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Abstract— A common feature of interactions and opinion
exchanges on social networks, both real and digital, is the
presence of social pressure, which may cause agents to alter
their expressed opinions in order to fit in with those around
them. In such systems, each agent has a true and unchanging
inherent belief but broadcasts a declared opinion at each
time step, influenced by both her inherent belief and the
declared opinions of her neighbors. An important question in
this setting is parameter estimation: how to disentangle the
effects of social pressure and estimate the underlying true
beliefs of the agents from their declared opinions. To address
this question, Jadbabaie et al. [1] formulated the interacting
Pólya urn model of opinion dynamics under social pressure
and studied parameter estimation on complete-graph social
networks using an aggregate estimator. They found that, under
these settings, this estimator asymptotically estimates the true
beliefs unless majority pressure causes the network to approach
consensus over time.

In this work, we consider parameter estimation for the
interacting Pólya urn model on arbitrary networks, and prove
that the maximum likelihood estimator always asymptotically
estimates the true beliefs – including the degree to which those
beliefs are held – even when consensus is approached.

I. INTRODUCTION

Opinion dynamics is the study of how people’s opinions
evolve over time as they interact with others on social
networks. This can provide insights and predictions into how
public opinion develops on a variety of political, social,
commercial and cultural topics. For instance, Ancona et al.
[2] used opinion dynamics models to model the spread of
vaccine hesitancy and to develop marketing strategies to help
combat it. In many opinion dynamics models, there is an
assumption that people are truthful in the opinions they share.
However, in reality this is not always the case, as people
often alter their expressed views to better fit in with their
social environment, which in turn feeds back into the social
environment. The social pressure feedback loop can cause
publicly-expressed opinions to become arbitrarily uniform
over time [3], which can make parameter estimation difficult.

In this work, we study an interacting Pólya urn model for
opinion dynamics under social pressure, originating from [1]
and developed further in [4]. This model captures a system
of agents with stochastic behaviors who additionally might
be untruthful due to a desire to conform to their neighbors.
This model consists of n agents on a fixed network com-
municating on an issue with two basic sides, 0 and 1. Each
agent has an inherent (true and unchanging) belief, which is
either 0 or 1, and also a bias parameter γ which indicates to
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what degree they are willing to share their inherent belief as
opposed to conforming. Then the agents communicate their
declared opinions to their neighbors at discrete time steps: at
each step t = 1, 2, . . . , all the agents simultaneously declare
one of the two opinions (i.e. either ‘0’ or ‘1’), which is then
observed by their neighbors; the declarations of all the agents
at any given step are made at random and independently of
each other but with probabilities determined by their inherent
belief, bias parameter, and the ratio of the two opinions
previously observed by the agent up to the current time.
This can represent both scenarios where agents alter their
statements (contrary to their actual beliefs) to better fit in
with the opinions they have observed from others in the past
and scenarios where the agents update their beliefs according
to the declared opinions of others, but retain a bias towards
their original beliefs.

A. Background Literature

We refer the reader to [1] and [4] for in-depth discus-
sion of previous literature. Here, we discuss some relevant
highlights.

A highly influential opinion dynamics model is the De-
Groot model [5], where agents in a network average their
neighbors’ opinions in an iterative manner. With this pro-
cedure, the entire group asymptotically approaches a state
where they all share a single opinion, a phenomenon known
as consensus. However in real social networks, consensus
is not always reached. To deal with this, other opinion
dynamics models were created. Among these is the Friedkin-
Johnsen model [6]. Each agent in the Friedkin-Johnsen
model updates her opinion at each step by averaging her
neighbors’ opinions (as in the DeGroot model) and then
averaging the result with her initial opinion.

Ye et al. [7] study a model in which each agent has both
a private and expressed opinion, which evolve differently.
Agents’ private opinions evolve using the same update as
in the Friedkin-Johnsen model, while their public opinions
are updated as the average of their own private opinion and
the average public opinion of their neighbors. Both [3] and
[7] are very similar to [1], since agents’ expressed opinions
may not match their internal beliefs. However, unlike [1], [7]
assumes opinions are precisely expressed on a continuous
interval, which is unrealistic for certain applications. On the
other hand [3] works with binary opinions like [1], though
with a significantly more complex model that includes addi-
tional terms and parameters.

