + 1}, we have

(5.8)

P
(
H−

k

)
= P

(
H+

k−1 ∩ {|Sk| ≤ ξk

})
= P

(
H+

k−1 ∩
{
An

(
γ

n

)
≥ c + 1

}
∩ {|Sk| ≤ ξk

})

= P

(
H+

k−1 ∩ {|Sk| ≤ ξk

} ∣∣∣ An

(
γ

n

)
≥ c + 1

)
P

(
An

(
γ

n

)
≥ c + 1

)

≥ P
(
H+

k−1

) − P

(
|Sk| > ξk

∣∣∣ An

(
γ

n

)
≥ c + 1

)
P

(
An

(
γ

n

)
≥ c + 1

)
.
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Furthermore, for any constant ξk > 0, Markov’s inequality implies

P

(
|Sk| > ξk

∣∣∣ An

(
γ

n

)
≥ c + 1

)
≤ E[|Sk| | An(

γ
n
) ≥ c + 1]

ξk

,

which combined with equation (5.8) yields

P
(
H−

k

) ≥ P
(
H+

k−1

) − E[|Sk| | An(
γ
n
) ≥ c + 1]

ξk

P

(
An

(
γ

n

)
≥ c + 1

)
.

Applying the inequality (5.7) to the equation above, we obtain

P
(
H−

k

) ≥ P
(
H+

k−1

) − αγ

2ξk

.

Finally, combining this with the fact that P(H+
k−1) ≥ α+

k−1 > 0, we have that

P
(
H−

k

) ≥ α+
k−1 − αγ

2ξk

� α−
k ,

which is positive for all ξk large enough. �

PROPOSITION 5.5. Suppose that P(H−
k ) ≥ α−

k , and that the constant ξk is chosen large
enough. Then, there exists a constant αk > 0, such that for all n large enough, we have
P(Hk) ≥ αk .

PROOF. Recall the definitions

Hk = H−
k ∩ {

(Sk)i ∈ Rk,i ∪ B, i = 1, . . . , |Sk|}
and

H−
k =H+

k−1 ∩ {|Sk| ≤ ξk

}
.

For i = 1, . . . , |Sk|, let us denote

Hk,i �
{
(Sk)i ∈ Rk,i ∪ B

}
.

Then,

(5.9)

P(Hk)

= P
(
H−

k ∩ {
(Sk)i ∈ Rk,i ∪ B, i = 1, . . . , |Sk|})

= ∑
�

P

(
H+

k−1 ∩ {|Sk| = �
} ∩

�⋂
i=1

Hk,i

)

= ∑
�

P

(
�⋂

i=1

Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

})
P

(
H+

k−1 ∩ {|Sk| = �
})

= ∑
�

P
(
H+

k−1 ∩ {|Sk| = �
}) �∏

i=1

P

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)
,

where the sum is over all integers � such that the conditional probabilities above are well
defined. Intuitively, in the last step, we are treating the selection of the random vector Sk

as a sequential selection of its components, which leads us to consider the product of suit-
able conditional probabilities. The next lemma provides a lower bound for the factors in this
product.
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LEMMA 5.6. For all n large enough, we have

P

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)
≥ γ

2
,

for all � ≤ ξk and i ≤ � such that the conditional probability above is well defined.

The idea of the proof of this lemma is that when a next component, (Sk)i is chosen, it is
either a “distinguished” server, in the set Rk,i , or else it is a server chosen uniformly outside
the set Rk,i (cf. Proposition 5.1), in which case it has a substantial probability of being a busy
server, in the set B . Although the intuition is clear, the formal argument is rather tedious and
is deferred to Appendix C.

