
Estimating True Beliefs from Declared Opinions
Jennifer Tang, Aviv Adler, Amir Ajorlou, and Ali Jadbabaie

Abstract—Social networks often exert social pressure, causing
individuals to adapt their expressed opinions to conform to
their peers. An agent in such systems can be modeled as
having a (true and unchanging) inherent belief but broadcasts
a declared opinion at each time step based on her inherent
belief and the past declared opinions of her neighbors. An
important question in this setting is parameter estimation: how
to disentangle the effects of social pressure to estimate inherent
beliefs from declared opinions. To address this, Jadbabaie et
al. [1] formulated the interacting Pólya urn model of opinion
dynamics under social pressure and studied it on complete-graph
social networks using an aggregate estimator, and found that
their estimator converges to the inherent beliefs unless majority
pressure pushes the network to consensus. In this work, we study
this model on arbitrary networks, providing an estimator which
converges to the inherent beliefs even in consensus situations.
Finally, we bound the convergence rate of our estimator in both
consensus and non-consensus scenarios; to get the bound for
consensus scenarios (which converge slower than non-consensus)
we additionally found how quickly the system converges to
consensus.

I. INTRODUCTION

Opinion dynamics is the study of how people’s opinions
evolve over time as they interact with others on social net-
works. This can provide insights and predictions into how
public opinion develops on a variety of political, social,
commercial and cultural topics, as well as guide marketing
and political campaign strategies. For instance, Ancona et al.
[2] used opinion dynamics models to study the spread of
vaccine hesitancy and to develop marketing strategies to help
combat it. Many common opinion dynamics models assume
that people are truthful in the opinions they share. However,
in reality this is not always the case, as people often alter their
expressed views to better fit in with their social environment,
which in turn feeds back into the social environment. This
social pressure feedback loop can cause publicly-expressed
opinions to become arbitrarily uniform over time [3], which
poses difficulties in estimating and studying the underlying
true public opinion.

In this work, we study an interacting Pólya urn model for
opinion dynamics under social pressure, originating from [1]
and developed further in [4], which captures a system of agents
with stochastic behaviors who alter their publicly-expressed
opinions to conform to their neighbors. This model consists
of n agents on a fixed network communicating on an issue
with two basic sides, denoted 0 and 1. Each agent i has an
inherent (true and unchanging) belief ϕi, which is either 0 or
1, and a bias parameter γi indicating the ratio of the strength
of their attachment to opinions 1 and 0, with γi = 1 indicating
a neutral position (equal preference for both, though we will
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assume that no agents are neutral) and ϕi = 1 ⇐⇒ γi > 1
(higher preference for 1 than 0). The agents communicate their
declared opinions to their neighbors at discrete time steps: at
each integer step t, each agent i (simultaneously) declares an
opinion ψi,t ∈ {0, 1}; the declarations of the agents at any
t are random and independent, and each agent’s probability
of declaring 1 is determined by her bias parameter, inherent
belief, and the opinions declared by her neighbors in the past.
These terms are fully defined in Section II-B.

This can represent both scenarios where agents alter their
statements (contrary to their actual beliefs) to better fit in to
their social environment and scenarios where the agents update
their beliefs according to what they hear from others but retain
a bias towards their original beliefs.

A. Background Literature

We refer the reader to [1] and [4] for in-depth discussion
of prior work. Here, we discuss some relevant highlights.

A highly influential opinion dynamics model is the DeGroot
model [5], where agents in a network average their neighbors’
opinions (and their own) in an iterative manner. This causes
the entire group to asymptotically approach a state where they
all share a single opinion (which may be between 0 and 1),
a phenomenon known as consensus. However, consensus is
not always reached in real social networks, as people remain
attached to their original or true beliefs, and other opinion
dynamics models were created to reflect this. Among these is
the Friedkin-Johnsen model [6], in which each agent updates
her opinion at each step by averaging her neighbors’ opinions
(as in the DeGroot model) and then averaging the result with
her initial opinion.

Besides the interacting Pólya urn model in [1], several other
models also include agents that internally retain their initial
opinions in some form [7], [8], [9]. Ye et al. [9] study a model
in which each agent has both a private and expressed opinion,
which evolve differently. Agents’ private opinions evolve using
the same update as in the Friedkin-Johnsen model, while their
public opinions are updated as the average of their own private
opinion and the average public opinion of their neighbors.
Both [3] and [9] are very similar to [1], since agents’ expressed
opinions may not match their internal beliefs. However, unlike
[1], [9] assumes opinions are precisely expressed on a con-
tinuous interval, which is unrealistic for certain applications.
On the other hand [3] works with binary opinions like [1],
though with a significantly more complex model that includes
additional terms and parameters.

The analysis in [1] is primarily focused on studying whether
inherent beliefs are recoverable using an aggregate estimator.
This is carried out by establishing the convergence of the
dynamics in the network and analyzing the equilibrium state,
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though the analysis is limited to the complete graph and
all agents having the same amount of resistance to social
pressure. In [4], the authors generalize this result to allow
for any network structure and for any bias parameters. They
found that the proportion of declared opinions of each agent
converges almost surely to an equilibrium point in any network
configuration. They also determined necessary and sufficient
conditions for a network to approach consensus. We note that
the definition of consensus used for the interacting Pólya urn
model is that all agents will declare a single opinion (all ‘0’
or all ‘1’) with probability tending to 1.