The analysis in [1] is primarily focused on studying
whether inherent beliefs are recoverable using an aggregate
estimator. This is carried out by establishing the convergence



of the dynamics in the network and analyzing the equilibrium
state, though the analysis is limited to the complete graph
and all agents having the same amount of resistance to
social pressure. In [4], the authors generalize this result to
allow for any network structure and for any bias parameters.
They found that the proportion of declared opinions of each
agent converges almost surely to an equilibrium point in any
network configuration. They also determined necessary and
sufficient conditions for a network to approach consensus.
We note that the definition of consensus used for the inter-
acting Pólya urn model is that all agents will declare a single
opinion (all ‘0’ or all ‘1’) with probability tending to 1.

B. Contributions

In [1], the authors consider when it is possible to asymp-
totically determine the inherent beliefs of the agents based
on their history of declared opinions and those of their
neighbors. They study a simplified case in which the social
network is an (unweighted) complete graph and all agents
have the same, known, degree of bias towards their true
beliefs, and consider a specific aggregate estimator which
tries to first estimate the proportion of agents with true
belief 1 and then determine which agents those are. In this
setting, they show that the aggregate estimator estimates the
proportion of agents with true belief 1 if and only if the
agents do not asymptotically approach consensus (where a
large majority causes all agents declare the same opinion
with probability approaching 1).

In this work, we consider the general setting:
1) the social network is an arbitrary weighted (and con-

nected) undirected graph, possibly with self-loops;
2) the agents can have heterogeneous bias parameters,

indicating different levels of resistance to social pressure
or certainty in their inherent opinions, which are not
known.

This greatly increases the applicability of the model, as real-
life social networks have a variety of different structures and
people often react very differently to social pressure.

In this setting, we study the maximum likelihood estimator
(MLE), which estimates bias parameters from the history
of declared opinions, rather than the aggregate estimator
from [1]. We also derive a simplified estimator for inherent
beliefs from the MLE, which takes a clean form with a
low-dimensional sufficient statistic, consisting of two values
which are simple to update at each step. We show that
if the history of the agents’ declared opinions is known,
the MLE almost surely asymptotically converges to the
correct inherent beliefs and bias parameters of all the agents
in all such networks (even when the network approaches
consensus). This resolves the fundamental question posed in
[1] of whether such estimation is always possible.

II. MODEL DESCRIPTION

We use the model from [4] which is a slight generalization
of the model from [1]. We refer the reader to [4, Sec II] for
more details on the model and in particular [4, Sec II F] for
intuition on the model.

A. Graph Notation

Let undirected graph G = (V,E) (possibly including
self-loops) be a network of n agents (corresponding to the
vertices) labeled i = 1, 2, . . . , n. For each edge (i, j) ∈ E,
there is a weight ai,j ≥ 0, where by convention ai,j = 0
if (i, j) 6∈ E. We denote the weighted degree of vertex i as
deg(i) =

∑
j ai,j .

B. Inherent Beliefs and Declared Opinions

Each agent i has an inherent belief φi ∈ {0, 1}, which
does not change. At each time step t, each agent i (simul-
taneously) announces a declared opinion ψi,t ∈ {0, 1}. We
denote by Ht the history of the process, consisting of all
ψi,τ for τ ≤ t. Each agent has a bias parameter γi ∈ (0,∞)
where γi 6= 1.

If φi = 1, then γi > 1. If φi = 0, then γi < 1. If an agent
has γi = 1, this signifies that the agent does not have an
inherent belief, which is case we do not allow in this work
on inferring inherent beliefs.

The declarations ψi,t are based on a probabilistic rule
which we define after the following definitions:

Define

µ0
i (t)

4
=
m0
i +

∑t
τ=2

∑n
j=1 ai,jI[ψi,τ = 0]

m0
i +m1

i + (t− 1) deg(i)
(1)

µ1
i (t)

4
=
m1
i +

∑t
τ=2

∑n
j=1 ai,jI[ψi,τ = 1]

m0
i +m1

i + (t− 1) deg(i)
. (2)

The parameter µ1
i (t) is essentially the sufficient statistic

that summarizes the proportion of declared opinions in the
neighborhood of given agent i up to time t. Since µ0

i (t) =

1− µ1
i (t), we simplify the notation to µi(t)

4
= µ1

i (t) .

