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Abstract. We consider a heterogeneous distributed service system consisting of n servers
with unknown and possibly different processing rates. Jobs with unit mean arrive as a re-
newal process of rate proportional to n and are immediately dispatched to one of several
queues associated with the servers. We assume that the dispatching decisions are made by
a central dispatcher with the ability to exchange messages with the servers and endowed
with a finite memory used to store information from one decision epoch to the next, about
the current state of the queues and about the service rates of the servers. We study the fun-
damental resource requirements (memory bits and message exchange rate) in order for a
dispatching policy to be always stable. First, we present a policy that is always stable while
using a positive (but arbitrarily small) message rate and log2(n) bits of memory. Second, we
show that within a certain broad class of policies, a dispatching policy that exchanges o(n2)
messages per unit of time, and with o(log (n)) bits of memory, cannot be always stable.
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[NETWORKS-024.002.003].
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1. Introduction
Distributed service systems are pervasive, from the checkout lines at supermarkets to server farms for cloud
computing. At a high level, many of these systems involve a stream of incoming jobs that are dispatched to a dis-
tinct queue associated with one of the servers (see Figure 1 for a stylized model). Naturally, the behavior and per-
formance of such systems depend on the dispatching policy.

Although delay performance and stability are important factors when choosing how to operate these systems,
the huge number of servers in applications such as multicore processors and data centers has led to a desire for
low communication overhead. On the other hand, communication between the dispatcher and the servers, as

Figure 1. Parallel server queueing systemwith a central dispatcher.
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well as memory at the dispatcher, allows the dispatcher to obtain and store information about the current state
of the queues and about the characteristics of the servers, leading to better dispatching decisions. This points to a
trade-off between the resources utilized (in terms of communication overhead and memory) and the attainable
delay performance and stability of the system.

In this paper, we consider a heterogeneous distributed service system, where servers can have different and
unknown processing rates, and explore the trade-off between the stability region of the system and the amount
of communication overhead and memory used to gather and store relevant information. This complements the
work in Gamarnik et al. [6, 7], where the authors explore the trade-off between the delay performance and the
amount of communication overhead and memory in a system with identical servers. In particular, in the setting
of Gamarnik et al. [6, 7], stability was easy to achieve (even with a static, randomized policy), and the focus was
on the queueing delay going to zero (as the arrival rate and the number of servers jointly increase). In the present
context, stability becomes an issue: the dispatcher must either “learn” the rates of the different servers (and store
this information in its memory), or must use some dynamic queue-size information to stabilize the system.

Remark 1. It is important to note that we use the term “memory” throughout this paper to refer to the memory
used to store information from one decision epoch to the next, about the current state of the queues and about the
service rates of the servers. In particular, it does not refer to the total memory requirements (at a hardware level) of
a practical implementation of a policy, which can be much greater. Indeed, practical implementations of a central
controller could require more memory to store, for example, the addresses of the servers to which it is attached.
Moreover, even larger amounts of memory could be required to make computations, or to temporarily store infor-
mation about the current state of the queues (e.g., to compare multiple queue lengths at a decision epoch).

The reason behind our focus on this type of memory is twofold. First, it allows us to concentrate on the amount
of information stored that is relevant to the stability of the system. Second, the type of memory that we consider
is application agnostic, allowing our results to be applicable in broader settings.

1.1. Previous Work
There is a wide range of policies for operating the system described above, which result in different delay per-
formances, stability regions, and resource utilizations. For example, a most simple policy is to dispatch jobs uni-
formly at random. This policy requires no message exchanges and no memory, but it is unstable if some server is
slow enough. At the opposite extreme, the server can use dynamically available information and send incoming
jobs to a shortest queue. This policy results in small delay and is maximally stable (Bramson [4]) but requires sub-
stantial communication overhead and an unbounded memory.

Many intermediate policies have been proposed and analyzed in the past, with a focus on low resource usage.
Most notably, the power-of-d-choices algorithm (also known as [Shortest Queue] SQ(d)) was introduced and ana-
lyzed in Mitzenmacher [9] and Vvedenskaya et al. [15], and results in relatively low average delays for the jobs,
while requiring a message rate proportional to the arrival rate and no memory. However, the blind randomiza-
tion used by the policy renders it unstable if there is at least one sufficiently slow server. Another popular policy
is Join-Idle-Queue (Lu et al. [8], Stolyar [12]), which leverages the power of memory (one bit per server) to obtain
vanishing queueing delays (as the arrival rate and the number of servers jointly increase) while using roughly
the same amount of communication overhead as the power-of-d-choices algorithm. However, this policy also uti-
lizes blind randomization that renders it unstable if there is at least one sufficiently slow server (Atar et al. [3]).

Recently, there has been a focus on policies that attain a vanishing queueing delay while minimizing their re-
source usage. In particular, in Mukherjee et al. [10], a variation of the power-of-d-choices algorithm was shown
to yield a vanishing queueing delay while using no memory and a message rate that is superlinear in the arrival
rate. Moreover, variations of Join-Idle-Queue were shown to have vanishing queueing delays with either a mem-
ory of size (in bits) superlogarithmic in the number of servers and a message rate equal to the arrival rate (Ga-
marnik et al. [6]), or a memory size (in bits) equal to the number of servers and a message rate strictly smaller
(but still proportional) to the arrival rate (van der Boor et al. [13]). Last but not least, a novel combination of size-
based load balancing and round-robin was shown to have vanishing queueing delay using unbounded memory
and no communication overhead (Anselmi [1]).