Applying Lemma 5.6 to equation (5.9), and using the fact that P(H−
k ) ≥ α−

k > 0, we obtain

P(Hk) ≥ ∑
�

P
(
H+

k−1 ∩ {|Sk| = �
})(γ

2

)�

≥ P
(
H+

k−1 ∩ {|Sk| ≤ ξk

})(γ

2

)ξk

,

= P
(
H−

k

)(γ

2

)ξk

≥ α−
k

(
γ

2

)ξk

� αk > 0,

for all n large enough. �

LEMMA 5.7. Suppose that P(Hk) ≥ αk . Then, there exist a constant α+
k > 0, such that

for all n large enough, we have P(H+
k ) ≥ α+

k .

The proof is similar to the proof of Proposition 5.5 but with ξk = 1, and it is omitted.
Intuitively, choosing the destination of a job has the same statistical properties as choosing
one more server to sample, which brings us back to the setting of Proposition 5.5.

This concludes the induction step. It follows that there exists a constant α+
c+1 > 0, which

is independent of n, and such that P(H+
c+1) ≥ α+

c+1.

5.4. Upper bound on the number of useful distinguished servers. Let us provide some
intuition on what comes next. The dispatcher initially may treat in a nontypical manner the
servers in an initial set of at most c distinguished servers. As servers get sampled, the dis-
patcher acquires and possibly stores information about other servers. Ultimately, at the time
of the (c + 1)st arrival, the dispatcher may have acquired information and therefore treat in a
special manner (i.e., asymmetrically) the servers in the set

R �
c+1⋃
k=1

(
Rk ∪ R′

k

)
.

Recall that, for k = 1, . . . , c + 1, we have

Rk =
|Sk |⋃
i=1

Rk,i,
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where each of the sets in the union has cardinality at most c, by Proposition 5.1. Furthermore,
for k = 1, . . . , c + 1, the cardinality of R′

k is also at most c, by Proposition 5.2. It follows that

(5.10) |R| ≤ c

c+1∑
k=1

(
1 + |Sk|).

If we are to rely solely on this upper bound, the size of R can be larger than c + 1, and it is
possible in principle that the knowledge of so many “distinguished” servers (in the set R) is
enough for the dispatcher to identify c+1 idle servers to which to route the first c+1 jobs. On
the other hand, under the event H+

c+1, all new information comes from servers that are “busy”
(in the set B), and hence cannot be useful for the dispatching decisions. The next proposition
states that for every sample path ω ∈ H+

c+1, the set of idle (and therefore, potentially useful)
servers on which information is available, namely, the set R \ B , has cardinality of at most c.

PROPOSITION 5.8. The event H+
c+1 implies the event |R \ B| ≤ c.

PROOF. Let us fix a realization ω ∈ H+
c+1. We will upper bound the number of distinct

images of the set R \ B under permutations of the set Nn of servers, which will lead to an
upper bound on the cardinality of the set itself. In order to simplify notation, we will suppress
the notational dependence on ω of all random variables for the rest of this proof.

We introduce a subset of the set of all possible permutations of Nn, with this subset being
rich enough to lead to the desired bound. Toward this goal, we define the set

F �
c+1⋃
k=1

(|Sk |⋃
i=1

[{
(Sk)i

} \ Rk,i

] ∪ [{Dk} \ (
R′

k ∪ Sset
k

)])
.

This is the set of servers that were sampled, or that were chosen as the destination for a job,
which were not in the distinguished sets Rk,i , or R′

k ∪ Sset
k , respectively.

Using our assumption ω ∈ H+
c+1 and the definition of H+

c+1, we have

c+1⋃
k=1

|Sk |⋃
i=1

{
(Sk)i

} \ Rk,i ⊂ B and
c+1⋃
k=1

{Dk} \ (
R′

k ∪ Sset
k

) ⊂ B.

As a result, we have F ⊂ B , and thus

(R \ B) ∩ F = ∅.

Let � be the set of permutations σ of the server set Nn that:

(i) preserve the ordering of R \ B in the sense defined in Section 2,
(ii) fix the set (R ∩ B) ∪ F and

(iii) satisfy σ(R \ B) ∩ (R \ B) =∅.

