All-Optical Processing for Ultrafast Data Networks Using Semiconductor Optical Amplifiers

Jade P. Wang

Ph.D. Thesis Defense

Thesis Committee: Professor Erich P. Ippen, Dr. Scott A. Hamilton, Professor Rajeev J. Ram
Today’s Data Networks

- Transmission over optical fiber
 - Wavelength division multiplexing (WDM): multiple wavelength channels per fiber
 - Erbium-doped fiber amplifiers (EDFAs): multi-wavelength amplification
 - Electronic regenerators with O/E/O conversion & demultiplexing
- Electronic routers with O/E/O conversion & demultiplexing

- WDM: 80+ channels, 10-40 Gb/s per channel
- EDFA: 60-80 km spacing
- Regenerator: Every 2-3 spans (120-240 km)
- Routers: 100+ ports with 1+ Tb/s throughput
Increasing Demand for Capacity

U.S. Internet Traffic*

Year

PB/month
0 100 200 300 400 500 600 700

*Odlyzko et al., “Internet Growth Trends and Moore’s Law”
http://www.dtc.umn.edu/mints/igrowth.html

Global Projected Traffic Growth**

PB/month
0 10,000 20,000 30,000

**Cisco, “The Exabyte Era”, 2008

- Steady growth estimated at 50%-100% / year
- Increasing video traffic (YouTube, IPTV, Video on Demand)
- High-end users: storage networks, data centers, grid computing, scientific processing
- Growing number of internet users around the world

Increasing channel bit rates and number of channels
Outline

• Motivation/Background
• Ultrafast all-optical logic gates
• Routing: 40-Gb/s all-optical header processing
• Performance optimization of optical logic gates
• Regeneration
• Future SOA-MZI gates
• Conclusion
Motivation/Background: Why all-optical processing?
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion
Optical Signal Processing

- Ultrafast performance
 - Capable of 100-Gb/s bitwise switching, 640-Gb/s wavelength conversion
- Channel-rate processing
 - No demultiplexing to lower bit-rates
- Fewer O/E/O conversions
- Network flexibility
 - Payload transparency to bit rate & modulation format

Decrease size, power, weight → COST
Outline

• Motivation/Background: Routing and Regeneration
 • Ultrafast all-optical logic gates
 • Routing: 40-Gb/s all-optical header processing
 • Performance optimization of optical logic gates
• Regeneration
• Future SOA-MZI gates
• Conclusion
Routers: All Electronic

- **Challenges with increasing bit rates:**
 - Limited electronic switch speeds (10-40 Gb/s)
 - Requires multiple lower-speed channels
 - Duplication of low-speed O/E/O, buffers, switches
 - Requires conversion and storage of every bit
Routers: All-Optical Header Processing

- **Router functions:**
 - Routing
 - Forwarding
 - Contention resolution
 - Buffering
 - Switching

- **All-optical payload path:**
 - High-speed optical switching capable of channel-rate processing
 - Reduce O/E/O conversions (reduce size, weight, and power consumption)
 - Offers payload transparency for flexible networking

- **All-optical packet processing:**
 - Reduce packet processing latencies
 - Minimize buffering requirements
The Need for Regeneration

- Linear and nonlinear effects in optical fiber
- Dispersion compensation cancels 2nd order dispersion
- Amplifiers compensate for loss
- Amplitude variation
- Pulse shape distortion
- Timing jitter (not simulated)
 - Due to amplifier and transmitter noise
Electronic and Optical Regeneration

- All-optical regenerator
 - High-speed optical switching capable of channel-rate processing
 - Reduce O/E/O conversions
 - Size, weight, power improvements
Challenges for All-Optical Signal Processing

• Challenges
 – Electronic technology more mature and offers more functionality than optical switches
 – Optical switches still costly compared with electronic techniques

• This thesis
 – Demonstrate increased functionality for all-optical processing
 – Improve practicality of all-optical logic gates
Outline

• Motivation/Background

• **Ultrafast all-optical logic gates**

• Routing: 40-Gb/s all-optical header processing

• Performance optimization of optical logic gates

• Regeneration

• Future SOA-MZI gates

• Conclusion
Ultrafast Interferometric All-Optical Switching

- Interferometric switch: change index of refraction (phase)
- Ultrafast performance
- Spatial switching

Fiber
- Weak nonlinearity (10^{-16} cm²/W)
- Fast response (~fs)
- No integration – long lengths required

Photonic crystal fiber, highly nonlinear fiber
- Fast, strong nonlinearity
- Integration potential?