On the other hand, there are few policies in the literature that maximize the stability region. In Anselmi and
Dufour [2] and Shah and Prabhakar [11], the authors present and analyze a variation of power-of-d-choices algo-
rithm that utilizes memory (of size logarithmic in the number of servers) that guarantees maximal stability. Fur-
thermore, in Atar et al. [3], the authors propose yet another variation of Join-Idle-Queue, dubbed Persistent-Idle,
that achieves maximal stability, without any randomization. This policy requires a message rate proportional to
the arrival rate and a memory of size (in bits) at least proportional to the number of servers.
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Finally, independent simultaneous work (Vargaftik et al. [14], Zhou et al. [16]) has also focused on minimizing
the communication overhead while still being maximally stable. These policies are designed to keep (possibly
outdated) estimates of the queue lengths in memory, which are updated sporadically. They require arbitrarily
small message rates and a memory size (in bits) that grows faster than the number of servers.

1.2. Our Contribution
Instead of focusing on yet another policy or decision-making architecture, we step back and address a more fun-
damental question: What are the message rate (from dispatcher to servers and from servers to dispatcher com-
bined) and/or memory size requirements that are necessary and sufficient in order for a policy to be maximally
stable? We are able to provide a fairly complete answer to this question:

a. For the case of Poisson arrivals and exponential service times, if the message rate is positive and the memory
size (in bits) is logarithmic in the number of servers, we provide a fairly simple and natural policy that is maximally
stable.

b. If the message rate is sublinear in the square of the arrival rate and the number of memory bits is sublogarith-
mic in the number of servers, we show that no decision-making architecture and policy, within a certain broad class
of policies, is maximally stable. The main constraint that we impose on the policies that we consider is that they are
“weakly symmetric,” in a sense to be defined later.

In a nutshell, with as little as a logarithmic number of bits of memory, the message rate requirement for maxi-
mal stability decreases from being proportional to the square of the arrival rate to being merely positive.

Remark 2. Our proposed policy is more economical than the most efficient maximally stable policies analyzed in
earlier literature, requiring minimal communication overhead and a remarkably small memory. On the one
hand, the power-of-d-choices algorithm with memory policy (Anselmi and Dufour [2], Shah and Prabhakar [11])
is maximally stable, but requires a memory of size (in bits) at least logarithmic in the number of servers and a
message rate proportional to the arrival rate. On the other hand, policies based on estimated queue lengths (Var-
gaftik et al. [14], Zhou et al. [16]) are also maximally stable, while requiring a memory size (in bits) superlinear in
the number of servers and an arbitrarily small message rate. In contrast, our proposed policy requires a memory
size (in bits) logarithmic in the number of servers and an arbitrarily small message rate.

Remark 3. Given its singular focus on being maximally stably while utilizing minimal memory and communica-
tion overhead, for a given message rate, the delay performance of our policy is inferior to the delay performance
of the policies in Atar et al. [3], Vargaftik et al. [14], and Zhou et al. [16], which use significantly more memory.
Hence, this is not a policy meant for practical implementation in applications such as data centers, where memo-
ry is not an issue, but it serves as a counterpart to our impossibility result.

2. Model and Main Results
In this section, we present our modeling assumptions and main results. We present a unified framework for a
broad set of dispatching policies, which includes most of the policies studied in the previous literature, and then
present our negative result on the failure of maximal stability to hold for resource-constrained policies within
this framework.

2.1. Modeling Assumptions
We consider a distributed service system consisting of n parallel servers, where each server is associated with an
infinite capacity first-in, first-out queue. For each i ∈ {1, : : : ,n}, the ith server has constant (but unknown) service
rate µi > 0. Despite the heterogeneity in the service rates, we assume that the total processing power of all servers
is equal to n. Thus, the set of possible service rate vectors is

Σn¢ µ ∈ (0,∞)n :
∑n

i#1
µi # n

{ }
: (1)

Jobs arrive to the system as a single renewal process of rate λn (for some fixed λ ∈ (0, 1)), and their sizes are inde-
pendent and identically distributed (i.i.d.), independent from the arrival process, and have a general distribution
with unit mean. A central controller (dispatcher) is responsible for routing every incoming job to a queue, imme-
diately upon arrival. We assume that the dispatcher can rely only on a limited amount of local memory and on
messages that provide partial information about the state and parameters of the system. These messages (which
are assumed to be instantaneous) can be sent from a server to the dispatcher at any time, or from the dispatcher
to a server (in the form of queries) at the time of an arrival or at the time of a spontaneous message from a server.
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Messages from a server i can contain information only about the state of its own queue (number of remaining
jobs and the remaining workload of each one) and about its processing rate µi. Within this context, a system de-
signer has the freedom to choose a messaging policy, as well as the rules for updating the memory and for select-
ing the destination of an incoming job.

Regarding the performance metric, our focus is on the stability region of a policy under the arrival rate λ, that
is, the largest subset of server rates Γn(λ) ⊂ Σn such that the policy is stable for all µ ∈ Γn(λ). We will formalize
this definition in Subsection 2.4.

2.2. A Maximally Stable Policy
In this subsection, we propose a simple dispatching policy with the largest possible stability region (i.e., with sta-
bility region equal to Σn, for all λ ∈ (0, 1)).

2.2.1. Policy Description. For any fixed value of n, we consider the following policy. At any time, the dispatcher
stores the ID of a single server in its memory. This ID is initialized in an arbitrary way, and it is updated based
on spontaneous messages from the servers. In particular, each server sends messages to the dispatcher as an in-
dependent Poisson process of rate αn > 0, informing the dispatcher of its queue length (i.e., of the number of jobs
in its queue or in service). When a message from a server arrives to the dispatcher, the dispatcher stores the ID of
this server only if the sender’s queue is shorter than the queue of the server that is currently stored in memory.
In order to make this comparison, the queue length of the currently stored server is obtained by sending a query
to it. Finally, whenever a new job arrives to the system, it is sent to the server whose ID is stored in the dispatch-
er’s memory (the server ID in memory does not change at this point).