B. Contributions

In [1], the authors consider when it is possible to asymp-
totically determine the inherent beliefs of the agents based on
their history of declared opinions and those of their neighbors.
They study a simplified case in which the social network is
an (unweighted) complete graph and all agents have the same,
known, degree of bias towards their true beliefs, and consider
a specific aggregate estimator which tries to first estimate the
proportion of agents with true belief 1 and then determine
which agents those are. In this setting, they show that the
aggregate estimator estimates the proportion of agents with
true belief 1 if and only if the agents do not asymptotically
approach consensus (where a large majority causes all agents
declare the same opinion with probability approaching 1).

In this work, we consider the general setting:
1) the social network is an arbitrary weighted (and con-

nected) undirected graph, possibly with self-loops;
2) the agents can have heterogeneous bias parameters, indi-

cating different levels of resistance to social pressure or
certainty in their inherent beliefs, which are not known.

This greatly increases the applicability of the model, as real-
life social networks have a variety of different structures and
people often react very differently to social pressure.

In this setting, we study the maximum likelihood estimator
(MLE), which estimates bias parameters from the history of
declared opinions, rather than the aggregate estimator from [1].
We also derive a simplified estimator for inherent beliefs from
the MLE, which takes a clean form with a low-dimensional
sufficient statistic, consisting of two values which are simple to
update at each step. We show that if the history of the agents’
declared opinions is known, the MLE and the inherent belief
estimator almost surely asymptotically converges to the correct
inherent beliefs and bias parameters of all the agents in all
such networks (even when the network approaches consensus).
This resolves the fundamental question posed in [1] of whether
such estimation is always possible. We also show bounds on
the convergence rate of the inherent beliefs estimator. These
bounds are slower when the system approaches consensus,
reflecting the loss of information in the declared opinions.

II. MODEL DESCRIPTION

We use the model from [4] which is a slight generalization
of the model from [1]. We refer the reader to [4, Sec II] for
more details on the model and in particular [4, Sec II F] for
intuition on the model. Some changes from [1] include the

addition that each edge in the network has a (nonnegative)
weight denoting how much the two agents’ declared opinions
influence each other and the use of bias parameters instead of
honesty parameters (which are different, but mathematically
equivalent, representations of the same process).

A. Graph Notation

Let undirected graph G = (V,E) (possibly including self-
loops) be a network of n agents (corresponding to the vertices)
labeled i = 1, 2, . . . , n. For each edge (i, j) ∈ E, there is a
weight ai,j ≥ 0, where by convention ai,j = 0 if (i, j) ̸∈ E.
We denote the matrix of these weights as A ∈ Rn×n. We
denote the weighted degree of vertex i as deg(i) =

∑
j ai,j .

The vector of degrees of all agents is denoted as

d
△
= [deg(1), deg(2), . . . , deg(n)] (1)

and its diagonalization is denoted D = diag(d), i.e. the
diagonal matrix of the degrees. Let the normalized adjacency
matrix be W = D−1A whose entries are wi,j . We assume
that W is irreducible (G is connected). We denote the largest
eigenvalue of a matrix by λmax(·) (the matrices we use this
with have real eigenvalues). Let I{·} be the indicator function.

B. Inherent Beliefs and Declared Opinions

Each agent i has an inherent belief ϕi ∈ {0, 1}, which does
not change. At each time step t, each agent i (simultaneously)
announces a declared opinion ψi,t ∈ {0, 1}. We denote by Ht

the history of the process, consisting of all ψi,τ for τ ≤ t.
Each agent has a bias parameter γi ∈ (0,∞) where γi ̸= 1
(every agent has a preference for either 1 or 0), which satisfies
the relationship γi > 1 ⇐⇒ ϕi = 1.

The declarations ψi,t are based on a probabilistic rule which
we will give after the following definitions: for t ∈ Z+ let

M0
i (t) = m0

i +

t∑
τ=2

n∑
j=1

ai,jI[ψi,τ = 0] (2)

M1
i (t) = m1

i +

t∑
τ=2

n∑
j=1

ai,jI[ψi,τ = 1] (3)

where m0
i ,m

1
i > 0 represent the initial settings of the model.

(Initial settings are used in place of declared opinions at time
1. Some requirements for the initial settings are given shortly.)
The quantity M0

i (t) is the (weighted) number of times agent
i observed a neighbor declare opinion 0 up to step t (plus
initial settings), and M1

i (t) is the total of observed 1’s. If
each ai,j ∈ {0, 1}, then M0

i (t) and M1
i (t) represent counts

of agent’s neighbors’ declarations (plus initial settings). The
ratio M1

i (t)/M
0
i (t) can be viewed as the social pressure on

agent i to choose opinion 1. Then for t > 1, let Mi(t)
△
=

m0
i +m1

i + (t− 1) deg(i) =M0
i (t) +M1

i (t) and define

µ0
i (t)

△
=M0

i (t)/Mi(t) and µ1
i (t)

△
=M1

i (t)/Mi(t) . (4)

The parameter µ1
i (t) is essentially the sufficient statistic that

summarizes the proportion of (weighted) declared opinions
observed by agent i up to time t. Since µ0

i (t) = 1−µ1
i (t), we

simplify the notation to µi(t)
△
= µ1

i (t) .
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We define the function (note that µ, γ are scalars)

f(µ, γ)
△
=

γµ

1 + (γ − 1)µ
=

1

1 + 1
γ

(
1
µ − 1

) . (5)

The probabilistic rule for declared opinions ψi,t+1 is

ψi,t+1
△
=

{
1 with probability f(µi(t), γi)
0 with probability 1− f(µi(t), γi)

. (6)

