18.03: Existence and Uniqueness Theorem
Jeremy Orloff

Theorem (existence and uniqueness)

Suppose \(f(t, y) \) and \(\frac{\partial f}{\partial y}(t, y) \) are continuous on a rectangle \(D \) as shown. Then we can choose a smaller rectangle \(R \) (as shown) so that the IVP

\[
\frac{dy}{dt} = f(t, y(t)), \quad y(t_0) = y_0
\]

has a unique solution defined on \([t_0 - a, t_0 + a]\) whose graph is entirely inside \(R \).

The proof proceeds in a series of steps. Some of these steps are technical – I’ll try to give a sense of why they are true. The key steps are the definition of the contraction map \(T \) (step (3)) and the use of \(T \) in Picard iteration (step (8)).

(1) Let \(M = \max_D |f(t, y)| \) and \(L = \max_D |\frac{\partial f}{\partial y}(t, y)| \).

The mean value theorem \(\Rightarrow f(t, y_2) - f(t, y_1) = \frac{\partial f}{\partial y}(t, c)(y_2 - y_1) \) (for some \(c \) between \(y_1 \) and \(y_2 \)). \(\Rightarrow |f(t, y_2) - f(t, y_1)| < L|y_2 - y_1| \) (Lipschitz condition).

(2) **Choosing the rectangle** \(R \)

Choose \(a < \min\left(\frac{b}{M}, \frac{1}{2L}\right) \). We will use this in steps (3) and (5).

(3) **The operator** \(T \)

Let \(Y \) be the space of all functions \(y \) which are continuous on \([t_0 - a, t_0 + a]\) and whose graph is entirely inside \(R \). For any \(y \in Y \) define

\[
Ty = z(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds.
\]

We note a number of easy facts about \(T \).

(a) \(Ty = z(t) \) is well defined on \([t_0 - a, t_0 + a]\). (proof: \((s, y(s)) \) is in \(R \), so the integrand \(f(s, y(s)) \) is defined and continuous.)
(18.03: Existence and Uniqueness Theorem)

(b) \(z(t) \) is continuous. (proof: trivial since both \(y \) and \(f \) are continuous.)

(c) The graph of \(z(t) \) is entirely in \(R \).

proof: \(|z(t) - y_0| = \left| \int_{t_0}^{t} f(s, y(s)) \, ds \right| \leq M |t - t_0| \leq Ma < b. \) (The last inequality follows from the choice of \(a \) in step (2).)

Facts a-c show \(T \) maps the space \(Y \) into itself.

(d) \(z'(t) = f(t, y(t)) \) (proof: fundamental theorem of calculus).

(e) Definition: the function \(y \in Y \) is a fixed point of \(T \) means \(Ty = y \).

Claim: \(y \) is a solution to the IVP \(\iff \) \(y \) is a fixed point of \(T \).

Proof: Suppose \(y \) is a solution, i.e., \(y(t_0) = y_0 \) and \(y'(t) = f(t, y(t)) \). Then

\[
Ty = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds
\]

\[
= y_0 + \int_{t_0}^{t} y'(s) \, ds = y_0 + y(s)|_{t_0}^{t} = y(t)
\]

So \(y \) is a fixed point of \(T \).

Conversely, suppose \(y \) is a fixed point, then \(y = Ty = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds \).

\[\Rightarrow y(t_0) = y_0 \quad \text{and} \quad y' = f(t, y(t)). \] I.e. \(y \) satisfies the IVP. QED

The claim shows that proving existence and uniqueness is equivalent to proving that \(T \) has a unique fixed point. (This is proved in (8) and (9) below.)

(4) **The metric on \(Y \)**

For \(y_1 \) and \(y_2 \) in \(Y \) define

\[
\delta(y_1, y_2) = \max_{[t_0-a, t_0+a]} |y_1(t) - y_2(t)|.
\]

(a) \(\delta(y_1, y_2) = 0 \iff y_1 = y_2 \) \ ((proof: trivial).

(b) \(\delta \) satisfies the triangle inequality: \(\delta(y_1, y_2) + \delta(y_2, y_3) \geq \delta(y_1, y_3) \) \ (proof: not hard).

(c) \(\delta \) tells how to measure ’closeness’ between ’points’ of \(Y \).

(d) \(Y \) has no ’holes’.

Formally: \(Y \) is a complete metric space.

Informally: Complete means all Cauchy sequences converge.

Analogy: On the real line \(R \) the sequence \(1 + \frac{1}{2}, 1 + \frac{1}{3}, 1 + \frac{1}{4}, \ldots \) converges to 1.