Remark 4. This policy requires only %log2(n)& bits of memory and an arbitrarily small (but positive) average mes-
sage rate of 3αnn.

2.2.2. Main Result. When the arrival process is Poisson and the service times are exponentially distributed, the
behavior of the system under this policy can be modeled as a continuous-time Markov chain (Q(·), I(·)), where
Q(·) # (Q1(·), : : : ,Qn(·)) is the vector of queue lengths, and I(·) is the ID of the server stored in memory. In this set-
ting, the stability of the policy is established in the following result.

Theorem 1. Suppose that the arrival process is Poisson, and that the job sizes are exponentially distributed. For any n, if
αn > 0, then the stability region of the policy described above is Σn, for all λ ∈ (0, 1).

This stability result is established by constructing an appropriate Lyapunov function. The proof is given in Ap-
pendix A.

Theorem 1 states that, at least in the Markovian case, the stability region of our proposed policy is the whole
set of admissible rates Σn. Moreover, it implies that %log2(n)& bits of memory and an average message rate of
3αnn (which can be arbitrarily small) are sufficient for a policy to be always stable. We conjecture that our policy
is always stable, even with renewal arrivals and generally distributed service times.

Although Theorem 1 ensures stability even when the message rate is arbitrarily small, a small message rate
will result in poor steady-state delay performance of the policy. Indeed, because the policy sends all incoming
jobs to the same queue between consecutive messages, a small message rate leads to large buildups of jobs in the
queues. In particular, we conjecture that the steady-state queueing delay of our policy is of order Θ(1=αn).

Given this apparent trade-off between the average message rate and the delay performance of the policy, the
proposed policy is most useful for applications where a large stability region and a small communication over-
head are preferred, and where there is tolerance for large delays. Furthermore, because the policy does not de-
pend explicitly on the rates of the servers (or estimates thereof), it would continue to work even if the service
rates changed slowly over time, which makes it robust.

2.3. A General Class of Dispatching Policies
In this subsection, we present a unified framework that describes memory-based dispatching policies in systems
with heterogeneous servers, which is slightly more general than the one introduced in Gamarnik et al. [7].

Let cn be the number of memory bits available to the dispatcher. We define the corresponding set of memory
states to beMn¢ 1, : : : , 2cn{ }. Furthermore, we define the set of possible states at a server as the set of nonnegative
sequences Q¢RZ+

+ , where a sequence specifies the remaining workload of each job in that queue, including the
one that is being served. (In particular, an idle server is represented by the zero sequence.) As long as a queue
has a finite number of jobs, the queue state is a sequence that has only a finite number of nonzero entries. The
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reason that we include the workload of the jobs in the state is that we wish to allow for a broad class of policies
that can take into account the remaining workload in the queues. In particular, we allow for information-rich
messages that describe the full workload sequence at the server that sends the message. We are interested in the
process

Q(·) # (Q1(·), : : : ,Qn(·)) # (Q1,j(·))∞j#1, : : : , (Qn,j(·))∞j#1
( )

,

which takes values in the set Qn and describes the evolution of the workload of each job in each queue. We are
also interested in the process M(·) that describes the evolution of the memory state, and in a process Z(·) that de-
scribes the elapsed time since the arrival of the previous job.

2.3.1. Fundamental Processes and Initial Conditions. All processes of interest are driven by the following com-
mon fundamental processes:

1. Arrival process: A delayed renewal counting process An(·) with rate λn and event times {Tk}∞k#1, defined on a
probability space (ΩA,AA,PA).

2. Spontaneous messages process: A Poisson counting process Rn(·)with rate βn, and event times {Ts
k}∞k#1, defined on

a probability space (ΩR,AR,PR).
3. Job sizes: A sequence of i.i.d. random variables {Wk}∞k#1 with mean one, defined on a probability space

(ΩW,AW,PW).
4. Randomization variables: Eight independent and individually i.i.d. sequences of random variables

{U1,k}∞k#1, : : : , {U8,k}∞k#1, uniform on [0, 1], defined on a common probability space (ΩU,AU,PU).
5. Initial conditions: Random variablesQ(0),M(0), and Z(0), defined on a common probability space (Ω0,A0,P0).
The whole system will be defined on the associated product probability space

(ΩA × ΩR × ΩW × ΩU × Ω0,AA × AR × AW × AU × A0,PA × PR × PW × PU × P0),
to be denoted by (Ω,A,P). All of the randomness in the system originates from these fundamental processes,
and everything else is a deterministic function of them. In particular, the randomization variables are used to ran-
domize the actions of the policies, independently of the rest of the system.

2.3.2. A Construction of Sample Paths. We provide a construction of a Markov process (Q(·),M(·),Z(·)), taking
values in the set Qn ×Mn × R+. The memory process M(·) is piecewise constant and can jump only at the time of
an event. All processes considered will have the càdlàg property (right continuous with left limits) either by as-
sumption (e.g., the underlying fundamental processes) or by construction.

There are three types of events: job arrivals, spontaneous messages, and service completions. We now describe
the sources of these events, and what happens when they occur.