Semiconductor optical amplifier
- Strong nonlinearity (~10^{-12} cm²/W)
- Slow recovery time (~100 ps)
- Potential for integration (semiconductor processes)

Quantum dot SOA
- Fast recovery time (~10 ps)
- Strong nonlinearity?
SOA Operation

- Interaction of optical waves with SOA carriers
 - Stimulated recombination of electrons and holes creates gain
 - Optical waves change carrier distribution
 - Changes gain and index of refraction \rightarrow optical switching
SOA Operation

- Interaction of optical waves with SOA carriers
 - Stimulated recombination of electrons and holes creates gain
 - Optical waves change carrier distribution
 - Changes gain and index of refraction \rightarrow optical switching

- How does the incident light affect the carrier density?
 - Phenomenological model
 - Focus on time scales \sim 10 ps (100 Gb/s)
A Phenomenological Model

Key assumptions:

\[\text{gain} = a(N - N_o) \]
\[\text{index} = \alpha \cdot \text{gain} \]

Rate equation describing carrier evolution:

\[
\frac{\partial N}{\partial t} = D \nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} - \frac{a(N - N_o)}{\hbar \omega} |E|^2,
\]

- Carrier diffusion
- Spontaneous recombination
- Stimulated recombination
- Current injection

V = volume
N = carrier density

A Phenomenological Model

Key assumptions:

\[\text{gain} = a(N - N_o) \]
\[\text{index} = \alpha \cdot \text{gain} \]

Rate equation describing carrier evolution

\[\frac{\partial N}{\partial t} = D \nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} - \frac{a(N - N_o)}{\hbar \omega} |E|^2, \]

Wave equation describing optical propagation

\[\nabla^2 E - \frac{\varepsilon}{c^2} \frac{\partial^2 E}{\partial t^2} = 0, \]
\[\varepsilon = n_o + \chi(N) \]
\[\chi(N) = -\frac{n c}{\omega_o} (\alpha + i) \cdot a(N - N_o) \]

Volume: \(V \)
Carrier density: \(N \)
Gain/Loss
Background index
Index of refraction

A Phenomenological Model

Key assumptions:

\[\text{gain} = a(N - N_o) \]
\[\text{index} = \alpha \cdot \text{gain} \]

Rate equation describing carrier evolution

\[
\frac{\partial N}{\partial t} = D \nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} \cdot a(N - N_o) \cdot |E|^2,
\]

Wave equation describing optical propagation

\[
\nabla^2 E - \frac{\varepsilon}{c^2} \frac{\partial^2 E}{\partial t^2} = 0,
\]
\[\varepsilon = n_o + \chi(N) \]
\[\chi(N) = -\frac{n c}{\omega_o} (\alpha + i) \cdot a(N - N_o) \]

Coupled equations describing gain evolution, optical pulse amplitude and phase propagation

\[
h(\tau) = \int_0^L g(z, \tau)dz
\]
\[
\frac{\partial h(\tau)}{\partial \tau} = \frac{g_o L - h(\tau)}{\tau_c} - \frac{P_{\text{in}}(\tau)}{E_{\text{sat}}}(e^{h(\tau)} - 1)
\]
\[P_{\text{out}}(\tau) = P_{\text{in}}(\tau)e^{h(\tau)} \]
\[\Phi_{\text{out}}(\tau) = \Phi_{\text{in}}(\tau) - \frac{1}{2} \alpha h(\tau) \]

V = volume
N = carrier density
h(\tau) = integrated gain

A Phenomenological Model

Key assumptions:

\[\text{gain} = a(N - N_o) \]
\[\text{index} = \alpha \cdot \text{gain} \]

Rate equation describing carrier evolution

\[\frac{\partial N}{\partial t} = D \nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} - \frac{a(N - N_o)}{\hbar \omega} |E|^2, \]

Wave equation describing optical propagation

\[\nabla^2 E - \frac{\varepsilon}{c^2} \frac{\partial^2 E}{\partial t^2} = 0, \]
\[\varepsilon = n_o + \chi(N) \]
\[\chi(N) = -\frac{n_c}{\omega_o} (\alpha + i) \cdot a(N - N_o) \]