Consider two permutations σ, τ ∈ � such that σ(R \ B) = τ(R \ B). Then, the fact that σ

and τ both preserve the order of R \ B implies that σ(i) = τ(i), for all i ∈ R \ B .

LEMMA 5.9. Let σ, τ ∈ �, and let σM and τM , respectively, be associated permuta-
tions of the memory states as specified in Assumption 3.1 (Symmetry). Let m(0) be the initial
memory state, at time 0. If σM(m(0)) = τM(m(0)), then σ(R) = τ(R).

Loosely speaking, Lemma 5.9 asserts that for the given sample path, permutations σ , τ in
� that lead to different sets R of distinguished servers must also lead (through σM and τM )
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to different initial memory states. The proof is an elementary consequence of our symmetry
assumption on the underlying dynamics. However, it is tedious and is deferred to Appendix D.

By Lemma 5.9, and for σ ∈ �, distinct images σ(R) must correspond to distinct memory
states σM(m(0)). Since the number of different memory states is upper bounded by nc, this
implies that ∣∣{σ(R) : σ ∈ �

}∣∣ ≤ nc.

Furthermore, since every σ ∈ � fixes the set R ∩ B , we have

(5.11)
∣∣{σ(R \ B) : σ ∈ �

}∣∣ = ∣∣{σ(R) : σ ∈ �
}∣∣ ≤ nc.

Recall now that the only restrictions on the image σ(R \ B) under permutations in σ ∈ �

is that the set (R ∩ B) ∪ F is fixed, and that σ(R \ B) ∩ (R \ B) = ∅. This implies that
σ(R \ B) can be any set of the same cardinality within (R ∪ F)c. It follows that

(5.12)
∣∣{σ(R \ B) : σ ∈ �

}∣∣ ≥
(
n − |R ∪ F |

|R \ B|
)

.

Recall also that under the event H+
c+1 we must have |Sk| ≤ ξk , for k = 1, . . . , c + 1. Thus

|F | ≤ ξ1 + · · ·+ ξc+1 + c + 1 � f , and using equation (5.10), |R| ≤ c(ξ1 + · · · + ξc+1)+ c +
1 � θ . Combining these two upper bounds, we obtain(

n − |R ∪ F |
|R \ B|

)
≥

(
n − (f + θ)

|R \ B|
)

.

Combining this with equations (5.11) and (5.12), we obtain the inequality

nc ≥
(
n − (f + θ)

|R \ B|
)

.

Finally, using the bound |R| ≤ θ , and applying Lemma B.1, we conclude that in order for this
equation to hold for all n large enough, we must have |R \ B| ≤ c. �

5.5. Completing the proof. We are now ready to complete the proof, by arguing that at
least one of the first c + 1 arrivals must be sent to a server that is either known to be busy
or to a server on which no information is available, and therefore has positive probability of
being busy.

Recall that for any fixed sample path in H+
c+1, we have (cf. equation (5.2))

{D1, . . . ,Dc+1} ⊂ B ∪
c+1⋃
k=1

(
Sset

k ∪ R′
k

)
.

Furthermore the event H+
c+1 implies that (Sk)i ∈ Rk,i ∪ B , for i = 1, . . . , |Sk| and k =

1, . . . , c + 1. Therefore,

Sset
k ⊂

|Sk |⋃
i=1

Rk,i ∪ B = Rk ∪ B,

for k = 1, . . . , c + 1. It follows that

{D1, . . . ,Dc+1} ⊂ B ∪
c+1⋃
k=1

(
Sset

k ∪ R′
k

)

⊂ B ∪
c+1⋃
k=1

(
Rk ∪ R′

k

)

= B ∪ R.
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Moreover, Proposition 5.8 states that |R \ B| ≤ c. Thus, either (a) there exists k such that
Dk ∈ B , or (b) Di ∈ R \ B for i = 1, . . . , c + 1, and hence there exists a pair k, l, with k < l,
such that Dk = Dl . We will now show that in both cases, the queueing delay is at least γ .