2.3.2.1. Job Arrivals. At the time of the kth event of the arrival process An, which occurs at time Tk and involves
a job with sizeWk, the following transitions happen sequentially but instantaneously:

1. First, the dispatcher chooses a set Sk of distinct servers, from which it solicits information about their state, ac-
cording to

Sk # f1(M T−
k

( )
,Wk,U1,k),

where f1 :Mn × R+ × [0, 1]→ P({1, : : : ,n}) is a measurable function defined by the policy. Here, and in the se-
quel, P(A) stands for the power set of a set A.

2. Second, messages are sent to the servers in the set Sk, and the servers respond with messages containing their
queue states and their service rates. This results in a total of 2 |Sk | messages exchanged. Using this information, the
destination of the incoming job is chosen to be

Dk # f2(M(T−
k ),Wk, {(Qi(T−

k ),µi, i) : i ∈ Sk},U2,k),
where f2 :Mn × R+ × Bn × [0, 1]→ {1, : : : ,n} is a measurable function defined by the policy, with Bn ⊂ P(Q ×
R+ × {1, : : : ,n}) comprised of those sets of triples such that the triples in a set have different third coordinates.
Note that the destination of a job can depend not only on the current memory state, the job size, the set of queried
servers, and the state of their queues, but also on the rates of the queried servers.

3. Third, the memory state is updated according to

M(Tk) # f3(M(T−
k ),Wk, {(Qi(T−

k ),µi, i) : i ∈ Sk},Dk,U3,k),
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where f3 :Mn × R+ × Bn × {1, : : : ,n} × [0, 1]→Mn is a measurable function defined by the policy. Note that the
new memory state is obtained using the same information as for selecting the destination, including the rates of
the queried servers, plus the destination of the job.

2.3.2.2. Spontaneous Messages. At the time of the kth event of the spontaneous message process Rn, which oc-
curs at time Ts

k, the ith server sends a spontaneous message to the dispatcher if and only if

g1 Q Ts
k

( )
,µ,U4,k

( ) # i,

where g1 :Qn × Rn
+ × [0, 1]→ {0, 1, : : : ,n} is a measurable function defined by the policy. On the other hand, no

message is sent when g1(Q(Ts
k),µ,U4,k) # 0. Note that the dependence of g1 onQ and µ allows the message rate at

each server to depend on all servers’ current workloads and on their rates. This allows for policies that let servers
with higher service rates send messages at a higher rate than servers with slower service rates.

When a spontaneous message from server i arrives to the dispatcher, the following transitions happen sequen-
tially but instantaneously:

1. First, the dispatcher chooses a set of distinct servers Ssk, from which it solicits information about their state, ac-
cording to

Ssk # g2(M T−
k

( )
, i,Qi(Ts

k),µi,U5,k),
where g2 :Mn × {1, : : : ,n} ×Q × R+ × [0, 1]→ P({1, : : : ,n}) is a measurable function defined by the policy. Note
that the set of servers that are sampled not only depends on the current memory state but also on the index,
queue state, and rate of the server that sent the message.

2. Second, messages are sent to the servers in the set Ssk, and the servers respond with messages containing their
queue states and their service rates. This results in a total of 2 |Ssk |messages exchanged. Using this information, the
memory is updated to the newmemory state

M(Ts
k) # g3(M(Ts

k
−), i,Qi(Ts

k),µi, {(Qj(Ts
k),µj, j) : j ∈ Ssk},U6,k),

where g3 :Mn × {1, : : : ,n} ×Q × R+ × Bn × [0, 1]→Mn is a measurable function defined by the policy.

2.3.2.3. Service Completions. Let {Td
k (i)}∞k#1 be the sequence of departure times at the ith server. At those times,

the ith server sends a message to the dispatcher if and only if

h1(Qi(Td
k (i)),µi,U7,k) # 1,

where h1 :Q × R+ × [0, 1]→ {0, 1} is a measurable function defined by the policy. In that case, the memory is up-
dated to the new memory state

M(Td
k (i)) # h2(M(Td

k (i)−), i,Qi(Td
k (i)),µi,U8,k),

where h2 :Mn × {1, : : : ,n} ×Q × R+ × [0, 1]→Mn is a measurable function defined by the policy. Finally, no
message is sent when h1(Qi(Td

k (i)),µi,U7,k) # 0.

Remark 5. Note that this framework allows for policies that are more general than those considered in Gamarnik
et al. [7]. In particular, (i) some decisions can depend on the rates of the different servers, (ii) the dispatcher can
sample servers whenever a spontaneous message arrives, and (iii) memory updates may involve randomization.

We now introduce a symmetry assumption on the policies.

Assumption 1 (Weakly Symmetric Policies).
We assume that the dispatching policy is weakly symmetric, in the following sense. For any given permutation of the

servers σ, there exists a corresponding (not necessarily unique) permutation σM of the memory statesMn that satisfies both
of the following properties:

1. For every m ∈Mn and w ∈ R+, and if U is a uniform random variable on [0, 1], then

σ(f1(m,w,U))#d f1(σM(m),w,U),
where #d stands for equality in distribution. Note that this equality in distribution is only with respect to U.

2. For every m ∈Mn, w ∈ R+, S ∈ P({1, : : : ,n}), q ∈Qn, and µ ∈ Rn
+, and if V is a uniform random variable on [0, 1], then

σ( f2(m,w, {(qi,µi, i) : i ∈ S},V))#
d
f2(σM(m),w, {(qi,µi,σ(i)) : i ∈ S},V):

Gamarnik, Tsitsiklis, and Zubeldia: Stability, Memory, and Messaging Trade-Offs
6 Mathematics of Operations Research, Articles in Advance, pp. 1–13, © 2021 INFORMS



Remark 6. This assumption prevents any bias for or against a server, unless it is encoded in the memory in a
sufficiently detailed way so that the assumption is satisfied. For example, in order to implement (in a weakly
symmetric way) the randomized dispatching policy where incoming jobs are sent to a server with a probability
proportional to its processing rate, the second condition in Assumption 1 requires the dispatching probabilities
to be encoded in memory, in a sufficiently detailed way.