However, in \(R - \{1\} \) the sequence doesn’t converge. This is because \(R - \{1\} \) has a ’hole’ at 1.

For us it is enough to know that if the sequence \(y_0, y_1, \ldots \) satisfies \(\sum_{n=1}^{\infty} \delta(y_{n+1}, y_n) < \infty \) then the sequence converges, i.e., \(\lim_{n \to \infty} y_n = y \) exists.

(Picture: each step from \(y_0 \) to \(y_1 \) to \(y_2 \) etc gets smaller in such a way that the total distance is finite.)
Completeness is not hard to show. It does require a careful \(\epsilon - \delta \) proof.

(5) **Claim:** \(\delta(Ty_1, Ty_2) \leq \frac{1}{2}\delta(y_1, y_2) \).

Proof:

\[
|Ty_1(t) - Ty_2(t)| = \left| \int_{t_0}^{t} f(s, y_1(s)) - f(s, y_2(s)) \, ds \right|
\leq \int_{t_0}^{t} |f(s, y_1(s)) - f(s, y_2(s))| \, ds
\leq L \int_{t_0}^{t} |y_1(s) - y_2(s)| \, ds \quad \text{(Lipschitz condition)}
\leq L\delta(y_1, y_2) \int_{t_0}^{t} ds \quad \text{(pull out max\((y_1(s) - y_2(s)) \))}
\leq L\delta(y_1, y_2)(t - t_0) \leq \delta(y_1, y_2) L \cdot a < \frac{1}{2}\delta(y_1, y_2) \quad \text{QED}
\]

The last inequality uses the choice of \(a \) in step (2).

Note: since \(T \) shrinks distances it is called a **contraction mapping**.

By way of analogy let \(A : [0, 1] \rightarrow [0, 1] \) by the formula \(A(x) = \frac{1}{2}(1 - x) \). It’s easy to see \(|A(x_1) - A(x_2)| = \frac{1}{2}|x_1 - x_2| \), so \(A \) is a contraction mapping. If you start with the whole interval \([0, 1]\) and repeatedly apply \(A \) you get a sequence of intervals \([0, 1], [0, 1/2], [1/4, 1/2], [1/4, 3/8]\). These intervals get smaller and smaller, shrinking down to the fixed point \(x = 1/3 \).

(6) **Claim:** \(T \) has at most one fixed point.

Proof: Suppose there were two different fixed points \(y_1 \) and \(y_2 \). Then since \(Ty_j = y_j \) we get \(\delta(Ty_1, Ty_2) = \delta(y_1, y_2) \). But, this contradicts (5) where we saw \(\delta(Ty_1, Ty_2) \leq \frac{1}{2}\delta(y_1, y_2) \).

(7) If the sequence \(y_0, y_1, y_2, \ldots \) converges to \(y \) then \(Ty_0, Ty_1, Ty_2, \ldots \) converges to \(Ty \).

Formally: \(T \) is a continuous map of \(Y \) to itself.

(8) **Picard iteration**

Start with \(y_0(t) = y_0 \). Let \(y_1 = Ty_0, y_2 = Ty_1, \ldots, y_{n+1} = Ty_n = T^n y_0 \).

Claim: the sequence \(y_0, y_1, \ldots \) converges.

Proof:

\[
\delta(y_2, y_1) = \delta(Ty_1, Ty_0) \leq \frac{1}{2}\delta(y_1, y_0)
\]

Likewise, \(\delta(y_3, y_2) = \delta(Ty_2, Ty_1) \leq \frac{1}{2}\delta(y_2, y_1) \leq \frac{1}{4}\delta(y_1, y_0) \)

Generally, \(\delta(y_{n+1}, y_n) \leq \left(\frac{1}{2} \right)^n \delta(y_1, y_0) \)

\[
\Rightarrow \sum_{n=0}^{\infty} \delta(y_{n+1}, y_n) \leq \delta(y_1, y_0) \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n .
\]

Since this last sum converges the completeness of \(Y \) proves the claim.

(9) Take the sequence from (8) and let \(\lim_{n \rightarrow \infty} y_n = y \).

Claim: \(y \) is a fixed point of \(T \).

Proof: Since \(y = \lim T^n y_0 \) we have \(Ty = \lim T^{n+1} y_0 = y \). QED
Example: (Picard iteration) Consider the IVP $y' = y, \quad y(0) = 1$.

Picard iteration gives $y_0(t) = 1$.

$$y_1(t) = y_0 + \int_0^t 1 \, ds = 1 + t.$$

$$y_2(t) = y_0 + \int_0^t 1 + t \, ds = 1 + t + \frac{t^2}{2}.$$

\Rightarrow In this case Picard iteration leads to the power series for e^t.