Let Lk be the queueing delay of the kth arrival. Recall that for i ∈ B , we have Qi,1(0) >

2γ . Then, for case (a), with Dk = i ∈ B we have

Lk = (
Qi,1(0) − Tk

)+ ≥ 2γ − γ

n
≥ γ > 0.

On the other hand, for case (b), we have

Ll ≥ [
Wk − (Tl − Tk)

]+ ≥ 2γ −
(

γ

n
− 0

)
≥ γ > 0.

In both cases, we have

L1 + · · · + Lc+1 ≥ γ.

Since this is true for every sample path in H+
c+1, we obtain

(5.13) E
[
L1 + · · · + Lc+1 | H+

c+1

] ≥ γ.

Finally, recall that the process (Q(·),M(·),Z(·)) is stationary, with invariant probability
measure πn. Then, setting t = γ /n in equation (3.2), we obtain

E
0
πn

[L0] = 1

λγ
E

[An(
γ
n
)∑

j=1

Lj

]

≥ 1

λγ
E

[An(
γ
n
)∑

j=1

Lj

∣∣∣ H+
c+1

]
P

(
H+

c+1

)

≥ 1

λγ
E

[
L1 + · · · + Lc+1 | H+

c+1

]
P

(
H+

c+1

)
,

where the last inequality comes from the fact that H+
c+1 ⊂ {An(γ /n) ≥ c + 1}. Combining

this with equation (5.13) and the fact that P(H+
c+1) ≥ α+

c+1 > 0, we obtain

E
0
πn

[L0] ≥ α+
c+1

λ
> 0.

As the constant in the lower bound does not depend on n, this completes the proof of the
theorem.

6. Conclusions and future work. We showed that when we have a limited amount of
memory and a modest budget of messages per unit of time, and under a symmetry assump-
tion, all dispatching policies result in queueing delay that is uniformly bounded away from
zero. In particular, this implies that the queueing delay does not vanish as the system size
increases.

Our result complements the results in [7], in which the authors showed that if we have a
little more of either resource, that is, if the number of memory bits or the message rate grows
faster with n, then there exists a symmetric policy that drives the queueing delay to zero as
n → ∞. Consequently, we now have necessary and sufficient conditions on the amount of
resources available to a central dispatcher, in order to achieve a vanishing queueing delay as
the system size increases.
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There are several interesting directions for future research. For example:

(i) All the policies in the literature that achieve a vanishing queueing delay need a mes-
sage rate at least equal to the arrival rate λn. We conjecture that this is not a necessary condi-
tion for a policy to have a vanishing queueing delay, as long as it has access to the incoming
job sizes.

(ii) In light of the symmetry assumption in Theorem 3.1, an immediate open question is
whether the result still holds without this assumption. Our proof relies heavily on symmetry
and is hard to generalize. However, perhaps (nonsymmetric) policies that use the memory to
store the beginning and the end of streaks of idle servers could achieve a vanishing queueing
delay in the low memory and low message rate regime where symmetric policies cannot do
it.

(iii) We have focused on a system with homogeneous servers. For the case of nonhomoge-
neous servers, even stability can become an issue, and there are interesting tradeoffs between
the resources used and the stability region. In this setting, we expect a result similar to our
lower bound for queueing delay, stating that a resource constrained policy cannot be stable
for every stabilizable system.

APPENDIX A: COMPARISON WITH A MORE RESTRICTIVE SYMMETRY
ASSUMPTION

In this appendix we explain why the stronger symmetry assumption

(A.1) σ
(
f1(m,w,u)

) = f1
(
σM(m),w,u

) ∀u ∈ [0,1],
would be unduly restrictive.