Remark 7. Note that the universally stable policy introduced in Subsection 2.2.1 falls within the class of policies
defined by this general framework, and it satisfies Assumption 1.

2.4. Instability of Resource-Constrained Policies
In this subsection, we state the main result about the instability of general weakly symmetric dispatching
policies. Before stating this main result, we first define the average message rate between the dispatcher and
the servers as

lim sup
t→∞

1
t

∑An(t)

k#1
2 |Sk | +

∑Rn(t)

k#1
(1 + 2 |Ssk |)1{1,: : : ,n}(g1(Q(Ts

k),µ,U4,k)) +
∑n

i#1

∑

k:Td
k (i)<t

1{1}(h1(Qi(Td
k (i)),µi,U7,k))

[ ]
: (2)

Second, we provide a formal definition of our performance metric: the stability region of a policy. For
each n, given a policy and an arrival rate λ, the stability region of the policy under the arrival rate λ, de-
noted by Γn(λ), is the set of all server rates in Σn for which the process (Q(·),M(·),Z(·)) is positive Harris
recurrent.

We are now ready to state our main negative result. It asserts that within the class of weakly symmetric poli-
cies that we consider, and under some constraints on the memory size and the message rate, the stability region
does not contain all possible rates.

Theorem 2 (Instability of Resource-Constrained Policies).
For any constant λ ∈ (0, 1) and positive sequence {αn}n≥1, there exists a sequence of stability regions {Γn(λ, αn)}n≥1,

where Γn(λ,αn)(Σn for all n ≥ 1, with the following property. Consider a sequence of weakly symmetric memory-based dis-
patching policies, that is, that satisfy Assumption 1, with at most cn ∈ o(log (n)) bits of memory, and with an average mes-
sage rate (see Equation (2)) upper bounded by αn ∈ o(n2) almost surely. Then, for all n large enough, the stability region of
the policies under the arrival rate λ are contained in Γn(λ,αn).

The proof consists of showing that when half of the servers have a sufficiently small service rate εn ∈Θ(e−αn=n),
the total workload of the system diverges, as a function of time, for all n large enough. It also relies heavily on a
combinatorial result (Proposition B.1 in Appendix B) from Gamarnik et al. [7] on the limitations imposed by sym-
metry on a limited memory. The proof is given in Appendix B.

Remark 8. Theorem 2 states that the stability region of a policy is contained in a proper subset of Σn, which de-
pends only on n, the arrival rate λ, and the message rate αn. This means that for all n large enough, and as long
as αn ∈ o(n2), there is at least one vector of processing rates for which the system is unstable under any weakly
symmetric policy with o(log (n)) bits of memory and a message rate that is upper bounded by αn.

Remark 9. The most interesting regime is the one where αn ∈O(n), that is, when we have a constant number of
messages per job. In this regime, when half of the servers have rate εn ∈Θ(1), weakly symmetric policies with
o(log (n)) memory are unstable. In particular, resource-constrained policies become unstable for a significant por-
tion of the possible service rate vectors Σn.

On the other hand, when αn ∈ ω(n), our result requires half of the servers to have rate εn ∈Θ(e−αn=n), which is
exponentially small in αn=n ∈ ω(1). This suggests that when the average message grows faster than n, it is only a
very small portion of the possible service rate vectors that can destabilize all resource-constrained policies.

2.5. Stability vs. Resources Trade-Off
In this subsection, we provide a visual summary of our results on the trade-off between the stability region and
the memory and communication overhead of weakly symmetric dispatching policies.

First, according to Theorem 1, with a memory size of at least %log2(n)& bits and with an arbitrarily small mes-
sage rate, we can obtain a weakly symmetric policy that is always stable (for any service rate vector in Σn). Sec-
ond, Theorem 2 states that weakly symmetric policies with o(log (n)) bits of memory and a message rate of order
o(n2) cannot be always stable. Finally, note that both the join-shortest-queue policy and a policy that sends
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incoming jobs to each server with a probability proportional to the server’s rate can be implemented by querying
all servers at the time of each arrival. These policies require a message rate of order Θ(n2) and no memory, and
they are always stable. The three regimes are depicted in Figure 2.

The only remaining question in this setting is whether stability can be guaranteed with zero communication
overhead and Ω(log (n) bits of memory. In this case, no messages are exchanged, and the dispatcher can never
obtain information about the rate of the servers. As a result, it can only dispatch jobs blindly, and stability fails
for some server rates.

3. Conclusions and Future Work
In this paper, we proposed a simple but efficient dispatching policy that requires a memory of size (in bits) loga-
rithmic in the number of servers and an arbitrarily small message rate, and showed that it has the largest possible
stability region. The key to the stability properties of this policy is the fact that it never chooses the destination of
a job by random sampling of the servers (like the power-of-d-choices algorithm) or by random dispatching of the
job (like Join-Idle-Queue). On the other hand, we showed that when we have a memory size (in bits) sublogarith-
mic in the number of servers and a message rate sublinear in the square of the arrival rate, all weakly symmetric
dispatching policies have a suboptimal stability region.

