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Gravity waves in water present many interesting phenomena that are not im-
mediately intuitive. Certain applied mathematics and physics concepts that
arise throughout the study of gravity waves, such as the method of stationary
phase, can be used to analyze and explain a variety of situations. This paper
discusses some of the basic mathematical concepts of wave analysis, and then
applies these concepts to gravity waves in water. In particular, this paper
works through the derivation of the angle that confines the wake behind a
moving boat on deep water, known as the Kelvin wedge. Behavior of the
waves near the border of this wake is also discussed. Finally, an overview is
given of two related wedge problems.

1 An Introduction to Waves

1.1 A Monochromatic Wave

For a preliminary understanding of the behavior of waves, we investigate
their behavior in a single dimension. In particular, we look at waves on a
fluid interface, such as a surface of water. These waves are dispersive, which
means that wave velocity depends on wavelength. There is thus a relationship
between the velocity c, the wave vector k, and the angular frequency ω of
the wave:

c = ω
k

The angular frequency is defined as ω = 2π/τ , and the wave vector is defined
as k = 2π/λ. The above expression is equivalent to writing
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c = λ
τ
.

A one-dimensional, monochromatic (having a single wavelength and fre-
quency) sinusoidal wave ζ, propagating in the x direction, can be expressed
in complex variables as follows:

ζ = |ζk|eiχkei(kx−ωt)

The amplitude of the wave is represented by |ζk|eiχk , which can be complex,
but the origin is generally chosen such that the phase shift χk vanishes,
leaving us with a real amplitude.

1.2 Carrier Waves

More complicated waves can be represented as a sum of monochromatic
waves. If the waves differ only slightly in wave vectors, they will form a
beat pattern. If, for example, two waves with wave vectors k1 and k2 close
to a reference ko interact, the resulting wave can be represented as

ζ = 2ζo cos (∆kx−∆ωt)ei(kox−ωot)

for wave vectors and angular frequencies

k2,1 = ko ±∆k, ω2,1 = ωo ±∆ω.

The resulting carrier wave moves with a group velocity

cg =
(

dω
dk

)
k=ko

.

In the case of gravity waves on deep water, ω ∼
√
k (discussed further in

section 2.1), which implies

dω
ω

= dk
2k

cg = dω
dk

= ω
2k

= 1
2
c.

Thus, in the case of gravity waves on deep water, the crests of the carrier
wave move twice as fast as the crests of the component monochromatic waves.
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1.3 Spacial Evolution of Carrier Waves

The sum of waves in a group can be represented as

ζ =
∑
k ζke

iχkei(kox−ωot)

for a phase angle χk that varies with x and t:

χk{x, t} = ∆kx−∆ωt.

We can expand this around ω in powers of k:

χk{x, t} = {x−
(
dω
dk

)
o
t}∆k − 1

2

(
d2ω
dk2

)
o
t(∆k)2 − . . .

With the expression for the group velocity in section 1.2, this becomes

χk{x, t} = (x− cg,o)∆k − 1
2

(
d2ω
dk2

)
o
t(∆k)2 − . . .

The maximum amplitude of the group will occur when the waves are as close
as possible to being completely in phase with each other. This occurs when
the phase is stationary with respect to changes in k:

∂χk
∂(∆k)

= 0

If we use the method of dominant balance and ignore higher terms in the
Taylor expansion, the derivative becomes

∂χk
∂(∆k)

= x− cg,o = 0

x = cg,o

Our dominant balance holds for a range of wavevectors that makes the second
term small:

(∆k)2 = 1(
dcg
dk

)
o
t

∆k = k2 − k1 =
((

dcg
dk

)
o
t
)−1/2

The velocities of the leading and trailing edges of the group are thus cg,1 and
cg,2. If we define the width of the group as
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L(x = 0, t) ≈ 1
k2−k1

then the rate of spreading of the group is

dL{t}
dt

= |cg,2 − cg,1| ≈ (k2 − k1)|dcg
dk
|.