Consider a policy that samples a fixed number d of servers, uniformly at random (regard-
less of the memory state and of the incoming job size), and that satisfies this stronger symme-
try assumption. Then, f1(m,w,u) is a vector of dimension d , for all m ∈ Mn, w ∈ R+, and
u ∈ [0,1]. Let σ , τ be a pair of permutations such that σ(f1(m,w,u)) �= τ(f1(m,w,u)). The
stronger symmetry assumption in equation (A.1) implies that there exists a pair of associated
permutations σM , τM of the memory states such that

f1
(
σM(m),w,u

) = σ
(
f1(m,w,u)

) �= τ
(
f1(m,w,u)

) = f1
(
τM(m),w,u

)
.

It follows that σM(m) �= τM(m), and thus there must be at least as many memory states
as the number of different vectors of dimension d with different entries. There are

(n
d

)
d!

such vectors, and therefore a large memory would be required to implement such a uniform
sampling policy if equation (A.1) were to be enforced.

On the other hand, the symmetry assumption that we have adopted in this paper only re-
quires equality in distribution, and uniform sampling can be achieved with only one memory
state (i.e., with no bits of memory). Indeed, since the sampling of servers is done uniformly
at random, we have

f1(m,w,U)
d= σ

(
f1(m,w,U)

)
,

for all permutations σ .
This example shows that the symmetry assumption that we have adopted can be substan-

tially weaker (and thus easier to satisfy), and allows small-memory implementation of simple
natural policies.
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APPENDIX B: A COMBINATORIAL INEQUALITY

We record here an elementary fact.

LEMMA B.1. Let us fix positive integer constants a and c. Suppose that b satisfies

(B.1)
(
n − a

b

)
≤ nc.

As long as n is large enough, we must have b ≤ c or b ≥ n − a − c.

PROOF. Suppose that b = c + 1. The quantity
(n−a
c+1

)
is a polynomial in n of degree c + 1

and therefore, when n is large, (B.1) cannot hold. In the range c + 1 ≤ b ≤ (n − a)/2, the
quantity

(n−a
b

)
increases with b, and hence (B.1) cannot hold either. Using the symmetry of

the binomial coefficient, a similar argument is used to exclude the possibility that (n−a)/2 ≤
b ≤ n − a − c − 1. �

APPENDIX C: PROOF OF LEMMA 5.6

In order to simplify notation, we introduce the following. For any m ∈ Mn, w ∈ R+, and
b ∈ P(Nn), we define the event

Am,w,b �
{
M

(
T −

k

) = m,B = b,Wk = w
}
,

and we let Pm,w,b be the conditional probability measure

Pm,w,b( · )� P( · | Am,w,b).

Let us fix some � ≤ ξk and some i ≤ �. We have

P

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)

=
∫
m,w,b

Pm,w,b

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)

· dP

(
Am,w,b

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)
.

Moreover,

Pm,w,b

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)

= ∑
s
Pm,w,b

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

{
(Sk)j = sj

})

· Pm,w,b

(
i−1⋂
j=1

{
(Sk)j = sj

} ∣∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

Hk,j

)
,

where the sum is over all (i −1)-dimensional vectors s whose components are distinct indices
of servers, and such that the conditional probabilities above are well defined.

It is not hard to see that the desired result follows immediately once we establish the
following claim.
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CLAIM C.1. For all n large enough, we have

Pm,w,b

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

{
(Sk)j = sj

}) ≥ γ

2
,

for all (m,w,b, s) such that the conditional probability above is well defined.

PROOF. Let us fix some (m,w,b, s). Since H+
k−1 implies |B| ≥ γ n, we have

(C.1) |b| ≥ γ n.