There are several interesting directions for future research, such as the following, for example:
i. Although policies can have the largest possible stability region using an arbitrarily small message rate and log-

arithmic memory, their delay performance could be arbitrarily bad. We conjecture that the average delay of a poli-
cy is at least inversely proportional to its average message rate per server.

ii. In light of the symmetry assumption in Theorem 2, a natural question is whether the result still holds without
it. In that case, the sampling of servers and dispatching of jobs need not be uniform (as established in Propositions
B.1 and B.2 in Appendix B using the symmetry assumption), and it becomes unclear whether maximal stability is
still impossible in the same regime.

Appendix A. Proof of Theorem 2.1
Let us fix some n and some arbitrary vector of processing rates in Σn. Let µmin and µmax be the smallest and largest proc-
essing rates in the chosen vector, respectively. In particular, note that they are positive.

We will use the Foster–Lyapunov criterion to show that the continuous-time Markov chain (Q(·), I(·)) is positive recur-
rent. First, note that this process has state space Zn

+ × {1, : : : ,n}. Its transition rates, denoted by r·→ ·, are as follows, where
we use ej to denote the jth unit vector in Zn

+:
1. Because incoming jobs are sent to the queue whose ID is stored in memory, each queue sees arrivals with rate

r(q,i)→(q+ei ,i) # λn:

2. Transitions due to service completions occur according to the processing rate of each server, and they do not affect the ID
stored in memory:

r(q,i)→(q−ej,i) # µj1[1,∞)(qj):
3. Spontaneous messages are sent from each server to the dispatcher at a rate equal to αn, but the ID stored in memory

changes only if the sender of the message has a shorter queue:

r(q,i)→(q,j) # αn 1[0,qi−1](qj):
4. Any transitions that do not appear in the above have zero rate.

Figure 2. Resource requirements for stable policies.

Gamarnik, Tsitsiklis, and Zubeldia: Stability, Memory, and Messaging Trade-Offs
8 Mathematics of Operations Research, Articles in Advance, pp. 1–13, © 2021 INFORMS



Note that the Markov process (Q(·), I(·)) on the state space Zn
+ × {1, : : : ,n} is irreducible, with all states reachable from

each other. To show positive recurrence, we define the Lyapunov functions

Ξ1(q, i)¢
2µmax
αn

qi,

Ξ2(q, i)¢
∑n

j#1
q2
j ,

and

Ξ(q, i)¢Ξ1(q, i) +Ξ2(q, i), (A.1)

and note that
∑

(q′, i′)≠(q, i)
Ξ(q′, i′)r(q,i)→(q′ ,i′) <∞, ∀(q, i) ∈ Zn

+ × {1, : : : ,n}:

We also define the finite set

Fn¢ (q, i) ∈ Zn
+ × 1, : : : , n{ } :

∑n

j#1
qj <

λn 1 + 2µmax
αn

( )
+ n + 1

2min {1 − λ,µmin}





: (A.2)

For any state (q, i), we have
∑

(q′, i′)∈Zn
+×{1, : : : ,n}

[Ξ1(q′, i′)−Ξ1(q, i)]r(q,i)→(q′,i′)

# λn
2µmax
αn

( )
− 2µmax

αn
µi1[1,∞)(qi)−

∑n

j#1
2µmax(qi −qj)+

≤ λn
2µmax
αn

( )
−
∑n

j#1
2µmax(qi −qj)+,

(A.3)

and

∑

(q′, i′)∈Zn
+×{1, : : : ,n}

[Ξ2(q′, i′)−Ξ2(q, i)]r(q,i)→(q′,i′) # λn 2qi + 1
( )−

∑n

j#1
µj(2qj − 1)1[1,∞)(qj)

# λn 2qi + 1
( )+

∑n

j#1
µj1[1,∞)(qj)− 2

∑n

j#1
µjqj

≤ λn 2qi + 1
( )+ n− 2

∑n

j#1
µjqj,

(A.4)

where in the last inequality we used that the vector of server rates µ is in Σn, so that

∑n

j#1
µj # n: (A.5)

Combining Equations (A.1), (A.3), and (A.4), for any state (q, i) ∉ Fn, we have
∑

(q′, i′)∈Zn
+×{1, : : : ,n}

[Ξ(q′, i′)−Ξ(q, i)]r(q,i)→(q′ ,i′)

≤ λn 1+ 2µmax
αn

( )
+ n+ 2λnqi − 2

∑n

j#1
[µjqj +µmax(qi −qj)+]

≤ λn 1+ 2µmax
αn

( )
+ n+ 2λnqi − 2

∑n

j#1
µj[qj + (qi −qj)+]

# λn 1+ 2µmax
αn

( )
+ n+ 2λnqi − 2

∑n

j#1
µjmax qi, qj

{ }

# λn 1+ 2µmax
αn

( )
+ n+ 2λnqi − 2

∑n

j#1
µj[qi + (qj −qi)+]

# λn 1+ 2µmax
αn

( )
+ n+ 2λnqi − 2qi

∑n

j#1
µj − 2

∑n

j#1
µj(qj −qi)+
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#(∗)λn 1+ 2µmax
αn

( )
+ n− 2(1−λ)nqi − 2

∑n

j#1
µj(qj −qi)+

≤ λn 1+ 2µmax
αn

( )
+ n− 2(1−λ)nqi − 2µmin

∑n

j#1
(qj −qi)+

≤ λn 1+ 2µmax
αn

( )
+ n− 2min 1−λ,µmin

{ }∑n

j#1
[qi + (qj −qi)+]

# λn 1+ 2µmax
αn

( )
+ n− 2min 1−λ,µmin

{ }∑n

j#1
max qi, qj

{ }

≤ λn 1+ 2µmax
αn

( )
+ n− 2min 1−λ,µmin

{ }∑n

j#1
qj

≤ −1,
where in equality (∗) we used Equation (A.5), and in the last inequality we used the fact that (q, i) ∉ Fn and the definition of the fi-
nite set Fn (Equation (A.2)). Then, the Foster–Lyapunov criterion (Foster [5]) implies the positive recurrence of the Markov chain
(Q(·), I(·)). Finally, because this is true for all server rates in Σn, we conclude that Σn is the stability region of the policy.