Note that the bias parameter γi is always defined as agent
i’s bias towards opinion 1. However, the model is symmetric
in the following way: a γ bias towards 1 is equivalent to a
1/γ bias towards 0,1 which is captured by the equation

f(µ1
i (t), γ) = 1− f(µ0

i (t), 1/γ) . (7)

We also define a sufficient statistic that summarizes agent
i’s declarations. Let b0i , b

1
i > 0 (the initialization) be such that

b0i + b1i = 1 for each i. Let

β0
i (t) =

b0i
t
+

1

t

t∑
τ=2

(1− ψi,τ ) (8)

β1
i (t) =

b1i
t
+

1

t

t∑
τ=2

ψi,τ . (9)

These are counts and proportions of declarations of each
opinion (or “time-averaged declarations”) for each agent (plus
initial conditions). As before, βi(t)

△
= β1

i (t). We define

m0
i =

n∑
j=1

ai,jb
0
j and m1

i =

n∑
j=1

ai,jb
1
j , (10)

so it follows that

µi(t) =
1

deg(i)

n∑
j=1

ai,jβj(t) . (11)

We denote the corresponding vectors over the agents as:

µ(t)
△
= [µ1(t), ...µn(t)]

⊤ and β(t)
△
= [β1(t), ...βn(t)]

⊤ (12)

C. Evolution of Declared Ratio

Given the history Ht, we can write the expected value of
the next β(t+ 1) as

E[β(t+ 1)− β(t)] = 1

t+ 1
(F (β(t),γ)− β(t)) (13)

where F (β(t),γ) = [F1(β(t),γ), . . . , Fn(β(t),γ)] and

Fi(β(t),γ) = f

 1

deg(i)

n∑
j=1

ai,jβj(t), γi

 . (14)

The equilibrium points of the expected dynamics are given
by the solutions to the equations

0 = (γi − 1)βiµi + βi − γiµi (15)

where i ∈ {1, . . . , n} and µi =
1

deg(i)

∑n
j=1 ai,jβj . (See [4,

Section III] for more discussion.)

1The honesty parameter in [1] is equivalent to the bias towards the agent’s
true belief, i.e. a honesty parameter of γ with a true belief of 0 corresponds
to a bias parameter of 1/γ.

D. Consensus

An important term for this work is consensus, which needs
to be defined appropriately for our stochastic system.

Definition 1. Consensus is approached if

β(t) → 1 or β(t) → 0 as t→ ∞ . (16)

Since βi(t) represents the ratio of 1’s agent i has declared,
consensus is approached when this ratio goes to 0 or 1.

We let the diagonal matrix with γ along the diagonal be

Γ = diag(γ) (17)

and define J1 = Γ−1W and J0 = ΓW . In [4], it is shown
that consensus β(t) → 1 occurs when λmax(J1) ≤ 1 and
β(t) → 0 occurs when λmax(J0) ≤ 1.

III. ESTIMATORS FOR INFERRING INHERENT BELIEFS AND
BIAS PARAMETERS

One of the key questions in [1] is whether it is possible to
infer the inherent beliefs of agents from the history of declared
opinions. The authors of [1] studied the interacting Pólya urn
model on the complete graph using an aggregate estimator
which keeps track of the fraction of declared opinions of
all agents throughout time, and showed that this estimator
may not converge to the inherent belief of all agents if
they approach consensus. Consensus presents difficulties for
estimators since asymptotically all agents approach the same
behavior regardless of their inherent beliefs.

However, we show that estimators based maximum likeli-
hood estimation (MLE) almost surely infer the inherent belief
of any agent i in the limit, even when consensus is approached.
This fact is connected to [4, Lemma 2] – each agent declares
both opinions infinitely often, yielding sufficient information
to determine inherent beliefs over time.

Additionally, unlike [1], our formulation also allows agents
to have different bias parameters. Thus, it is natural to ask
how to estimate the bias parameter of any agent. Intuitively,
after enough time has passed, the values of µi(t) and βi(t)
will converge to values close to the equilibrium point. In such
a case, we can use (15) to estimate the bias parameter γi and
inherent belief ϕi with

γ̂eqi (t) =
βi(t)

1− βi(t)

1− µi(t)

µi(t)
(18)

ϕ̂eqi (t) = I{βi(t) < µi(t)} (19)

These estimators are asymptotically consistent, i.e.

lim
t→∞

γ̂eqi (t) = γi and lim
t→∞

ϕ̂eqi (t) = ϕi (20)

when the dynamics converge to an interior equilibrium point
(see [4] for details). However, plugging the equilibrium values
into (18) is not well-defined if βi(t) and µi(t) both converge
to either 0 or 1, i.e. when consensus is approached. This shows
that more careful analysis needs to be done in order to estimate
the bias parameters and inherent beliefs in all circumstances.

In the next sections, we develop estimators for both inherent
beliefs and bias parameters which work even when agents in
the network approach consensus. After that, we also discuss
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some results on the convergence rates of these parameters un-
der consensus conditions. To determine this, we also determine
the rate at which the system approaches consensus.

IV. DEFINITION OF ESTIMATORS

We assume at time t the estimator has at its disposal the
history of agent i and agent i’s neighbors’ declarations up to
and including time t (recall we denote as Ht). Given Ht−1,
we can compute exactly the values of

P [ψi,t = 1|Ht−1] = f(µi(t− 1), γi) . (21)

Note that in general P [ψi,t = 1] is a random variable de-
pendent on Ht−1, while P [ψi,t = 1|Ht−1] is constant. The
sequence H0 ⊆ H1 ⊆ . . . is also a filtration.