For gravity waves in deep water, the group velocity decreases with in-
creasing wave vector:

dcg
dk
< 0

This implies that for large t, the wavelengths at the front of the wake are
longest, as shown in Figure 1.

Figure 1: A dispersive wave group on a fluid interface that (a) starts as
a Gaussian at time t = 0. (b) After traveling for some distance, there is
a distribution of wavelengths over the length of the group. In this figure,
dcg
dk

> 0, such that the longer wavelengths are near the back of the wake.
This behavior is the opposite of that observed in deep water waves. [1]

2 Gravity Waves

2.1 Deep Water

The behavior of gravity waves depends on the boundary conditions applied to
the problem. Boundary conditions can include restrictions on the wavelength,
frequency, amplitude, and water depth, among other things. In this case, we
are working up to the derivation of the Kelvin wedge, which is a phenomenon
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associated with ships in deep water. Thus, in this section we will primarily
discuss gravity wave groups with a small amplitude compared to wavelength
and confined to the surface of deep water. Mathematically, this can be
expressed as

|ζ| << λ << d

for a water depth d.
Working through the solution for these boundary conditions yields the

following dispersion relation [1]:

ω2 = gk

The important part of this result, which is critical for the Kelvin wedge
derivation, is the scaling relation ω ∼

√
k. The velocity of each component

of the wave group is thus

c = ω
k

=
√

g
k

=
√

gλ
2π

.

As discussed in section 1.2, this implies that the group velocity is half this:

cg = 1
2
c = 1

2

√
gλ
2π

.

Working through the boundary condition mathematics gives the following
form of for the vertical displacement of the wave [1]:

ζ = ka
iω
ei(kx−ωt)

for some real, non-time-dependent coefficient a. The physically significant
part of this expression is the real part:

Reζ = −ka
ω

sin (kx− ωt)

Thus, the wave is sinusoidal. Furthermore, according to our analysis in
section 1.3, after the wave group has spread, the wavelength of the different
parts of the group will be unequal. For gravity waves on deep water, the
longer wavelengths will be at the leading edge of the wave group. When a
storm creates a disturbance far out at sea, the first waves to reach the shore
will have a longer wavelength than those that appear later on. [1]
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2.2 Shallow Water

For the case of shallow water waves, the dispersion relation is instead

ω2 = gktanh(kd)

for a water depth d. When d is large, tanh(kd) asymptotes to 1, giving the
dispersion relation for deep water in section 2.1. However, when d is very
small, we use a linear approximation of the hyperbolic tangent: tanh(kd) ≈
kd. Our dispersion relation is thus

ω2 = gdk2.

The important difference here is that the relation between the angular fre-
quency and wave vector is now ω ∼ k instead of ω ∼

√
k. For this reason,

the Kelvin wedge derivation below does not apply to waves on shallow water.

3 The Kelvin Wedge

The Kelvin wedge, first investigated by Lord Kelvin, is a phenomenon relating
to the size of the wake that forms behind ships moving in deep water. We
consider a ship moving to the left at a speed U , because by convention, wave
groups travel in the positive x direction. Ships form a wave crest at the bow
and a wave crest at the stern, leading to wave crests at a variety of angles α,
as shown in Figure 2. Note that because the group velocity is half the phase
velocity in this case, there can be no wave amplitude in front of the boat,
despite appearances in the diagram. Since the bow sits at a wave crest, the
speed of the wave crest at an angle α to the boat is found using trigonometry
to be

cα = U sinα.

Using the dispersion relation for gravity waves in deep water, discussed in
section 2.1, we can relate the wave vector to α:

cα =
√

g
kα

= U sinα

k = g
U2 sin2 α

We now use the method of stationary phase to analyze the phase angle
χα. The phase angle is given by
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Figure 2: Schematic representation of a ship’s bow, O, moving to the left
at speed U . The ship creates wave crests at angles α from the bow. Wave
interference is considered at an arbitrary point P at an angle β and distance
r away from the bow. [1]

χα = ~kα · ~r.