Appendix B. Proof of Theorem 2.2
Fix λ, and consider a vector of server rates in Σn, where .n=2/ servers have rate εn > 0. We will show that for any given
λ and for all εn small enough, every resource-constrained dispatching policy that is weakly symmetric (i.e., satisfies As-
sumption 1) overloads the slow servers.

The high-level outline of the proof is as follows. In Subsection B.1, we show that under our weak symmetry assump-
tion, the constraint on the number of bits available implies that the dispatcher treats all servers in a symmetric way, in
some appropriate sense. Then, in Subsection B.2, we combine the results obtained in Subsection B.1 with the bound on
the average message rate to show that jobs are sent to slow servers (i.e., to servers with service rate εn) with a positive
rate that is bounded away from zero. This implies that the total workload of the servers diverges when εn is small
enough, thus completing the proof.

In the proof that follows, we assume that the sequences cn (memory size) and αn (message rate) have been fixed and
are of order o(logn) and o(n2), respectively.

B.1. Local Limitations of Symmetry and Finite Memory
In this subsection, we will show how the constraint of having only o(log (n)) bits of memory affects the distribution of
the sampled servers and the distribution of the dispatched jobs. The results that we provide are corollaries or special
cases of results in Gamarnik et al. [7].

We first note that if the dispatcher has o(log (n)) bits of memory and if n is large enough, then the distribution of the
sampled servers is uniform among all sets of the same size.

Proposition B.1. Let U be a uniform random variable over [0, 1]. For all n large enough, for every memory state m ∈Mn and ev-
ery possible job size w ∈ R+, the following holds. Consider any set of servers S ∈ P({1, : : : ,n}) with |S |∈ o(n). Consider the event

B(m,w;S) # {f1(m,w,U) # S
⋃{i}, for some i ∉ S},

and assume that the conditional probability measure

P · | B(m,w;S)( )
is well defined. Then,

P j ∈ f1(m,w,U) | B(m,w;S)( )

is the same for all j ∉ S.

Proof. This is a special case of proposition 5.1 in Gamarnik et al. [7], noting that although the statement of that proposi-
tion requires |S |≤ 88

n
√

, its proof goes through under the weaker assumption |S |∈ o(n). w

Corollary B.1. Let U be a uniform random variable over [0, 1]. For all n large enough, for every memory state m ∈Mn, for every
possible job size w ∈ R+, and for any set of servers S ∈ P({1, : : : ,n}) with |S |∈ o(n), we have

P( f1(m,w,U) # S) # P( f1(m,w,U) # σ(S)),
for every permutation σ.
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Proof. In order to simplify notation, we omit the dependence of f1 on m and w. Let us fix a set S, and a transposition τ.
If τ(S) # S, then it is trivially true that

P(f1(U) # S) # P(f1(U) # τ(S)):
On the other hand, if τ(S)≠ S, then there exists some i ∈ S such that τ(i) ∉ S. In that case, we have

P(f1(U) # S) # P(f1(U) # S || f1(U)|# |S |)P(| f1(U)|# |S |)
# P(i ∈ f1(U) |{| f1(U)|# |S |} ∩ {S\{i} ⊂ f1(U)})

· P(S\{i} ⊂ f1(U) || f1(U)|# |S |)P(| f1(U)|# |S |)
# P(τ(i) ∈ f1(U) |{| f1(U)|# |S |} ∩ {S\{i} ⊂ f1(U)})

· P(S\{i} ⊂ f1(U) || f1(U)|# |S |)P(| f1(U)|# |S |)
# P(f1(U) # τ(S)),

where in the second to last equality, we used Proposition B.1.
Finally, because any permutation σ can be obtained as a sequence of transpositions, applying the previous argument

iteratively yields

P(f1(U) # S) # P(f1(U) # σ(S)),
for every permutation σ. w

Remark B.1. Although all sets of servers of the same size have the same probability of being sampled, the memory state
and the incoming job size can influence the number of sampled servers.

Similarly, if the dispatcher has o(log (n)) bits of memory, then the distribution of the destination of the incoming job is
uniform (possibly zero) outside the set of sampled servers.

Proposition B.2. Let V be a uniform random variable over [0, 1]. For all n large enough and for every memory state m ∈Mn,
every set of indices S ∈ P({1, : : : ,n}) with |S |∈ o(n), every queue vector state q ∈Qn, every rate vector µ ∈ Rn

+, and every job size
w ∈ R+, we have that

P( f2(m,w, {(qi,µi, i) : i ∈ S},V) # j)

is the same for all j ∉ S.

Proof. This is a special case of proposition 5.2 in Gamarnik et al. [7].

B.2. High Arrival Rate to Slow Servers
In this subsection, we will leverage the results of the previous subsection to show that the total workload in the system

diverges in time.
For every t ≥ 0, let Wn(t) be the total remaining workload in the system at time t.

Lemma B.1. Fix some λ > 0, and suppose that the service rate of .n=2/ servers is equal to some εn > 0. Then, there exists a posi-
tive sequence {bn(λ)}n≥1, which is completely determined by λ (i.e., independent of εn) such that bn ∈Θ(e−αn=n), and

lim inf
t→∞

Wn(t)
t

≥ [bn(λ)− εn]n, a:s:,

for all n large enough.