Our estimator to predict γi is based on the maximum log-
likelihood estimator:

Definition 2. The single-step negative log-likelihood for a
given agent i at time t > 1 and parameter γ is

ℓi(γ, t)
△
= −

(
I{ψi,t = 1} log(f(µi(t− 1), γ))

+ I{ψi,t = 0} log(1− f(µi(t− 1), γ))

)
(22)

The negative log-likelihood for a given agent i at time t and
parameter γ ∈ (0,∞) is

Li(γ, t)
△
=

t∑
τ=2

ℓi(γ, τ) . (23)

Note that γi is the actual bias parameter of agent i, whereas
γ represents a proposed value whose loss we are measuring.
The MLE for bias parameter γi gives the value of γ that
maximizes the likelihood of agent i’s declarations, which also
minimizes the negative log-likelihood.

Definition 3 (Estimator for Bias Parameter). The maximum
likelihood estimator (MLE) for the bias parameter γ at time
t is given by

γ̂i(t)
△
= argmin

γ
Li(γ, t) (24)

Since the inherent belief of an agent is defined as whether
the bias parameter is greater than or less than 1, given the
MLE estimator, we can always predict the inherent belief of
agent i by taking sign(log(γ̂i(t))).

However, if we assume that γi ̸= 1, and are only interested
estimating the inherent beliefs, this reduces to a simpler form.
Let β̄i(t) = 1

t−1

∑t
τ=2 I[ψi,τ = 1], which a similar quantity

to βi(t) except that the arbitrary initial conditions are not
included. (If t is large, then difference between βi(t) and β̄i(t)
is negligible.)

Definition 4 (Inherent Belief Estimator). Let

ϕ̂i(t) =
1

2
sign

(
(t− 1)β̄i(t)−

(
t−1∑
τ=1

µi(τ)

))
+

1

2
. (25)

We note that the transformation of multiplying by 1/2
and adding 1/2 is simply to map the output of the sign(·)

operation to 0 and 1. Fundamentally, this estimator requires
only comparing

β̄i(t) >
1

t− 1

t−1∑
τ=1

µi(τ) . (26)

Note that ϕ̂i(t) does not depend on knowing the bias parame-
ter, as it only assumes that γ ̸= 1, and the estimator is simple
to compute as it only requires the aggregate count of an agent’s
declarations and her neighborhood’s declarations.

Intuitively, this compares agent i’s actual declarations
against its expected declarations if γi = 1 (i.e. if the agent
were unbiased); however, the consistency of this estimator is
derived from that of the MLE for the bias parameter given in
Definition 3. We show this derivation in Section VII.

Lastly, note that while both the estimator in Definition 4
and the estimator in (19) have the same asymptotic values
when the network does not approach consensus, only the
estimator in Definition 4 is guaranteed to work when the
network approaches consensus.

A. Preliminaries: Bounds on µi(t)

The following property is essential to our the analysis:
• We have Mi(t) = m0

i + m1
i + (t − 1) deg(i). This is

because each of agent i’s neighbors contributes a signal
of weight ai,j to agent i at each time step.

• We know that

µi(t) ∈
[

1

Mi(t)
, 1− 1

Mi(t)

]
. (27)

As an important consequence, for a constant κ,

µi(t) ≥
κ

t
and 1− µi(t) ≥

κ

t
. (28)

The constant κ = (maxi deg(i))
−1 always works.

B. Negative Log-Likelihood Properties

We analyze in depth the MLE which is key to our anal-
ysis. We start by introducing an alternative representation
for ℓi(γ, t). Let ψ̃i,t = 2ψi,t − 1, which takes values −1
and +1, instead of 0 and 1, which gives a more symmetric
representation of the process.

Since f(µi(t), γ) is still the probability of ψ̃i,t = 1,

ℓi(γ, t) = − log

(
1

1 + e
−ψ̃i,t log

(
γ

µi(t−1)

1−µi(t−1)

)
)

(29)

= log

(
1 + e

−ψ̃i,t log
(
γ

µi(t−1)

1−µi(t−1)

))
. (30)

We reparameterize γ and µi(t) as follows:

χ
△
= log γ and νi(t)

△
= log

µi(t)

1− µi(t)
. (31)

Using χ symmetrizes the bias parameter across R (so χ = 0
represents an unbiased agent).

We thus define some quantities which take χ = log γ as the
argument instead of γ and use them where convenient:

ℓ̃i(χ, t)
△
= ℓi(γ, t) and L̃i(χ, t)

△
= Li(γ, t) . (32)
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For this section to Section VI we will fix i and then use γ1
and γ2 to represent any two possible choices for γi. Define

Z(γ1, γ2, t)
△
= Li(γ2, t)− Li(γ1, t) . (33)

If Z(γ1, γ2, t) is positive, intuitively, γ1 is more likely than
γ2, so we expect γ1 to be the true parameter. Indeed, if γ1 is
the true parameter, then

E[Z(γ1, γ2, t)] =
t∑

τ=2

E
[
I{ψi,τ = 1} log f(µi(τ − 1), γ1)

f(µi(τ − 1), γ2)

+ I{ψi,τ = 0} log 1− f(µi(τ − 1), γ1)

1− f(µi(τ − 1), γ2)

∣∣∣Hτ−1

]
(34)

=

t∑
τ=2

DKL(f(µi(τ − 1), γ1)∥f(µi(τ − 1), γ2)) (35)

which is always a nonnegative quantity.

