Polar coordinates and double integrals

Old, compressed version of topic 32 notes.

Polar Coordinates
\[x = r \cos \theta, \quad y = r \sin \theta, \quad r = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}(y/x). \]

(\theta is tricky, \(\tan^{-1} \) is in quotes to indicate you need to pick the correct quadrant. Use the picture –see example below.)

Example: (more than one way to represent any point) (The \(x,y \) coordinates are at the top of each column and various \(r,\theta \) representations are below.)

\[
\begin{align*}
(x, y) & \quad (r, \theta) & \quad (r, \theta) & \quad (r, \theta) \\
(1, 0) & \quad (1, 0) & \quad (0, \pi/2) & \quad (2, 0) \\
(0, 1) & \quad (1, \pi/2) & \quad (\sqrt{2}, \pi/4) & \quad (\sqrt{2}, 3\pi/4) \\
(2, 0) & \quad (2, 0) & \quad (\sqrt{2}, 5\pi/4) & \quad (0, \pi/2) \\
(1, 1) & \quad (\sqrt{2}, \pi/4) & \quad (0, -7.2) & \quad (0, 0) \\
(-1, 1) & \quad (\sqrt{2}, 3\pi/4) & \quad (0, \pi/2) & \quad (0, \pi/2) \\
(-1, -1) & \quad (\sqrt{2}, 5\pi/4) & \quad (0, \pi/2) & \quad (0, \pi/2) \\
(0, 0) & \quad (0, \pi/2) & \quad (0, \pi/2) & \quad (0, \pi/2) \\
\end{align*}
\]

See the next pages for examples of graphs of functions in polar coordinates.

Double integral: \(\int \int_R f(x, y) \, dA \)

\(dA \) in polar coordinates: \(\Delta A \approx r \Delta \theta \Delta r \Rightarrow dA = r \, d\theta \, dr = r \, dr \, d\theta \)

Example: Find the mass of the region \(R \) shown if it has density \(\delta(x, y) = xy \)

In polar coordinates: \(\delta = r^2 \cos \theta \sin \theta \).

Limits of integration: (radial lines sweep out \(R \)):

inner (fix \(\theta \)): \(0 < r < 2 \), outer: \(0 < \theta < \pi/3 \).

\[\Rightarrow \text{Mass } M = \int \int_R \delta(x, y) \, dA = \int_{\theta=0}^{\pi/3} \int_{r=0}^{2} r^2 \cos \theta \sin \theta \, r \, d\theta \, dr \]

Inner: \(\int_0^2 r^3 \cos \theta \sin \theta \, dr = \frac{r^4}{4} \cos \theta \sin \theta \Bigg|_0^2 = 4 \cos \theta \sin \theta \)

Outer: \(M = \int_0^{\pi/3} 4 \cos \theta \sin \theta \, d\theta = 2 \sin^2 \theta \Bigg|_0^{\pi/3} = \frac{3}{2} \).

Example: \(I = \int_1^2 \int_0^{\pi/2 \sqrt{x^2+y^2}} \frac{1}{(x^2+y^2)^{3/2}} \, dy \, dx \)
Draw the region.

Limits in polar coordinates:
inner (fix θ): $\sec \theta < r < 2 \sec \theta$, outer: $0 < \theta < \pi/4$.

$\Rightarrow I = \int_{\theta=0}^{\pi/4} \int_{r=\sec \theta}^{2 \sec \theta} \frac{1}{r^3} r \, dr \, d\theta$.

Inner:
$\int_{\sec \theta}^{2 \sec \theta} \frac{1}{r^2} \, dr = -\frac{1}{r} \bigg|_{\sec \theta}^{2 \sec \theta} = 2 \sec \theta = \frac{1}{2} \cos \theta$.

Outer:
$I = \int_{0}^{\pi/4} \frac{1}{2} \cos \theta \, d\theta = \frac{1}{2} \sin \theta \bigg|_{0}^{\pi/4} = \frac{\sqrt{2}}{4}$.

Example: Find the volume of the region above the xy-plane and below the graph of $z = 1 - x^2 - y^2$.