Define the function (note that µ, γ are scalars)

f(µ, γ)
4
=

γµ

1 + (γ − 1)µ
=

1

1 + γ
(

1
µ − 1

) . (3)

The probabilistic rule for declared opinions ψi,t+1 can be
written as

ψi,t+1
4
=

{
1 with probability f(µi(t), γi)
0 with probability 1− f(µi(t), γi)

. (4)

Note that the bias parameter γi is always defined as agent
i’s bias towards opinion 1. However, the model is symmetric
in the following way: a γ bias towards 1 is equivalent to a
1/γ bias towards 0,1 which is captured by the equation

f(µ1
i (t), γ) = 1− f(µ0

i (t), 1/γ) . (5)

We also define a sufficient statistic that summarizes agent
i’s declarations. Let b0i , b

1
i > 0 (the initialization) be such

1The honesty parameter in [1] is equivalent to the bias towards the agent’s
true belief, i.e. a honesty parameter of γ with a true belief of 0 corresponds
to a bias parameter of 1/γ.



that b0i + b1i = 1 for each i. Let

β0
i (t) =

b0i
t

+
1

t

t∑
τ=2

(1− ψi,τ ) (6)

β1
i (t) =

b1i
t

+
1

t

t∑
τ=2

ψi,τ . (7)

These are counts and proportions of declarations of each
opinion (or “time-averaged declarations”) for each agent
(plus initial conditions). We similarly use βi(t)

4
= β1

i (t).
So long as

m0
i =

n∑
j=1

ai,jb
0
j and m1

i =

n∑
j=1

ai,jb
1
j , (8)

it follows from the definition that

µi(t) =
1

deg(i)

n∑
j=1

ai,jβj(t) . (9)

We define the vectors

µ(t)
4
= [µ1(t), ...µn(t)]

> (10)

β(t)
4
= [β1(t), ...βn(t)]

>
. (11)

C. Evolution of Declared Ratio

Given the history, we can write the expected value of the
next β(t+ 1) as

E[β(t+ 1)|Ht] =
t

t+ 1
β(t) +

1

t+ 1


f(µ1(t), γ1)
f(µ2(t), γ2)

...
f(µn(t), γn)


(12)

=
t

t+ 1
β(t) +

1

t+ 1
f(µ(t),γ), (13)

or alternatively

E[β(t+ 1)− β(t)|Ht] =
1

t+ 1
(f(µ(t),γ)− β(t)). (14)

The equilibrium points of the expected dynamics are given
by the solutions to the equations

0 = (γi − 1)βiµi + βi − γiµi (15)

where i ∈ {1, . . . , n} and µi = 1
deg(i)

∑n
j=1 ai,jβj . (See [4]

for more discussion.)

D. Consensus

An important term for this work is consensus, which needs
to be defined appropriately for our stochastic system.

Definition 1. Consensus is approached if

β(t)→ 1 or β(t)→ 0 as t→∞ . (16)

Since βi(t) represents the ratio of 1’s agent i has declared,
consensus is approached when this ratio goes to 0 or 1.

III. ESTIMATORS FOR INFERRING INHERENT BELIEFS
AND BIAS PARAMETERS

One of the key questions in [1] is whether it is possible
to infer the inherent beliefs of agents from the history of
declared opinions. The authors of [1] studied the interacting
Pólya urn model on the complete graph using an aggregate
estimator which keeps track of the overall fraction of de-
clared opinion of all agents throughout time, and showed
that this estimator may not correctly estimate the inherent
belief of all agents (even in the limit) if they approach
consensus. Consensus presents difficulties for estimators
since asymptotically all agents approach the same behavior
regardless of their inherent beliefs.

However, we show that estimators based on maximizing
the log-likelihood (almost surely) infer the inherent belief of
any agent i in the limit, even when consensus is approached.
This fact is connected to [4, Lemma 2] – each agent declares
both opinions infinitely often, yielding sufficient information
to determine inherent beliefs over time.