Proposition 1. Li(γ, t) is a stochastic process which satisfies
the following properties:
(a) For fixed γ, Li(γ, t) (and L̃i(χ, t)) is an increasing

function in t
(b) For fixed t, L̃i(χ, t) is a strictly convex function in χ
(c) ℓi(γ, t) ∈ [0,∞), and for a fixed t,

• If ψ̃i,t = −1, then ℓi(γ, t) is a decreasing function in
γ (and ℓ̃i(χ, t) is decreasing in χ)

• If ψ̃i,t = 1, then ℓi(γ, t) is an increasing function in
γ (and ℓ̃i(χ, t) is increasing in χ)

(d) If there exists t1, t2 ≤ t where ψ̃i,t1 = 1 and ψ̃i,t2 = −1,
then L̃i(χ, t) has unique finite minimum as a function in
χ. Also Li(γ, t) has the same minimum at γ = eχ.

(e) If γ∗ is the true (bias) parameter, then for any γ ̸= γ∗,

E[ℓi(γ, t)|Ht−1] > E[ℓi(γ∗, t)|Ht−1] (36)

Proof.
(a) For each t, ℓi(γ, t) is nonnegative, so Li(γ, t) must be

increasing. (Similar for L̃i(χ, t)).
(b)

d2

dχ2
ℓ̃i(χ, t) =

d2

dχ2
log
(
1 + e−ψ̃i,t(χ+νi(t−1))

)
(37)

=
d

dχ

−ψ̃i,te−ψ̃i,t(χ+νi(t−1))

1 + e−ψ̃i,t(χ+νi(t−1))
(38)

= −ψ̃i,t
d

dχ

1

1 + eψ̃i,t(χ+νi(t−1))
(39)

= ψ̃2
i,t

eψ̃i,t(χ+νi(t−1))

(1 + eψ̃i,t(χ+νi(t−1)))2
(40)

=
eψ̃i,t(χ+νi(t−1))

(1 + eψ̃i,t(χ+νi(t−1)))2
(41)

> 0 . (42)

Note that ψ̃2
i,t = 1. Thus ℓ̃i(χ, t) is convex for all t, and

so L̃i(χ, t) =
∑t
τ=2 ℓ̃i(χ, τ) is also convex.

(c) Using (30), changing the sign of ψ̃i,t changes the sign on
the exponent. If ψ̃i,t is positive, then the quantity in the
exponent is decreasing as γ increases. The range is [0,∞)
since the quantity in the log is greater than or equal to 1.

(d) Follows from (b) and (c). The function L̃i(χ, t) must be
convex and go to infinity at both ends. Since Li(γ, t) =
L̃i(χ, t), it has the same minimum.

(e) Result follows from (35) setting γ1 = γ∗ and γ2 = γ. The
KL divergence must always be nonnegative and equal to
zero iff γ1 = γ2.

V. LOG-LIKELIHOOD RATIOS AND MARTINGALES

To properly analyze the quantity (33), we need the following
definitions. Unless otherwise stated, γ1 is the true parameter
from which the random data is generated. The following
definitions will be used starting from this section to Section VI.
The loss difference is

Z(t)
△
= Z(γ1, γ2, t) (43)

z(t)
△
= z(γ1, γ2, t)

△
= ℓi(γ2, t)− ℓi(γ1, t) . (44)

The predictable expected value is

X(t)
△
= X(γ1, γ2, t)

△
=

t∑
τ=2

E[z(τ)|Hτ−1] (45)

x(t)
△
= x(γ1, γ2, t)

△
= E[z(t)|Ht−1] . (46)

The loss martingale is

Y (t)
△
= Y (γ1, γ2, t)

△
= X(t)− Z(t) (47)

y(t)
△
= y(γ1, γ2, t)

△
= x(t)− z(t) . (48)

The predictable quadratic variation is

W (t)
△
=W (γ1, γ2, t)

△
=

t∑
τ=2

Var[z(τ)|Hτ−1] (49)

=

t∑
τ=2

Var[y(τ)|Hτ−1] (50)

w(t)
△
= w(γ1, γ2, t)

△
= Var[z(t)|Ht−1] (51)
= Var[y(t)|Ht−1] . (52)

We also let χ1 = log γ1 and χ2 = log γ2. We give some
preliminary results about these processes.

Proposition 2. We have the following properties:
(a) Z(t) is a submartingale and X(t) is strictly increasing
(b) Y (t) is a martingale
(c) W (t) is strictly increasing

Proof.
(a) The two statements are equivalent. From Proposition 1 (e),

we have

x(t) = E[ℓi(γ2, t)|Ht−1]− E[ℓi(γ1, t)|Ht−1] > 0 . (53)

(b) This follows from the definitions of Y (t).

E[y(t)|Ht−1] = E[x(t)− z(t)|Ht−1] (54)
= E[E[z(t)|Ht−1]− z(t)|Ht−1] = 0 (55)
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and

E[Y (t)|Ht−1] = Y (t− 1) + E[y(t)|Ht−1] = Y (t− 1) .
(56)

(c) Because of the bounds on µi(t) given in (27), each ℓi(γ, t)
must be non-constant so long as γ ̸= 1. Then z(t) is non-
constant so long as γ1 ̸= γ2. The quantity w(t) is the
conditional variance of z(t) which therefore must always
be positive. The quantity W (t) is a sum of w(t) so it must
be increasing.