You should draw a picture of this.

In polar coordinates we have $z = 1 - r^2$ and we want the volume under the graph and above the inside of the unit disk.

$\Rightarrow \text{volume } V = \int_{0}^{2\pi} \int_{0}^{1} (1 - r^2) \, r \, dr \, d\theta$.

Inner integral:
$\int_{0}^{1} (1 - r^2) \, r \, dr = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$.

Outer integral:
$V = \int_{0}^{2\pi} \frac{1}{4} \, d\theta = \frac{\pi}{2}$.

Gallery of polar graphs ($r = f(\theta)$)

A point P is on the graph if any representation of P satisfies the equation.

Examples:

Ray: $\theta = \pi/3$
$\Rightarrow r = 2$

Circle centered on 0:
$\Rightarrow r = 2 \sec \theta$

Vertical line $x = 2 \Leftrightarrow r = 2$.

Horizontal line $y = 2 \Leftrightarrow r = 2/\sin \theta$.

\[\begin{align*}
\text{Ray: } &\theta = \pi/3 \\
\text{Circle centered on 0: } &r = 2 \\
\text{Vertical line } &x = 2 \\
\text{Horizontal line } &y = 2
\end{align*} \]
Example: Describe the graph of \(r = 2a \cos \theta \).

First plot as usual.

(On \(\theta = [0, 2\pi] \) graph goes around twice)

Then determine the graph analytically:

\[
\begin{align*}
 r^2 &= 2ar \cos \theta = 2ax. \\
 \Rightarrow x^2 + y^2 &= 2ax. \\
 \Rightarrow (x - a)^2 + y^2 &= a^2.
\end{align*}
\]

This is a circle or radius \(a \) centered at \((a, 0)\).

Note: the nicest range for \(\theta \) is \(-\pi/2 \leq \theta \leq \pi/2\).

Warning: We can use \(r \) negative for plotting. You should never use it in integration.

In integration it is better to make use of symmetry and only integrate over regions where \(r \) is positive.

Cardiod: \(r = a(1 + \cos \theta) \)

Limaçon: \(r = a(1+b \cos \theta) \ (b > 1) \)

Lemniscate: \(r^2 = 2a^2 \cos 2\theta \)

Four leaved rose: \(r = a \sin 2\theta \)
Ellipse (we’ll probably skip this in class):

We will derive a formula from the geometric definition.

Geometry: ellipse = all points so that sum of lengths of distance from the two foci is a given constant.

(To draw: take loop of string and two thumbtacks...)

⇒ ellipse is all points such that $d_1 + d_2 = C$ (C given constant).

Put foci at $(±a, 0)$.

Law of cosines:

\[
\begin{align*}
 d_1^2 &= r^2 + a^2 - 2ar \cos \theta \\
 d_2^2 &= r^2 + a^2 - 2ar \cos(\pi - \theta) = r^2 + a^2 + 2ar \cos \theta
\end{align*}
\]

⇒ $\sqrt{r^2 + a^2 - 2ar \cos \theta} + \sqrt{r^2 + a^2 + 2ar \cos \theta} = C$

Algebra: (I won’t do this in class)

\[
\begin{align*}
 2(r^2 + a^2) + 2\sqrt{(r^2 + a^2)^2 - 4a^2r^2 \cos^2 \theta} &= C^2 \\
 C^2 - 2(r^2 + a^2) &= 2\sqrt{(r^2 + a^2)^2 - 4a^2r^2 \cos^2 \theta} \\
 C^4 - 4C^2(r^2 + a^2) + 4(r^2 + a^2)^2 &= 4((r^2 + a^2)^2 - 4a^2r^2 \cos^2 \theta) \\
 -16a^2r^2 \cos^2 \theta + 4C^2r^2 &= C^2(C^2 - 4a^2) \\
 4r^2(C^2 - 4a^2 \cos^2 \theta) &= C^2(C^2 - 4a^2)
\end{align*}
\]

(Note, this implies we must have $C > 2a$, as is obvious from the geometric definition of the ellipse.)