On the other hand, recall that

Hk,i = {
(Sk)i ∈ Rk,i ∪ B

}
,

where

Sk = f1
(
M

(
T −

k

)
,Wk,Uk

)
,

and Rk,i is equal to the set

R
(
M

(
T −

k

)
,Wk,

(
(Sk)1, . . . , (Sk)i−1

)
, |Sk|)

defined in Proposition 5.1, whenever the proposition applies. Otherwise, we have Rk,j = ∅.
In any case, Rk,j is a deterministic function of the same random variables. Then, conditioned
on M(T −

k ) = m, Wk = w, B = b, ((Sk)1, . . . , (Sk)j−1) = s, and |Sk| = �, we have

Hk,i = {(
f1(m,w,Uk)

)
i ∈ rk,i ∪ b

}
,

where rk,i denotes the corresponding realization of the random set Rk,i . Note that the only
randomness left in this event comes from Uk , which is a randomization random variable that
is chosen independent from all the events prior to time T −

k . It follows that Hk,i is condition-
ally independent from H+

k−1, and thus

Pm,w,b

(
Hk,i

∣∣∣ H+
k−1 ∩ {|Sk| = �

} ∩
i−1⋂
j=1

{
(Sk)j = sj

})

= Pm,w,b

(
Hk,i

∣∣∣ {|Sk| = �
} ∩

i−1⋂
j=1

{
(Sk)j = sj

})
.

We now define the event Gk,s,i,� to be

Gk,s,i,� �
{|Sk| = �

} ∩
i−1⋂
j=1

{
(Sk)j = sj

}
.

We are interested in bounding Pm,w,b(Hk,i | Gk,s,i,�), which we decompose into two terms:

(C.2)

Pm,w,b(Hk,i | Gk,s,i,�) = Pm,w,b

(
(Sk)i ∈ rk,i ∪ b | Gk,s,i,�

)
= Pm,w,b

(
(Sk)i ∈ rk,i | Gk,s,i,�

)
+ Pm,w,b

(
(Sk)i ∈ b \ rk,i | Gk,s,i,�

)
.

Since the conditional probability measure Pm,w,b( · | Gk,s,i,�) is well defined, and since � ≤ ξk

and ξl ≤ √
n for all n large enough, Proposition 5.1 applies and yields

Pm,w,b

(
(Sk)i = s | Gk,s,i,�

) = Pm,w,b

(
(Sk)i = s′ | Gk,s,i,�

)
,
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for all s, s′ /∈ rk,i ∪ {s1, . . . , si−1}. As a result,

Pm,w,b

(
(Sk)i ∈ b \ rk,i | Gk,s,i,�

)
≥ Pm,w,b

(
(Sk)i ∈ b \ (

rk,i ∪ {s1, . . . , si−1}) | Gk,s,i,�
)

= |b \ (rk,i ∪ {s1, . . . , si−1})|
n − |rk,i ∪ {s1, . . . , si−1}| Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1} | Gk,s,i,�

)
.

Moreover, using the facts that |b| ≥ γ n (equation (C.1)), |rk,i | ≤ c (Proposition 5.1), and
i ≤ �, we obtain

|b \ (rk,i ∪ {s1, . . . , si−1})|
n − |rk,i ∪ {s1, . . . , si−1}| · Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1} | Gk,s,i,�

)

≥ γ n − c − �

n
· Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1} | Gk,s,i,�

)
≥ γ

2
· Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1} | Gk,s,i,�

)
,

when n is large enough. Finally, since the elements of the vector Sk are distinct,

Pm,w,b

(
(Sk)i /∈ rk,i ∪ {s1, . . . , si−1} | Gk,s,i,�

) = Pm,w,b

(
(Sk)i /∈ rk,i | Gk,s,i,�

)
,

and therefore

Pm,w,b

(
(Sk)i ∈ b \ rk,i | Gk,s,i,�

) ≥ γ

2
Pm,w,b

(
(Sk)i /∈ rk,i | Gk,s,i,�

)
.

We now substitute into equation (C.2), and obtain

Pm,w,b(Hk,i | Gk,s,i,�)

≥ Pm,w,b

(
(Sk)i ∈ rk,i | Gk,s,i,�

) + γ

2
Pm,w,b

(
(Sk)i /∈ rk,i | Gk,s,i,�

)
≥ γ

2
,

for all n large enough. �

APPENDIX D: PROOF OF LEMMA 5.9

We first prove a claim about the set-valued functions R and R′ introduced in Propositions
5.1 and 5.2, respectively.