Proof. Let An(t) be the counting process of arrivals with a job size of at least 1/2, and let us define

p1=2¢P W1 ≥
1
2

( )
:

Because the arrivals are modeled as a renewal process of rate λn, and the job sizes {Wk}∞k#1 are i.i.d. with unit mean, it
follows that An(t) is a renewal counting process with rate λnp1=2 > 0. On the other hand, because the average message
rate (see Equation (2)) is upper bounded by αn almost surely, we have

limsup
t→∞

1
t
∑An(t)

k#1
2 |Sk |≤ αn, a:s:

Combining this with the fact that

lim sup
t→∞

1
t
∑An(t)

k#1
2

αn

λnp1=2

( )
1

|Sk |> αn
λnp1=2

{ } ≤ lim sup
t→∞

1
t
∑An(t)

k#1
2 |Sk | ,
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we obtain

lim sup
t→∞

1
t
∑An(t)

k#1
1

|Sk |> αn
λnp1=2

{ } ≤ λnp1=2
2

:

This in turn implies that

lim inf
t→∞

1
t
∑An(t)

k#1
1

|Sk |≤
αn

λnp1=2

{ } # lim inf
t→∞

1
t
∑An(t)

k#1
1 − 1

|Sk |>
αn

λnp1=2

{ }







≥ lim inf
t→∞

An(t)
t

+ lim inf
t→∞

1
t
∑An(t)

k#1
−1

|Sk |>
αn

λnp1=2

{ }

# λnp1=2 − lim sup
t→∞

1
t
∑An(t)

k#1
1

|Sk |>
αn

λnp1=2

{ }

≥ λnp1=2
2

, a:s:

(B.1)

Let Nεn ⊂ {1, : : : ,n} be the set of servers with service rate εn, which was assumed to have cardinality .n=2/. Let s be a non-
negative integer upper bounded by s∗n¢αn=λnp1=2. Because s∗n ∈ o(n), Corollary B.1 applies, and we obtain

P(Sk ⊂Nεn | |Sk |# s) #
.n=2/
s

( )

n
s

( )

# .n=2/(.n=2/ − 1)⋯ (.n=2/ − s+ 1)
n(n− 1)⋯ (n− s+ 1)

≥ 1
3

( )s
,

for all n large enough, where in the last inequality we used that s∗n ∈ o(n). Because this is true for all s in the given range, we
obtain

P(Sk ⊂Nεn | |Sk |≤ s∗n) ≥
1
3

( )s∗n
,

for all k ≥ 1 and for all n large enough. Combining this with Equation (B.1), we obtain

liminf
t→∞

1
t
∑An(t)

k#1
1{|Sk |≤s∗n , Sk⊂Nεn } ≥

λnp1=2
2

1
3

( )s∗n
, (B.2)

almost surely, for all n large enough.
Let us fix a particular set S that satisfies |S |≤ s∗n, and S ⊂Nεn . For any such set, Proposition B.2 implies

P(Dk ∈Nεn | Sk # S) # P(Dk ∈Nεn |Dk ∈ S, Sk # S)P(Dk ∈ S | Sk # S)
+P(Dk ∈Nεn |Dk ∈ Sc, Sk # S)P(Dk ∈ Sc | Sk # S)

# P(Dk ∈ S | Sk # S) + |Nεn ∩ Sc |
|Sc | P(Dk ∈ Sc | Sk # S)

≥ |Nεn ∩ Sc |
| Sc |

# .n2/− |S |
n− |S |

≥ .n2/ − s∗n
n

≥ 1
3
,

for all n large enough, where in the last inequality we used that s∗n ∈ o(n). Because this is true for every set S with the given
properties, we conclude that

P(Dk ∈Nεn | Sk ⊂Nεn , |Sk |≤ s∗n) ≥
1
3
,
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for all k ≥ 1 and for all n large enough. Combining this with Equation (B.2), we obtain

liminf
t→∞

1
t
∑An(t)

k#1
1{Dk∈Nεn } ≥ liminf

t→∞
1
t
∑An(t)

k#1
1{Dk∈Nεn , |Sk |≤s∗n ,Sk⊂Nεn }

≥ λnp1=2
6

1
3

( )s∗n
, a:s:,

for all n large enough. Note that this is a lower bound on the average rate of arrival of jobs with size at least 1/2 to the servers
with service rate εn. On the other hand, those servers have a total processing rate of εn.n=2/ units of workload per unit of
time. Then, because the total workload of the system is at least as much as the workload of the servers with rate εn, we have

liminf
t→∞

Wn(t)
t

≥ lim inf
t→∞

1
t
∑An(t)

k#1

1
2
1{Dk∈Nεn} − εn

⌊
n
2

⌋

≥ λp1=2
6

1
3

( )s∗n
− εn

[ ]
n,

for all n large enough. This establishes the desired result, with bn(λ) equal to the first term in the bracketed expression
above. w

Lemma B.1 implies that for all n large enough, the total workload in the system increases at least linearly with time, as
long as .n=2/ of the servers have rate εn < bn(λ). In particular, this will happen if εn ∈O(e−αn=n).

Because the above is true for every weakly symmetric policy with o(logn) bits of memory, and with an average mes-
sage rate upper bounded by αn ∈ o(n2) almost surely, it follows that for all n large enough, the stability region of any
such policy is contained in a proper subset Γn(λ,αn) of Σn that excludes service rate vectors for which .n=2/ of the servers
have rate εn < bn(λ).
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