Wave equation describing optical propagation

\[h(\tau) = \int_0^L g(z, \tau) dz \]
\[\frac{\partial h(\tau)}{\partial \tau} = \frac{g_oL - h(\tau)}{\tau_c} - \frac{P_{in}(\tau)}{E_{sat}} (e^{h(\tau)} - 1) \]
\[P_{out}(\tau) = P_{in}(\tau) e^{h(\tau)} \]
\[\Phi_{out}(\tau) = \Phi_{in}(\tau) - \frac{1}{2} \alpha h(\tau) \]

- Gain saturates and recovers
- Phase \(\propto \) gain

V = volume
N = carrier density
\(h(\tau) \) = integrated gain

Carrier Recovery Time Limitation

- Long carrier recovery time creates pulse patterning
- Limits switching speed to ~10 Gb/s
- Solution: balanced interferometer approach

- 2-ps pulses, 40 Gb/s
- 5 fJ input pulse energy
- $\tau_c = 80$ ps
- Initial gain: 30 dB
- $L = 1$ mm
- $E_{\text{sat}} = 1$ pJ
- $\alpha = 5$
Balanced Interferometer Design
Balanced Interferometer Design

\[G_1 E(t) e^{\Phi_1} \]

\[G_2 E(t) e^{\Phi_2} \]

Signal: \(E(t) \)

\(\Delta T \)

\(\Delta P \)

\(\text{SOA} \)

\(\text{BPF} \)
Balanced Interferometer Design
Balanced Interferometer Design
Balanced Interferometer Design

Diagram:
- **Signal Path:**
 - Control
 - Signal $E(t)$
 - Delay ΔT
 - Power ΔP
- **Processing Blocks:**
 - SOA
 - BPF
- **Output Signals:**
 - $G_1 E(t) e^{\Phi_1}$
 - $G_2 E(t) e^{\Phi_2}$

Notes:
- Slow carrier recovery cancels

PhD Defense-26
JPW 6/11/2008

MIT Lincoln Laboratory
Balanced Interferometer Design

\[G_1 E(t) e^{\Phi_1} \quad \text{"Inverting"} \]

\[G_2 E(t) e^{\Phi_2} \quad \text{"Non-Inverting"} \]

Slow carrier recovery cancels.
Balanced Interferometer Design

Inverting

Non-inverting
Outline

• Motivation/Background
• Ultrafast all-optical logic gates
• **Routing: 40-Gb/s all-optical header processing**
• Performance optimization of optical logic gates
• Regeneration
• Future SOA-MZI gates
• Conclusion
40-Gb/s All-Optical Header Processing

- **Goal:** Demonstrate ultrafast packet processing functionality for routing

- **Previous work***:
 - Ultrafast all-optical header processing of single packets
 - Applicable to add/drop nodes, ring networks

- **This work**:
 - Multi-packet all-optical header processing demonstration
 - Scalable topology: can be easily extended to larger switches
 - Applicable to wide variety of networks, including multi-degree mesh nodes
 - Increased packet processing functionality

Header Processing Logic

\[E_k = \text{Empty/Full bit} \]
\[A_k = \text{Address bit} \]

Header Processing Unit

Switch Matrix

\[A_1 = 0, E_1 = 1 \]
\[A_2 = 1, E_2 = 0 \]

0 = (Bar)
1 = (Cross)

\[A_k = 0 \]
\[A_k = 1 \]
Header Processing Logic

- \(E_k \) = Empty/Full bit
- \(A_k \) = Address bit

Switch Matrix

```
A_1=0 E_1=1
A_2=1 E_2=0
0 = (Bar)
1 = (Cross)
```

Header Processing Unit

```
A_k = 0
```

Truth Table

<table>
<thead>
<tr>
<th>(A_1A_2)</th>
<th>(E_1E_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
</tbody>
</table>

Column headings

- \(A_1A_2 \)
- \(E_1E_2 \)
Header Processing Logic

\[E_k = \text{Empty/Full bit} \]
\[A_k = \text{Address bit} \]

\[E_k = \begin{cases} 0 & \text{Empty} \\ 1 & \text{Full} \end{cases} \]
\[A_k = \begin{cases} 0 & \text{Address 0} \\ 1 & \text{Address 1} \end{cases} \]

Switch Matrix

Header Processing Unit

\[R = A_1 \cdot E_1 + \overline{A_2} \cdot E_2 \]

\[\begin{array}{c|cccc}
 & 00 & 10 & 11 & 01 \\
\hline
00 & X & X & X & X \\
10 & 0 & 1 & 1 & 0 \\
11 & X & 1 & X & 0 \\
01 & 1 & 1 & 0 & 0 \\
\end{array} \]
Header Processing Logic