The phase angle changes rapidly over most of its domain, so the contributions
of various waves cancel out in most places. The most significant contributions
come from the area where the phase angle is changing negligibly with respect
to the wave vector, when the derivative of the phase angle is equal to zero:

dχα
dkα

= −r sin (α− β)− rkα sin (α− β) dα
dkα

We can substitute in the derivative of kα:

dkα
dα

= −2 cosα g
U2 sin3 α

dkα
kα

= −2 cosα gdα
U2 sin3 α

U2 sin2 α
g

= −2 dα
tanα

kα
dα
dkα

= −1
2

tanα

We plug this back into the expression for the derivative of the phase angle,
and set the derivative equal to zero. This results in angles αo around which
there is constructive interference:
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0 = −r sinαo − β + 1
2

tanαor cosαo − β

sinαo − β = 1
2

tanαo cosαo − β

tanαo − β = 1
2

tanαo

We can simplify this expression further using the following two trigonometric
identities:

tan Θ1 + Θ2 = tan Θ1+tan Θ2

1−tan Θ1 tan Θ2

tan (−β) = − tan β

Applying these identities, we can work through the following algebra:

tanα+tan−β
1−tanα tan−β = 1

2
tanαo

tanα−tanβ
1+tanα tanβ

= 1
2

tanαo

2(tanαo−tanβ)
tanαo

= 1 + tanαo tan β

2− 2 tanβ
tanαo

= 1 + tanαo tan β

1 = tanαo tan β + 2 tanβ
tanαo

= tan β
(
tanαo + 2

tanαo

)
1 = tan β

(
tan2 αo+2

tanαo

)
tan β = tanαo

2+tan2 αo

This result gives the angles β for which there is constructive interference (a
wake behind the boat). There is no dependence on the distance r from the
boat, the speed U of the boat, or any other parameters that relate to the
boat, so this should hold for all boats at all uniform speeds in deep water!
We can plot these angles over the full range of values of αo, because the
behavior is periodic. Figure 3 shows

β = tan−1
(

tanαo
2+tan2 αo

)
plotted over the values of αo between −90◦ and +90◦.

Figure 3 graphically demonstrates the result of the Kelvin wedge: there
is a maximum value of β beyond which constructive interference does not
occur in the wake. Doubling this maximum value of β gives the angular
measure of the wake! We can calculate the size of the wake precisely. Note
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Figure 3: The range of angles β for which constructive interference occurs
behind a boat moving in deep water. The allowed angles for constructive
interference are from 0 to nearly 20◦ to either side of the boat’s travel direc-
tion. Precise calculation shows this maximum deflection angle to be around
19.5◦.

that the maximum value of β and of tan β occur at the same value of αo, so
the derivative of tan β is taken to simplify the algebra.

0 = d(tanβ)
dαo

= sec2 αo
2+tan2 αo

− tanαo
(2+tan2 αo)2

(2 tanαo) sec2 αo

1
2+tan2 αo

= 2 tan2 αo
(2+tan2 αo)2

2 + tan2 αo = 2 tan2 αo → 2 = tan2 αo → tanαo =
√

2

αo = ± tan−1
√

2 ≈ ±54.74◦

The ± is introduced because we took the square root of the tangent. The
size of half of the wake is the corresponding value of β. At αo = tan−1

√
2,
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tan β =
√

2
2+2

=
√

2
2∗2 = 1

2
√

2

β = tan−1
(

1
2
√

2

)
≈ 19.47◦

Thus, the size of the Kelvin wedge is

2 tan−1
(

1
2
√

2

)
≈ 38.94◦ !

This angular measure is the wake size behind an idealized boat moving
in a straight line on deep water. The wedge shape can also be seen when you
drag your finger through a bathtub at constant velocity, or when you dip your
finger into a stream, allowing the water to flow past it [1]. An illustration of
multiple wave crests forming a Kelvin wedge due to a source O can be seen
in Figure 4.