Additionally, unlike [1], our formulation also allows agents
to have different bias parameters. Thus, it is natural to ask is
how to estimate the bias parameter of any agent. Intuitively,
after enough time has passed, the values of µi(t) and βi(t)
will converge to values close to the equilibrium point. In
such a case, we can use (15) to estimate the bias parameter
γi and inherent belief φi with

γ̂i(t) =
βi(t)

1− βi(t)
1− µi(t)
µi(t)

(17)

φ̂i = I{βi(t) < µi(t)} (18)

These estimators are asymptotically consistent, i.e.

lim
t→∞

γ̂i(t) = γi (19)

lim
t→∞

φ̂i = φi (20)

when the dynamics converge to an interior equilibrium point
(see [4] for details). However, plugging the equilibrium
values into (17) is not well-defined if βi(t) and µi(t) both
converge to either 0 or 1, i.e. when consensus is approached.
This shows that more careful analysis needs to be done in
order to estimate the bias parameters and inherent beliefs in
all circumstances.

IV. DEFINITION OF ESTIMATORS

We assume at time t the estimator has at its disposal the
history of agent i and agent i’s neighbors’ declarations up to
and including time t, which we denote as Ht. Given Ht−1,
we can compute exactly the values of

P [ψi,t = 1|Ht−1] = f(µi(t− 1), γi) . (21)

Note that in general P [ψi,t = 1] is a random variable de-
pendent on Ht−1, while P [ψi,t = 1|Ht−1] is constant. The
sequence H0 ⊆ H1 ⊆ . . . is also a filtration.

Our estimator to predict γi is based on the maximum log-
likelihood estimator:



Definition 2. The single-step negative log-likelihood for a
given agent i at time t and parameter γ is

`i(γ, t)
4
= −

(
I{ψi,t = 1} log(f(µi(t− 1), γ))

+ I{ψi,t = 0} log(1− f(µi(t− 1), γ))

)
(22)

The negative log-likelihood for a given agent i at time t and
parameter γ is

Li(γ, t)
4
=

t∑
τ=2

`i(γ, τ) . (23)

The MLE for bias parameter γi gives the value of γ that
maximizes the likelihood of agent i’s declarations, which
also minimizes the negative log-likelihood.

Definition 3 (Estimator for Bias Parameter). The maximum
likelihood estimator (MLE) for the bias parameter γ at time
t is given by

γ̂(t)
4
= arg min

γ
Li(γ, t) (24)

Since the inherent belief of an agent is defined as whether
the bias parameter is greater than or less than 1, given the
MLE estimator, we can always predict the inherent belief of
agent i by taking

sign(log(γ̂(t))) . (25)

However, if we assume that γi 6= 1, and are only interested
estimating the inherent beliefs, this reduces to a simpler form.

Let β̄i(t) = 1
t−1

∑t
τ=2 I[ψi,τ = 1], which a similar

quantity to βi(t) except that the arbitrary initial conditions
are not included. (If t is large, then difference between βi(t)
and β̄i(t) is negligible.)

Definition 4 (Estimator for Inherent Belief). Let

φ̂i(t) =
1

2
sign

(
(t− 1)β̄i(t)−

(
t−1∑
τ=1

µi(τ)

))
+

1

2
. (26)

We note that the transformation of multiplying by 1/2
and adding 1/2 is simply to map the output of the sign(·)
operation to 0 and 1. Fundamentally, this estimator requires
only comparing

β̄i(t) >
1

t− 1

t−1∑
τ=1

µi(τ) . (27)

Note that φ̂i(t) does not depend on knowing the bias
parameter, as it only assumes that γ 6= 1, and the estimator is
simple to compute as it only requires the aggregate count of
an agent’s declarations and her neighborhood’s declarations.

Intuitively, this compares agent i’s actual declarations
against its expected declarations if γi = 1 (i.e. if the agent
were unbiased); however, the consistency of this estimator is
derived from that of the MLE for the bias parameter given
in Definition 3. We show this derivation in Section VI.

Lastly, note that while both the estimator in Definition 4
and the estimator in (18) have the same asymptotic values

when the network does not approach consensus, only the
estimator in Definition 4 is guaranteed to work when the
network approaches consensus.