$E_k = \text{Empty/Full bit}$

$A_k = \text{Address bit}$

$E_1 = $ Empty/Full bit

$A_1 = $ Address bit

$A_1 \cdot E_1$

$A_2 \cdot E_2$

$A_1 = 0, E_1 = 1$

$A_2 = 1, E_2 = 0$

Switch Matrix

$0 = (\text{Bar})$

$1 = (\text{Cross})$

$A_1 \cdot E_1 + \overline{A_2} \cdot E_2$

R

$E_1 E_2$

$A_1 A_2$

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>10</th>
<th>11</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$E_k = \text{Empty/Full bit}$

$A_k = \text{Address bit}$
Header Processing Logic

- Multi-packet processing (2 incoming packets to 2 outgoing ports)
- Scalable: 2 optical logic gates for each 2x2 switch
- Potential for integration (SOA-based logic)

\[R = A_1 \cdot E_1 + \overline{A_2} \cdot E_2 \]
Optical Logic Gate Implementation: Ultrafast Nonlinear Interferometer (UNI)

BRF = Birefringent Fiber
SOA = Semiconductor Optical Amplifier
BPF = Bandpass Filter
Optical Logic Gate Implementation: Ultrafast Nonlinear Interferometer (UNI)

Full System Experimental Schematic

- Packet Architecture
 - $2^7 - 1$ PRBS

MLFL = Mode-locked Fiber Laser
Tx = Transmitter
Full System Experimental Schematic

- **Packet Architecture**
 - 2^7-1 PRBS
 - 4000 bits/packet
 - 100 ns packet

MLFL = Mode-locked Fiber Laser
Tx = Transmitter
EOM = Electro-optic modulator
Full System Experimental Schematic

- Packet Architecture
 - $2^7 - 1$ PRBS
 - 4000 bits/packet
 - 100 ns packet
Ultrafast All-Optical Header Processor

- Ultrafast operation: Header error rate of 1×10^{-6} with 40-Gbit/s line rate
- Comparable with current electronic router error rates
- Low switching-energy: 60.5 fJ/packet

PER 1.7×10^{-9}

PER 3×10^{-9}

\[R = A_1 \cdot E_1 + \overline{A}_2 \cdot E_2 \]
The Need For Integration

- Successful demonstration of 2-port forwarding using discrete all-optical logic gates.

- What is required to expand this functionality?
 - Integration: Discrete logic gates are infeasible for practical implementation
 - Size, weight, cost
 - Ease of installation & operation
 - Simple method for optimizing each logic gate for optimal performance
 - Currently requires time-intensive search over a large parameter space
Outline

• Motivation/Background
• Ultrafast all-optical logic gates
• Routing: 40-Gb/s all-optical header processing
• Performance optimization of optical logic gates
• Regeneration
• Future SOA-MZI gates
• Conclusion
SOA Mach-Zehnder Interferometer: An Integrated Optical Logic Gate

- Integrated optical logic gate: SOA-MZI
- Conceptually similar to the UNI: balanced interferometer
- Waveguide and coupling losses require amplifying SOAs
- Complex parameter space makes optimization difficult
SOA Mach-Zehnder Interferometer: An Integrated Optical Logic Gate

• Focus on single-ended operation to observe SOA dynamics
• Key operating parameters
 – I_4, I_5
 – Signal and control average power
 – Signal and control pulse power
 – Signal-control delay (Δt)

Developed by Alphion Corporation.
Bias map measurement:
- Sweep I_4 current at 1 Hz
 - Measure current on SOA using hall-effect probe
- Measure output power on oscilloscope
- Full 2D scan taken on the order of minutes
Static Interferometer Bias Map

- Bias map measurement:
 - Sweep I_4 current at 1 Hz
 - Measure current on SOA using hall-effect probe
 - Measure output power on oscilloscope
 - Full 2D scan taken on the order of minutes
• Bias map measurement:
 − Sweep I_4 current at 1 Hz
 • Measure current on SOA using hall-effect probe
 − Measure output power on oscilloscope
 − Full 2D scan taken on the order of minutes
• Bias map measurement:
 – Sweep \(I_4 \) current at 1 Hz
 • Measure current on SOA using hall-effect probe
 – Measure output power on oscilloscope
 – Full 2D scan taken on the order of minutes
Switching Window Measurement

- Fix current bias (I_4, I_5)
- Measure average output power at every control-signal delay
Switching Window Measurement