CLAIM D.1. For every m ∈ Mn, w ∈ R+, s ∈ Sn with |s| ≤ √
n, q ∈ Q|s|, and

for � = |s| + 1, . . . , n, and for every permutation σ , we have R(σM(m),w,σ(s), �) =
σ(R(m,w, s, �)) and R′(σM(m),w,σ(s),q) = σ(R′(m,w, s,q)).

PROOF. In order to simplify notation, we suppress the dependence on w of the functions
R, R′, and f1 throughout the proof of the lemma.

Let U be a uniform random variable over [0,1]. For every m ∈ Mn, we define the random
vector S(m) = f1(m,U). Recall that R(m, s, �) ⊂ Nn \ sset is the unique set of minimal
cardinality such that

P

(
S(m)|s|+1 = j

∣∣∣ {∣∣S(m)
∣∣ = �

} ∩
|s|⋂

i=1

{
S(m)i = si

})

= P

(
S(m)|s|+1 = j ′ ∣∣∣ {∣∣S(m)

∣∣ = �
} ∩

|s|⋂
i=1

{
S(m)i = si

})
,



A LOWER BOUND ON THE QUEUEING DELAY IN LOAD BALANCING 899

for all j, j ′ /∈ R(m, s, �) ∪ sset. It is not hard to see, for example, by replacing j , j ′ in the
above equality by σ−1(j), σ−1(j ′) /∈ R(m, s, �) ∪ sset, that σ(R(m, s, �)) ⊂ Nn \ σ(sset) is
the unique set of minimal cardinality such that

P

(
σ

(
S(m)|s|+1

) = j
∣∣∣ {∣∣σ (

S(m)
)∣∣ = �

} ∩
|s|⋂

i=1

{
σ

(
S(m)i

) = σ(si )
})

= P

(
σ

(
S(m)|s|+1

) = j ′ ∣∣∣ {∣∣σ (
S(m)

)∣∣ = �
} ∩

|s|⋂
i=1

{
σ

(
S(m)i

) = σ(si )
})

,

for all j, j ′ /∈ σ(R(m, s, �))∪σ(sset). On the other hand, the symmetry assumption states that

σ
(
S(m)

) d= S
(
σM(m)

)
.

Combining the last two equalities we get that σ(R(m, s, �)) ⊂ Nn \ σ(sset) is the unique set
of minimal cardinality such that

P

(
S
(
σM(m)

)
|s|+1 = j

∣∣∣ {∣∣S(
σM(m)

)∣∣ = �
} ∩

|s|⋂
i=1

{
S
(
σM(m)

)
i = σ(si )

})

= P

(
S
(
σM(m)

)
|s|+1 = j ′ ∣∣∣ {∣∣S(

σM(m)
)∣∣ = �

} ∩
|s|⋂

i=1

{
S
(
σM(m)

)
i = σ(si )

})
,

for all i, j /∈ σ(R(m, s, �)) ∪ σ(sset). However, this is exactly the definition of R(σM(m),

σ (s), �) (uniqueness is crucial at this point), so we have

σ
(
R(m, s, �)

) = R
(
σM(m),σ (s), �

)
.

The proof of R′(σM(m),σ (s),q) = σ(R′(m, s,q)) is analogous (this time making use of the
symmetry of the mapping f2) and is omitted. �

We continue with the proof of Lemma 5.9. Under the event H+
c+1, we have (S1)i ∈ R1,i ∪

B , for i = 1, . . . , |S1|. Applying Claim D.1 and the fact m(t−1 ) = m(0), which implies that
σM(m(t−1 )) = τM(m(t−1 )), we obtain

(D.1)

σ(R1,1) = σ
(
R

(
m

(
t−1

)
,w1,∅, |S1|))

= R
(
σM

(
m

(
t−1

))
,w1,∅, |S1|)

= R
(
τM

(
m

(
t−1

))
,w1,∅, |S1|)

= τ
(
R

(
m

(
t−1

)
,w1,∅, |S1|))

= τ(R1,1).