A. Preliminaries: Bounds on µi(t)

The following property is essential to our the analysis:
• We have Mi(t) = m0

i + m1
i + (t − 1) deg(i). This is

because each of agent i’s neighbors contributes a signal
of weight ai,j to agent i at each time step.

• We know that

µi(t) ∈
[

1

Mi(t)
, 1− 1

Mi(t)

]
(28)

As an important consequence,

µi(t) ≥
κ

t
and 1− µi(t) ≥

κ

t
(29)

for some constant κ and t > 1. We can set κ =
(maxi deg(i))−1.

B. Negative Log-likelihood Properties

We analyze in depth the log-likelihood estimator which is
key to our analysis. We start by introducing an alternative
representation for `i(γ, t). Let ψ̃i,t = 2ψi,t − 1, which takes
values −1 and +1, instead of 0 and 1, which gives a more
symmetric representation of the process.

Noting that f(µi(t), γ) then represents the probability of
ψ̃i,t = 1, we have

`i(γ, t) = − log

(
1

1 + e
−ψ̃i,t log

(
γ

µi(t−1)

1−µi(t−1)

)
)

(30)

= log

(
1 + e

−ψ̃i,t log
(
γ

µi(t−1)

1−µi(t−1)

))
. (31)

It is useful to change the parameterization:

λ
4
= log γ and νi(t)

4
= log

µi(t)

1− µi(t)
. (32)

Using λ is an nice alternative to the bias parameters. We
thus define some quantities which take λ = log γ as the
argument instead of γ and use them where convenient:

˜̀
i(λ, t)

4
= `i(γ, t) and L̃i(λ, t)

4
= Li(γ, t) . (33)

For this section to Section V we will fix i and then use γ1
and γ2 to represent any two possible choices for γi. Define

Z(γ1, γ2, t)
4
= Li(γ2, t)− Li(γ1, t) . (34)

If Z(γ1, γ2, t) is positive, intuitively, γ1 is more likely than
γ2, so we expect γ1 to be the true parameter. Indeed, if γ1
is the true parameter, then

E[Z(γ1, γ2, t)] =

t∑
τ=2

E
[
I{ψi,s = 1} log

f(µi(τ − 1), γ1)

f(µi(τ − 1), γ2)

+ I{ψi,τ = 0} log
1− f(µi(τ − 1), γ1)

1− f(µi(τ − 1), γ2)

]
(35)

=

t∑
τ=2

DKL(f(µi(τ − 1), γ1)‖f(µi(τ − 1), γ2)) (36)



which is always a nonnegative quantity.

Proposition 1. Li(γ, t) is a stochastic process which satisfies
the following properties:
(a) For fixed γ, Li(γ, t) (and L̃i(λ, t)) is an increasing

function in t
(b) For fixed t, L̃i(λ, t) is a strictly convex function in λ
(c) `i(γ, t) ∈ [0,∞), and for a fixed t,

• If ψ̃(t) = −1, then `i(γ, t) is a decreasing function
in γ (and ˜̀

i(λ, t) is decreasing in λ)
• If ψ̃(t) = 1, then `i(γ, t) is an increasing function

in γ (and ˜̀
i(λ, t) is increasing in λ)

(d) If there exists t1, t2 ≤ t where ψ̃i,t1 = 1 and ψ̃i,t2 = −1,
then L̃i(λ, t) has unique finite minimum as a function in
λ. Also Li(γ, t) has the same minimum at γ = eλ.

(e) If γ∗ is the true (bias) parameter, then for any γ 6= γ∗,

E[`i(γ, t)|Ht−1] > E[`i(γ
∗, t)|Ht−1] (37)

We show the proof of property (b) below; proofs of the
other properties are omitted.

Proof.

d2

dλ2
˜̀
i(λ, t) =

d2

dλ2
log
(
1 + e−ψ̃i,t(λ+νi(t−1))

)
(38)

=
d

dλ

−ψ̃i(t)e−ψ̃i(t)(λ+νi(t−1))

1 + e−ψ̃i(t)(λ+νi(t−1))
(39)

= −ψ̃i(t)
d

dλ

1

1 + eψ̃i(t)(λ+νi(t−1))
(40)

= ψ̃i(t)
2 eψ̃i(t)(λ+νi(t−1))

(1 + eψ̃i(t)(λ+νi(t−1)))2
(41)

=
eψ̃i(t)(λ+νi(t−1))

(1 + eψ̃i(t)(λ+νi(t−1)))2
(42)

> 0 . (43)

Thus ˜̀
i(λ, t) is convex for all t, and so L̃i(λ, t) =∑t

τ=2
˜̀
i(λ, τ) is also convex.