- Fix current bias \(I_4, I_5 \)
- Measure average output power at every control-signal delay
Switching Window Measurement

- Fix current bias (I_4, I_5)
- Measure average output power at every control-signal delay
Switching Window Measurement

- Fix current bias (I_4, I_5)
- Measure average output power at every control-signal delay
Switching Window Measurement

- Fix current bias \(I_4, I_5 \)
- Measure average output power at every control-signal delay
- Continuous measurement can be obtained using a difference-frequency technique

\[I_4 = 893.5 \text{ mA} \]
\[I_5 = 470 \text{ mA} \]
Switching Window Measurement

• Fix current bias (I_4, I_5)
• Measure average output power at every control-signal delay
• Continuous measurement can be obtained using a difference-frequency technique
• Switching dynamics
 • Extinction, Recovery time
Combined Measurement: Dynamic Bias Scan

- Simultaneous pump-probe measurement at all bias points
 - At each signal delay, measure a bias map

MLFL = mode-locked fiber laser
Dynamic Pump-Probe Bias Scan

- Simultaneous pump-probe measurement at all bias points
 - At each signal delay, measure a bias map

- Measures the effect of optical control pulse on interferometer bias at all operating points: 4-dimensional plot

Dynamic Bias Scan

Extinction map: Extract extinction measurement from dynamic bias scan
Inverting mode gives higher extinction, but logic functions often require non-inverting operation
Wavelength Conversion at Selected Operating Point

- Demonstration of effectiveness of dynamic bias map: wavelength conversion
Wavelength Conversion at Selected Operating Point

- Demonstration of effectiveness of dynamic bias map: wavelength conversion
- Compare with nearby operating point found by typical manual optimization
Wavelength Conversion at Selected Operating Point

- Demonstration of effectiveness of dynamic bias map: wavelength conversion
- Compare with nearby operating point found by typical manual optimization

Achievements:
- Highly accurate characterization technique for optimization of ultrafast switch performance
- Improves practical, multi-gate functionality of integrated optical logic
Outline

• Motivation/Background
• Ultrafast all-optical logic gates
• Routing: 40-Gb/s all-optical header processing
• Performance optimization of optical logic gates
• Regeneration
• Future SOA-MZI gates
• Conclusion
10,000-km, 100-pass All-Optical Regeneration

• Goal: Demonstrate all-optical error-free regeneration with the SOA-MZI logic gate

• Previous work*:
 – Error-free regeneration with paired SOA-MZI logic gates (inverting operation)

• This work:
 – Wavelength-maintaining regenerator
 – Non-inverting operation (requires only a single logic gate)
 – Polarization insensitive

100-km Recirculating Loop Experiment

- Simulates regenerator performance in real-world system
- Tests SOA-MZI in cascading operation
- Dispersion compensation cancels 2nd order dispersion
- 10 Gb/s, $2^{31}-1$ pseudo-random bit sequence

100-km Recirculating Loop Experiment

- Wavelength converter + SOA-MZI = wavelength-maintaining regenerator
- Single SOA-MZI regenerator, non-inverting operation
- Optimal operating point found via dynamic bias map
- Very stable regenerator operation
Regenerator Results: Cross-Correlation and BER

- Cross-correlation & BER measured after regenerator
- 0.5-dB penalty after 100 passes (10,000 km)

Thus Far...

- Electronic techniques rapidly outgrowing size, weight, power limitations
- Optical signal processing techniques can help:
 - Ultrafast, multi-packet header processing
 - Scalable
 - Low switching energy
 - Network flexibility from payload transparency
 - Reduced O/E/O conversions
 - Practical, easily optimized integrated logic gates
 - Accurate, fast optimization
 - Insight into switching dynamics
 - Cascadable, single-gate wavelength-maintaining regeneration
 - Polarization insensitive
 - Potential for integration
 - 10,000-km, 100 pass demonstration
Outline

• Motivation/Background
• Ultrafast all-optical logic gates
• Routing: 40-Gb/s all-optical header processing
• Performance optimization of optical logic gates
• Regeneration
• Future SOA-MZI gates: What’s next?
Integration Platforms

• Hybrid Integration
 – Incompatible materials integrated on a wafer
 – Passive material: silicon, silica
 – Active material: InGaAsP (III-V semiconductors)
 – Challenge: Alignment and fabrication cost