Now recall that σ and τ preserve the order of R \ B and fix R ∩ B , so in particular they
preserve the order of R1,1 \ B ⊂ R \ B and fix R1,1 ∩ B ⊂ R ∩ B . Combining this with
equation (D.1), we must have σ(i) = τ(i), for all i ∈ R1,1. If (S1)1 ∈ R1,1, this implies that

(D.2) τ
(
(S1)1

) = σ
(
(S1)1

)
.

On the other hand, if (S1)1 does not belong to R1,1, then, from the definition of F , we must
have (S1)1 ∈ F . Since σ and τ fix the set F , we conclude that equation (D.2) must hold in all
cases.

Proceeding inductively, and using the same argument, we obtain

σ(R1,i ) = τ(R1,i),
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for i = 1, . . . , |S1|, and σ(i) = τ(i), for all i ∈ Sset
1 . It follows that σ(S1) = τ(S1). Combining

this with the fact that σM(m(t−1 )) = τM(m(t−1 )), and applying Claim D.1 twice, we obtain

(D.3)

σ
(
R′

1
) = σ

(
R′(m(

t−1
)
,w1,S1,qS1

(
t−1

)))
= R′(σM

(
m

(
t−1

))
,w1, σ (S1),qS1

(
t−1

))
= R′(τM

(
m

(
t−1

))
,w1, τ (S1),qS1

(
t−1

))
= τ

(
R′(m(

t−1
)
,w1,S1,qS1

(
t−1

)))
= τ

(
R′

1
)
.

Now recall that σ and τ preserve the order of R \ B and fix R ∩ B , so in particular they
preserve the order of R′

1 \ B ⊂ R \ B and fix R′
1 ∩ B ⊂ R ∩ B . Combining this with equation

(D.3), we must have σ(i) = τ(i), for all i ∈ R′
1. Furthermore, recall that we also have that

σ(i) = τ(i), for all i ∈ Sset
1 . If D1 ∈ R′

1 ∪ Sset
1 , this implies that

(D.4) σ(D1) = τ(D1).

On the other hand, if D1 does not belong to R′
1 ∪ Sset

1 , then, from the definition of F , we must
have D1 ∈ F . Since σ and τ fix the set F , we conclude that equation (D.4) must hold in all
cases.

We now consider a memory update. Using the symmetry assumption, we have

σM

(
m(t1)

) = σM

(
f3

(
m

(
t−1

)
,w1,S1,qS1

(
t−1

)
,D1

))
= f3

(
σM

(
m

(
t−1

))
,w1, σ (S1),qS1

(
t−1

)
, σ (D1)

)
.

Then, since σM(m(t−1 )) = τM(m(t−1 )), σ(S1) = τ(S1), and τ(D1) = σ(D1), we have

f3
(
σM

(
m

(
t−1

))
,w1, σ (S1),qS1

(
t−1

)
, σ (D1)

)
= f3

(
τM

(
m

(
t−1

))
,w1, τ (S1),qS1

(
t−1

)
, τ (D1)

)
.

Using the symmetry assumption once again, we obtain

f3
(
τM

(
m

(
t−1

))
,w1, τ (S1),qS1

(
t−1

)
, τ (D1)

)
= τM

(
f3

(
m

(
t−1

)
,w1,S1,qS1

(
t−1

)
,D1

))
= τM

(
m(t1)

)
.

We conclude that

σM

(
m(t1)

) = τM

(
m(t1)

)
.

Finally, since the memory states at time t1 are still equal, we can proceed inductively by
applying the same argument to obtain that, for k = 2, . . . , c + 1, we have σ(Rk,i) = τ(Rk,i)

for i = 1, . . . , |Sk|, and σ(R′
k) = τ(R′

k). It follows that σ(R) = τ(R).
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