V. LOG-LIKELIHOOD RATIOS AND MARTINGALES

To properly analyze the quantity (34), we need the fol-
lowing definitions. Unless otherwise stated, γ1 is the true
parameter the random data is generated from.

The loss difference is

Z(t)
4
= Z(γ1, γ2, t) (44)

z(t)
4
= z(γ1, γ2, t)

4
= `i(γ2, t)− `i(γ1, t) . (45)

The predictable expected value is

X(t)
4
= X(γ1, γ2, t)

4
=

t∑
τ=2

E[z(τ)|Hτ−1] (46)

x(t)
4
= x(γ1, γ2, t)

4
= E[z(t)|Ht−1] . (47)

The loss martingale is

Y (t)
4
= Y (γ1, γ2, t)

4
= X(t)− Z(t) (48)

y(t)
4
= y(γ1, γ2, t)

4
= x(t)− z(t) . (49)

The predictable quadratic variation is

W (t)
4
= W (γ1, γ2, t)

4
=

t∑
τ=2

Var[z(τ)|Hτ−1] (50)

=

t∑
τ=2

Var[y(τ)|Hτ−1] (51)

w(t)
4
= w(γ1, γ2, t)

4
= Var[z(t)|Ht−1] (52)
= Var[y(t)|Ht−1] . (53)

The quantity W (t) is important for martingale concentra-
tion results. We also let λ1 = log γ1 and λ2 = log γ2.

We give some preliminary results about these processes
(proofs are omitted).

Proposition 2. We have the following properties:
(a) Z(t) is a submartingale and X(t) is strictly increasing
(b) Y (t) is a martingale
(c) W (t) is strictly increasing

Next we determine bounds on our quantities.

Lemma 1. If γ1 6= γ2, then there is some t0 = t0(γ1, γ2)
and c0 = c0(γ1, γ2) > 0 such for all t > t0

x(t) ≥ c0(κ/t) . (54)

Additionally, there are some constants k, t1 (which depend
on t0, γ1, γ2) such that for all t > t1,

X(t) > kc0κ log(t) . (55)

Similarly, there exists a constant c1 = c1(γ1, γ2) > 0 and
t2 such that for all t > t2

w(t) ≤ c1x(t) . (56)

This also implies

W (t) ≤ c1X(t) . (57)

Combining Lemma 1 and (36) gives that for γ1 6= γ2,

lim
t→∞

E[Z(γ1, γ2, t)] = lim
t→∞

X(γ1, γ2, t) =∞ . (58)

Remark 1. The fact that E[Z(t)] → ∞ relies on the fact
that µi(t) ∈ [κ/t, 1− κ/t], as discussed in Section IV-A.

If instead, µi(t) scales as 1/t2, then the limit of E[Z(t)]
would be finite. In such a scenario, randomness might make
Z(t) unreliable for distinguishing between γ1 and γ2.

Changes to the model which may cause the condition
µi(t) ∈ [κ/t, 1− κ/t] to fail include putting higher weight
on previously declared opinions or having the network add
more agents at each time step t.

We want to show that the test Z(t) > 0 works to
distinguish whether γ1 or γ2 is the true parameter. We do
this by showing that if γ1 is the true parameter, then almost
surely Z(t) ≤ 0 (i.e. the test fails) for only finitely many
t. We show this by applying Freedman’s inequality ([8] and
[9] (Thm 1.6)) and Lemma 1 (proof omitted):



Theorem 1. Let γ∗ be the true parameter. The likelihood
ratio test Z(t) = Li(γ2, t)− Li(γ1, t) is such that

Z(t)

{
> 0 if γ∗ = γ1

< 0 if γ∗ = γ2
(59)

for all but finitely many t.

VI. CONSISTENCY OF ESTIMATORS

The above concentration results show that the MLE (24)
converges asymptotically to the true γ.