Figure 4: Wave crests in a Kelvin wedge. [1]

While this result is remarkable and non-intuitive, it is useful to consider
the assumptions made in this calculation. It was assumed that the only
sources of waves were from either a crest at the bow of the ship, or a trough
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at the stern of the ship. If waves are generated from both sources, as is usually
the case, two overlapping Kelvin wedges will be seen. Furthermore, in a real
world situation, some waves can be generated by the sides of a ship, causing
further overlap of Kelvin wedge shapes. It should also be noted that we
assumed that the amplitude of waves was small compared to the wavelength,
as discussed in section 2.1. Should the amplitude become comparable to
the wavelength, other non-linear phenomena will complicate the situation
somewhat. [1] However, the Kelvin wedge can still be seen frequently in the
real world.

4 Caustics and the Airy Function

While our above analysis works well for the area within the Kelvin wedge,
it breaks down near the border of the wedge due to large local variations
in wavenumber [2]. We thus have a transition region, known as a caustic,
between an area with multiple wave groups and an area with no wave groups.
Caustics occur at the edge of an area of trapped waves such as the Kelvin
wedge. To describe the behavior of waves at this transition region, we must
use the Airy Function.

We begin by defining the phase function of a typical wave group as

ψ(k) = ω(k)− kx/t

for a wave group described by

ζ =
∫∞
−∞ F (k)exp[itψ(k)]dk =

∫∞
−∞ F (k)exp[i(kx− ω(k)t]dk.

We can Taylor expand this integral around kc, the wavenumber associated
with the carrier waves at the caustic. The integral becomes

ζ =∫∞
−∞ F (kc)exp{it[ψ(kc)+(k−kc)ψ′(kc)+ (k−kc)2ψ′′(kc)

2
+ (k−kc)3ψ′′′(kc)

6
+ . . .]}dk.

At the caustic, the group velocity, U = ω′(k), has a minimum group velocity
associated with a particular wavenumber kc [2], at which point

U ′(kc) = ω′′(kc) = 0⇒ ψ′′(kc) = 0.
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We can thus remove the second derivative term, leaving us with the approx-
imation

ζ ≈
∫∞
−∞ F (kc)exp{it[ψ(kc) + (k − kc)ψ′(kc) + (k−kc)3ψ′′′(kc)

6
]}dk.

with an error on the order of |k − kc|4 in the exponent.
To evaluate this integral, we must use the Airy function:

Ai(X) = 1
2π

∫∞
−∞ exp[i(sX + 1

3
s3)]ds

The problem now lies in reducing our integral to a form in which we can use
the Airy function. We do this using the following substitution:

s3

3
= t (k−kc)3ψ′′′(kc)

6

s = (k − kc)(tψ′′′(kc)/2)1/3

(k − kc) = s(tψ′′′(kc)/2)−
1
3

This simplifies the cubic term to is3/3. We can then simplify the linear term
by defining X as follows:

sX = t(k − kc)ψ′(kc)

X = t(k − kc)ψ′(kc) (tψ′′′(kc)/2)1/3

k−kc = tψ′(kc)[tψ
′′′(kc)/2]1/3

The linear term is now isX. To change the variables of our integral, we take
the derivative of s:

ds
dk

= (tψ′′′(kc)/2)1/3

dk = (tψ′′′(kc)/2)−1/3ds

Thus, our integral has the form

ζ =
∫∞
−∞ F (kc)exp{itψ(kc) + isX + is3/3}(tψ′′′(kc)/2)−1/3ds.

We can extract constant terms to simplify further:

ζ = F (kc)(tψ
′′′(kc)/2)−1/3exp[itψ(kc)]

∫∞
−∞ exp{isX + is3/3}ds.
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We have now reduced our integral to a form where we can use the Airy
function, leaving us with

ζ = F (kc)(tψ
′′′(kc)/2)−1/3exp[itψ(kc)]Ai(X)

for

X = tψ′(kc)[tψ
′′′(kc)/2]1/3.

This analysis gives the general shape of how wave amplitude falls off at
the edge of the Kelvin wedge (or any caustic boundary). The general shape
of the Airy function, which in our case is amplified by the prefactors given
in our form for ζ, is shown in Figure 5. Interestingly, the Airy function
describes many phenomena in both water waves and other wave problems,

Figure 5: The general form of the Airy function, Ai(X). Beyond the Kelvin
wedge and other caustics, wave amplitude falls off in a manner described by
the Airy function.
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such as optics. For example, the intensities of of primary, secondary, and
tertiary rainbows are related to the relative peak amplitudes of the peaks of
the Airy function [3].