Next we determine bounds on our quantities. First we bound
the predictable expected value X(t). Since γ1 is the true bias,
like in (35), we can write

x(t) = DKL (f(µi(t), γ1)∥f(µi(t), γ2)) . (57)

Lemma 1. For each time t, we can bound

x(t) ≥
(
√
γ1 −

√
γ2)

2µi(t)(1− µi(t))

max{γ1+γ22 , 1}2
. (58)

Proof. To start, since x(t) can be expressed as a KL diver-
gence, we will lower bound this KL divergence by using
squared Hellinger distance, specifically,

DKL(P∥Q) ≥ 2H2(P,Q) (59)

which we can derive from [10, 7.3].
For discrete distributions p and q over set [1, . . . , k],

H2(p, q) = 1−
k∑
i=1

√
p(i)q(i) . (60)

This gives that

H2(f(µ, γ1), f(µ, γ2)) (61)

= 1−
√

γ1µγ2µ

(γ1µ+ (1− µ))(γ2µ+ (1− µ))

−

√
(1− µ)(1− µ)

(γ1µ+ (1− µ))(γ2µ+ (1− µ))
(62)

= 1−
√
γ1γ2µ+ (1− µ)√

(γ1µ+ (1− µ))(γ2µ+ (1− µ))
. (63)

Let

A =
√
γ1γ2µ+ (1− µ) (64)

B =
√

(γ1µ+ (1− µ))(γ2µ+ (1− µ)) . (65)

Note that B > A since squared Hellinger distance is always
between 0 and 1. Then

H2(f(µ, γ1), f(µ, γ2)) =
B −A

B
(66)

=
B2 −A2

B(B +A)
≥ B2 −A2

2B2
. (67)

We can compute

B2 −A2 (68)

= (γ1µ+ (1− µ))(γ2µ+ (1− µ))− (
√
γ1γ2µ+ (1− µ))2

(69)
= (γ1 + γ2 − 2

√
γ1γ2)µ(1− µ) (70)

= (
√
γ1 −

√
γ2)

2µ(1− µ) (71)

and using AM-GM

B2 ≤ (γ1µ+ (1− µ))(γ2µ+ (1− µ)) (72)

≤
(
γ1 + γ2

2
µ+ (1− µ)

)2

≤
(
max

{
γ1 + γ2

2
, 1

})2

.

(73)

This results in

H2(f(µ, γ1), f(µ, γ1)) ≥
(
√
γ1 −

√
γ2)

2µ(1− µ)

2max
{
γ1+γ2

2 , 1
}2 . (74)

and combining this with (59) and (57) completes the proof.

Lemma 2. If γ1 ̸= γ2, then there is some t0 = t0(γ1, γ2) and
c0 = c0(γ1, γ2) > 0 such for all t > t0

x(t) ≥ c0(κ/t) . (75)

Additionally, there are some constants k, t1 (which depend
on t0, γ1, γ2) such that for all t > t1,

X(t) > kc0κ log(t) . (76)

Proof. Using Lemma 1, let

c0 =
1

2

(
√
γ1 −

√
γ2)

2

max{γ1+γ22 , 1}2
. (77)

Then using (27),

µi(t)(1− µi(t)) ≥
1

2
min{µi(t), 1− µi(t)} ≥ 1

2

κ

t
. (78)

This gives that x(t) ≥ c0(κ/t) which implies

X(t) =

t∑
s=2

x(s) ≥
t∑

s=t0

c0
κ

s
≥ k0c0κ log(t) . (79)

Constant k0 accounts for some loss which occurs since X(t)
is a sum of terms x(t), and for small t, the results may not
be exact.

The stochastic process Z(γ1, γ2, t) is a likelihood ratio
test for determining whether γ1 or γ2 is the true parameter.
Combining Lemma 2 and (35) gives that for γ1 ̸= γ2,

lim
t→∞

E[Z(γ1, γ2, t)] = lim
t→∞

X(γ1, γ2, t) = ∞ . (80)

We can use (27) to replace κ in the bound for X(t).
The likelihood ratio Z(γ1, γ2, t) on average is very large

as t gets large. This means that Z(γ1, γ2, t) can be used to
distinguish which of the two parameters, γ1 or γ2, is the
true parameter governing the data. If Z(γ1, γ2, t) is very large
(positive), then γ1 is the true parameter. If Z(γ1, γ2, t) is very
small (negative), then γ2 is the true parameter.
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Remark 1. The fact that E[Z(t)] → ∞ heavily relies on the
fact that µi(t) ∈ [κ/t, 1− κ/t], as discussed in Section IV-A.

If instead, µi(t) scales as 1/t2, then the limit of E[Z(t)]
would be finite. In such a scenario, randomness might make
Z(t) unreliable for distinguishing between γ1 and γ2.

Some situations where the condition µi(t) ∈ [κ/t, 1− κ/t]
might not hold are when the full stochastic dynamics puts
higher weight on previously declared opinions or if the net-
work adds more agents at each time step t.

Next we bound the loss martingale Y (t).

Lemma 3. For any t, we have

|Z(t)− Z(t− 1)| ≤
∣∣∣∣log γ1γ2

∣∣∣∣ = |χ1 − χ2| (81)

|Y (t)− Y (t− 1)| ≤
∣∣∣∣log γ1γ2

∣∣∣∣ = |χ1 − χ2| . (82)

Proof. Let µ = µi(t). Since γ2 ̸= γ1, we know that either:

(i) log
(
f(µ,γ1)
f(µ,γ2)

)
< 0 < log

(
1−f(µ,γ1)
1−f(µ,γ2)

)
(if γ1 < γ2),

(ii) log
(

1−f(µ,γ1)
1−f(µ,γ2)

)
< 0 < log

(
f(µ,γ1)
f(µ,γ2)

)
(if γ1 > γ2).