• Monolithic integration
 – Compatible materials grown together for both active and passive devices
 – Challenge:
 • Silicon: active devices
 • InGaAsP: low loss
 – Challenge: high yields
Integration Platforms

• Hybrid Integration
 – Incompatible materials integrated on a wafer
 – Passive material: silicon, silica
 – Active material: InGaAsP (III-V semiconductors)
 – Challenge: Alignment and fabrication cost

• Monolithic integration
 – Compatible materials grown together for both active and passive devices
 – Challenge:
 • Silicon: active devices
 • InGaAsP: low loss
 – Challenge: high yields

• Asymmetric twin waveguide approach

• Potential for close to 100% coupling
• Potential for high yield
• Tolerance for fabrication errors

• Collaboration with MIT Integrated Photonics Devices and Materials group
Multi-gate Integrated Optical Logic

- Previous work:
 - Simulation and design of SOA-MZI gates (A. Markina)
 - Fabrication of 1st and 2nd generation logic chips (R. Williams)

- This work:
 - Characterization of 2nd generation logic chip
 - Recommendations for next generation integrated chips

- Future work:
 - Fabrication and design of 3rd generation chips (T. Shih)
Integration Progress: Size, Power

Characterization results:
- Demonstrated SOA gain, active/passive coupling
- Loss is currently an issue
- Fabrication improvements will solve these issues

Enable complex logic on a single chip
Conclusion

- Demonstrated functionality of all-optical signal processing in routing and regeneration
 - 40 Gb/s multi-packet header-processing
 - 10,000-km, 100-pass error free regeneration
- Addressed practical implementation of all-optical signal processing
 - Developed a simple optimization technique for all-optical logic gate performance
 - Demonstrated potential of asymmetric waveguide design for integrated multi-gate logic on a single chip
Acknowledgements

- Professor Erich Ippen
- Scott Hamilton
- Professor Rajeev Ram

Lincoln Laboratory
- Bryan Robinson
- Shelby Savage
- Claudia Fennelly
- Paul Juodawlkis
- Jason Plant
- Reuel Swint
- Todd Ulmer
- Neal Spellmeyer
- Matthew Grein
- Jeffrey Roth
- David Caplan
- Mark Stevens
- Don Boroson
- William Keicher

MIT
- Professor Leslie Kolodziejski
- Gale Petrich
- Ta-Ming Shih
- Ryan Williams (graduated)
- Aleksandra Markina (graduated)
- Tauhid Zaman
- Ali Motamedi
- Reja Amatya

Alphion Corporation
- Boris Stefanov
- Leo Spiekman
- Hongsheng Wang
- Ruomei Mu
Rough Power Comparison

<table>
<thead>
<tr>
<th>Electronic 3R Regenerator*</th>
<th>Optical 3R Regenerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Total power: 10W</td>
<td>• 1 optical logic gate</td>
</tr>
<tr>
<td>• 2 channels</td>
<td>• 1 channel</td>
</tr>
<tr>
<td>• 2.5 Gb/s per channel</td>
<td>• Bias power: 600 mW</td>
</tr>
<tr>
<td>• 40 Gb/s</td>
<td>- 2 SOAs</td>
</tr>
<tr>
<td>- 8 modules</td>
<td>- 200 mA x 1.5 V = 300 mW per SOA</td>
</tr>
<tr>
<td>- 80 W</td>
<td>• Switching energy: 40 fJ/bit</td>
</tr>
<tr>
<td>• 100 Gb/s</td>
<td>- 40 Gb/s: 1.6 mW</td>
</tr>
<tr>
<td>- 20 modules</td>
<td>- 100 Gb/s: 4 mW</td>
</tr>
<tr>
<td>- 200 W</td>
<td>{ negligible }</td>
</tr>
</tbody>
</table>

But electronic regenerator offers more functionality than just 3R regeneration!

* Cisco WDM Transponder
Power Consumption Shortfall

Technology is falling behind demand

Shortfall is overcome by architectural innovation and trading off:
Performance, functionality, programmability, physical size/density
→ Very hard to sustain long-term

Commercial Electronic Routers

Cisco CSR-1
- Throughput: 1.2 Tb/s
- Power: 10.9 kW
- Weight: 1595 lb.

Juniper T1600
- Throughput: 1.6 Tb/s
- Power: 9.1 kW
- Weight: 680 lb.

Power Consumption Allocation by Subsystems

- Routing Engine: 61%
- CPU: 9%
- SP: 1%
- Fabric: 11%
- Misc.: 3%
- Power Conv: 15%