5 Related Wedge Problems

There are many problems related to the waves created by “forcing effects”
in both water and the air. The Kelvin wedge is the result of the specific case
of a non-oscillating source traveling at a constant velocity in deep water, but
all of these specifications can be altered to produce other situations. This
section presents an overview of two problems investigated by M. J. Lighthill,
but does not work through complete derivations of the results.

5.1 Gravity Waves from a Traveling Oscillating Source

One modification that can be made to the Kelvin wedge problem is to con-
sider an oscillating source. Instead of a boat that steadily generates the crest
of a wave at its bow, we consider a ship oscillating vertically with frequency
σo. The Kelvin wedge is a special case of this problem where σo = 0.

For this problem, we will consider the gravity waves in reciprocal space,
in which a plane wave can be described as

φ = φoexp{i(−σt+ ~k · ~r)} = φoexp{i(−σt+ lx+my + nz)}.

The curves corresponding to different wave numbers are plotted in recipro-
cal space in Figure 6. The surfaces associated with each frequency can be
expressed by

(σo + Ul)4 = g2(l2 +m2)

for speed U , gravitational acceleration g, and the x and y components of the
wave vector in reciprocal space, l and m [4]. Since the plane wave is confined
to the horizontal plane, there is no vertical component n in the equation. The
form of the equation suggests two surfaces corresponding to each frequency,
as seen in Figure 6. The wedge semi-angles that correspond to each surface
are shown in Figure 7. This graph reveals that if the Kelvin wedge problem
is modified to allow an oscillating source, a large range of wedge angles can
be seen! The special case of the Kelvin wedge is at the intersection with the
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Figure 6: The curves associated with wave vectors from sources oscillating
at various frequencies σo. Two curves are associated with each wave vector.
The axes are U2l/g and U2m/g, the ratios between speeds, the x and y
components of the wave vector in reciprocal space, and the gravitational
acceleration. Frequencies are marked next to the curves. [4]

vertical axis, where Uσo/g = 0. At this point, the semi-angle is ≈ 19.47◦, as
discussed in section 3.
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Figure 7: The semi-angles corresponding to the wedges produced by a source
traveling and oscillating with frequency σo. The case of the Kelvin wedge
corresponds to the point where Uσo/g=0. [4]

5.2 Gravity Waves from a Vertically Moving Source

Another interesting wedge forms when the source, instead of moving along
the surface of a body of water, moves vertically through the water. This case
could describe the movement of a bubble or low-density material rising to
the surface of water. The same analysis could apply to a thermal: a pocket of
warm air rising through the atmosphere. When the uniformly-rising object
moves, it creates internal gravity waves [4]. The surface of constant phase
for this situation forms a wedge shape, as shown in Figure 8.
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Figure 7: The surface of constant phase for the internal gravity waves created
by an object moving uniformly upward through a uniform medium. The
solid lines represent the shape of the theoretical curve, while the points are
experimental data. [4]
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6 Conclusion

The problems discussed in this paper are applications of the applied physics
of waves as well as some of the mathematical methods used to analyze such
problems. Some basic terminology was reviewed, and then the cases of grav-
ity waves on deep and shallow water were considered. The method of station-
ary phase was used to derive the Kelvin wedge, a fascinating result describing
the confinement of the waves produced a ship in deep water. The waves were
found to be confined to a wedge of approximately 38.94◦. The border of this
region is a caustic, at which the wave amplitude decays according to the Airy
function. Finally two other wave problems relating to wedges were discussed.

Similar mathematical concepts can be used to explain the behavior of
many complex situations, not only for gravity waves but for problems re-
lating to eddies, drag flow, and high-atmosphere winds. Further interesting
problems can be found in all of the references listed below. The problems
discussed in this paper are just a few of the many problems in mathematics
applied to fluids.
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