Since

Z(t) =

{
Z(t− 1) + log

( f(µ,γ1)
f(µ,γ2)

)
if ψi,t = 1

Z(t− 1) + log
( 1−f(µ,γ1)
1−f(µ,γ2)

)
if ψi,t = 0

(83)

and by∣∣∣∣log(f(µ, γ1)f(µ, γ2)

)
− log

(
1− f(µ, γ1)

1− f(µ, γ2)

)∣∣∣∣ (84)

=

∣∣∣∣log γ1γ2 γ2µ+ (1− µ)

γ1µ+ (1− µ)
− log

γ2µ− (1− µ)

γ1µ+ (1− µ)

∣∣∣∣ (85)

=

∣∣∣∣log γ1γ2
∣∣∣∣ (86)

this means that Z(t−1) and Z(t) are both in the same
∣∣∣log γ1

γ2

∣∣∣-
sized interval (Z(t) is one of the endpoints and Z(t − 1) is
somewhere in the middle). Additionally, Y (t) (given history
Ht−1) is also a binary random variable whose possible out-
comes are

∣∣∣log γ1
γ2

∣∣∣ apart, and since E[Y (t) |Ht−1] = Y (t−1)

this interval also must contain Y (t−1), and we are done.

Finally, we bound the predictable quadratic variation W (t).
Since W (t) is defined as a variance, the following standard
identity is helpful for finding an upper bound. Suppose that
variable X takes two values, a with probability p and b with
probability (1− p), then Var[X] = p(1− p)(a− b)2. Applied
to w(t), we get that

w(t) =
γ1µi(t)(1− µi(t))

(1 + (γ1 − 1)µi(t))2

(
log

γ1
γ2

)2

. (87)

Lemma 4. When γ1 ̸= γ2, there exists a constant c1 =
c1(γ1, γ2) > 0 and t1 such that for all t > t1

w(t) ≤ c1x(t) . (88)

This also implies

W (t) ≤ c1X(t) . (89)

Proof. Starting with (87), we have that

w(t) ≤
γ1

(
log γ1

γ2

)2
(min{1, γ1})2

µi(t)(1− µi(t)) (90)

≤
γ1

(
log γ1

γ2

)2
(min{1, γ1})2

max{γ1+γ22 , 1}2

(
√
γ1 −

√
γ2)2

x(t) (91)

and thus we can set

c1 =
γ1

(
log γ1

γ2

)2
(min{1, γ1})2

max{γ1+γ22 , 1}2

(
√
γ1 −

√
γ2)2

. (92)

Since W (t) is a sum of w(t) and X(t) is a sum of x(t), we
naturally have W (t) ≤ c1X(t) for all t.

VI. CONCENTRATION BY FREEDMAN’S INEQUALITY

We want to show that the test Z(t) > 0 works to distinguish
whether γ1 or γ2 is the true parameter. We do this by showing
that if γ1 is the true parameter, then almost surely Z(t) ≤ 0
(i.e. the test fails) for only finitely many t. We show this by
applying Freedman’s inquality (this formulation taken from
[11] (Thm 1.1), but originally from [12] (Thm 1.6)):

Theorem 1 (Freedman’s Martingale Inequality [11]). If Y (t)
is a martingale with steps y(t) = Y (t) − Y (t − 1) such that
|y(t)| ≤ α almost surely (and Y (0) = 0), and the predictable
quadratic variation of Y (t) is

W (t) =

t∑
τ=2

E[y(τ)2|Y (1), . . . , Y (τ − 1)] (93)

then for any s, σ2 > 0,

P[∃ t : Y (t) ≥ s,W (t) ≤ σ2] ≤ exp
( −s2/2
σ2 + αs/3

)
. (94)

This inequality is an extension of Bernstein’s inequality to
martingales, where the variance of each step is not fixed but
is itself a random variable dependent on the history.

Using Theorem 1, we get our result for our test:

Theorem 2. Let γ∗ be the true parameter. The likelihood ratio
test Z(t) = Li(γ2, t)− Li(γ1, t) is such that

Z(t)

{
> 0 if γ∗ = γ1

< 0 if γ∗ = γ2
(95)

for all but finitely many t.

Proof. For the proof, suppose that γ∗ = γ1. If γ∗ = γ2, the
same proof holds except with −Z(t).

For the purposes of finding a contradiction, assume that
Z(t) ≤ 0 infinity often. Since Z(t) = X(t)− Y (t), we have

Z(t) ≤ 0 ⇐⇒ X(t) ≤ Y (t) . (96)

Using (89) from Lemma 4, we have

X(t) ≤ Y (t) ⇐⇒ W (t) ≤ c1X(t) ≤ c1Y (t) . (97)

Now suppose there are infinite values of t where Z(t) ≤ 0.
This means there are infinite values where W (t) ≤ c1Y (t).
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From (80), we know that X(t) → ∞ as t → ∞. This means
that there is a t where X(t) > 2. In that case, we have

Y (t)− 1

2c1
W (t) ≥ X(t)− 1

2
X(t) ≥ 1 . (98)

This means that so long as t is large enough so that X(t) > 2,
we have that

Y (t)− 1

2c1
W (t) ≥ 1

=⇒ ∃s ∈ Z>0 such that
1

2c1
W (t) ≤ s ≤ Y (t) .