Theorem 2. For any agent i, almost surely,

lim
t→∞

γ̂(t) = γi . (60)

Proof. We take advantage of the alternative parameterization
of λ = log γ. Let the MLE for λ be

λ̂(t) = arg min
λ
L̃i(λ, t) (61)

We will show that λ̂(t) converges to the true parameter,
which we call λ∗, so γ̂(t) converges to the true γi.

For any fixed ε > 0, let a = λ∗ − ε and b = λ∗ + ε.
From Theorem 1, there exists some time ta so that L̃(a, t) >
L̃(λ∗, t) for all t > ta and there exists some time tb so that
L̃(b, t) > L̃(λ∗, t) for all t > tb.

At all times t > max{ta, tb}
4
= t(ε), the value of L̃(λ∗, t)

is less than both L̃(a, t) and L̃(b, t). By Proposition 1(b), the
function L̃(λ, t) is convex in λ, and thus the minimum of
L̃(λ, t) at any t > t(ε) must be in [a, b] = [λ∗ − ε, λ∗ + ε].

Thus, for every ε > 0, we can always find a t(ε) where
for all t > t(ε) we have that λ̂(t) is within ε of λ∗, and thus

lim
t→∞

λ̂(t) = λ∗ (62)

completing the proof.

This also shows that the inherent belief estimator from
Definition 4 almost surely converges to the correct result.

Theorem 3. Almost surely, if γi 6= 1, then

lim
t→∞

φ̂i(t) = φi (63)

Proof. This is equivalent to

lim
t→∞

(
t−1∑
τ=1

µi(τ)

)
− (t− 1)β̄i(t)

{
< 0 if φi = 1

> 0 if φi = 0
(64)

The result follows from three facts:
(i) letting λ∗i = log(γ∗i ) and λ̂i(t) = arg minλL̃i(λ, t) =

log(γ̂i(t)) be the maximum likelihood estimator of λ∗i ,
then limt→∞ λ̂i(t) = λ∗i ;

(ii) for any t, L̃i(λ, t) is strictly convex in λ;
(iii)

(∑t−1
τ=1 µi(τ)

)
− (t− 1)β̄i(t) = ∂

∂λ L̃i(λ, t)
∣∣∣
λ=0

.

Fact (i) follows directly from Theorem 2 and (ii) is Propo-
sition 1(b). Fact (ii) also shows that

λ̂i(t) > 0 ⇐⇒ ∂

∂λ
L̃i(λ, t)

∣∣∣
λ=0

< 0 ; (65)

and (assuming λ∗i 6= 0), φi = 1 ⇐⇒ λ∗i > 0. Thus facts (i)
and (ii) show that (almost surely)

φi = 1 =⇒ λ̂i(t) > 0 for all sufficiently large t (66)

=⇒ ∂

∂λ
L̃i(λ, t)

∣∣∣
λ=0

< 0 for all sufficiently large t (67)

Thus, only fact (iii) remains to be shown.
Using L̃i(λ, t) =

∑
t

˜̀
i(λ, t) and

˜̀
i(λ, t) = log

(
1 + e−ψ̃i,t(λ+νi(t−1))

)
(68)

we evaluate the derivative at λ = 0, we get

∂

∂λ
˜̀
i(λ, t)

∣∣∣∣
λ=0

=
−ψ̃i,t

eψ̃i,tνi(t−1) + 1
(69)

=


1

1−µi(t−1)

µi(t−1)
+1

if ψ̃i,t = −1

−1
µi(t−1)

1−µi(t−1)
+1

if ψ̃i,t = 1
(70)

=

{
µi(t− 1) if ψ̃i,t = −1

µi(t− 1)− 1 if ψ̃i,t = 1
(71)

= µi(t− 1)− I{ψi,t = 1} . (72)

And thus the derivative of the entire negative log-
likelihood evaluated at 0 is given by

∂

∂λ
L̃i(λ, t)

∣∣∣∣
λ=0

=

t∑
τ=2

µi(τ − 1)− I{ψi,t = 1} (73)

=

(
t−1∑
τ=1

µi(τ)

)
− (t− 1)β̄i(t) . (74)

This shows (iii) and completes the proof.
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