(99)

Let us define a set of bad times

T △
= {t > 1 : Z(t) ≤ 0, X(t) > 2} = {t̃1, t̃2, . . . } (100)

where they are ordered t̃1 < t̃2 < . . . . We assume that T is
infinite and then derive a contradiction. We define

s̃k
△
= max

s

{
s ∈ Z>0 :

1

2c1
W (t̃k) ≤ s ≤ Y (t̃k)

}
. (101)

From (99), we know such an s̃k exists for each k. In fact, we
know that s̃k = ⌊Y (t̃k)⌋ . If T is infinite, then this produces an
infinite sequence of integers s̃1, s̃2, . . . . Because X(t) → ∞,
which implies that Y (t̃k) → ∞, we have also that

lim
k→∞

s̃k = ∞ . (102)

While the sequence s̃1, s̃2, . . . could have many copies of
the same integer, the set {s : s = s̃k for some k} must be
infinite since limk→∞ s̃k = ∞. In other words, if T is infinite
there must be infinitely many positive integers s such that

Y (t) ≥ s and W (t) ≤ 2c1s . (103)

Applying Theorem 1, we get that there are infinitely many
s such that

P[∃ t : Y (t) ≥ s,W (t) ≤ 2c1s] ≤ exp
( −s2/2
2c1s+ αs/3

)
= exp

(
s

4c1 + 2α/3

)
= exp(−ξs) (104)

where ξ = 1/(4c1 + 2α/3). Lemma 3 then gives the bound

y(t) ≤
∣∣∣∣log γ1γ2

∣∣∣∣ △
= α . (105)

For each s ∈ Z>0, let event As be

As = {∃t : Y (t) > s,W (t) ≤ 2c1s} . (106)

Then,

∞∑
s=1

P[As] ≤
∞∑
s=1

exp(−ξs) <∞ (107)

and therefore by Borel-Cantelli, almost surely only finitely
many events As can occur. This is a contradiction and proves
our result.

VII. CONSISTENCY OF ESTIMATORS

The above concentration results show that the MLE (24)
γ̂i(t) converges asymptotically to the true γi.

Theorem 3. For any agent i, almost surely,

lim
t→∞

γ̂i(t) = γi . (108)

Proof. We take advantage of the alternative parameterization
of χ = log γ. Let the MLE for χ be

χ̂i(t) = argmin
χ
L̃i(χ, t) . (109)

We will show that χ̂i(t) converges to the true parameter, which
we call χi, so γ̂i(t) converges to the true γi.

For any fixed ϵ > 0, let a = χi − ϵ and b = χi + ϵ.
From Theorem 2, there exists some time ta so that L̃i(a, t) >
L̃i(χi, t) for all t > ta, and there exists some time tb so that
L̃i(b, t) > L̃i(χi, t) for all t > tb.

At all times t > max{ta, tb}
△
= t(ϵ), the value of L̃i(χi, t)

is less than both L̃i(a, t) and L̃i(b, t). By Proposition 1(b),
the function L̃i(χ, t) is convex in χ, and thus the minimum
of L̃i(χ, t) at any t > t(ϵ) must be in [a, b] = [χi− ϵ, χi+ ϵ].

Thus, for every ϵ > 0, we can always find a t(ϵ) where for
all t > t(ϵ) we have that χ̂i(t) is within ϵ of χi, and thus
limt→∞ χ̂i(t) = χi completing the proof.

This also shows that the inherent belief estimator from
Definition 4 almost surely converges to the correct result.

Theorem 4. Almost surely, if γi ̸= 1, then

lim
t→∞

ϕ̂i(t) = ϕi (110)

Proof. This is equivalent to

lim
t→∞

(
t−1∑
τ=1

µi(τ)

)
− (t− 1)β̄i(t)

{
< 0 if ϕi = 1

> 0 if ϕi = 0
(111)

The result follows from three facts:
(i) letting χi = log(γi) and χ̂i(t) = argminχL̃i(χ, t) =

log(γ̂i(t)) be the maximum likelihood estimator of χi,
then limt→∞ χ̂i(t) = χi;

(ii) for any t, L̃i(χ, t) is strictly convex in χ;
(iii)

(∑t−1
τ=1 µi(τ)

)
− (t− 1)β̄i(t) =

∂
∂χ L̃i(χ, t)

∣∣∣
χ=0

.

Fact (i) follows directly from Theorem 3 and (ii) is Proposi-
tion 1(b). Fact (ii) also shows that

χ̂i(t) > 0 ⇐⇒ ∂

∂χ
L̃i(χ, t)

∣∣∣
χ=0

< 0 ; (112)

and (assuming χi ̸= 0), ϕi = 1 ⇐⇒ χi > 0. Thus facts (i)
and (ii) show that (almost surely)

ϕi = 1 =⇒ χ̂i(t) > 0 for all sufficiently large t (113)

=⇒ ∂

∂χ
L̃i(χ, t)

∣∣∣
χ=0

< 0 for all sufficiently large t (114)

Thus, only fact (iii) remains to be shown.
Using L̃i(χ, t) =

∑
t ℓ̃i(χ, t) and

ℓ̃i(χ, t) = log
(
1 + e−ψ̃i,t(χ+νi(t−1))

)
(115)
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to evaluate the derivative (as in (38)) at χ = 0, we get

∂

∂χ
ℓ̃i(χ, t)

∣∣∣∣
χ=0

=
−ψ̃i,t

eψ̃i,tνi(t−1) + 1
(116)

=


1

1−µi(t−1)

µi(t−1)
+1

if ψ̃i,t = −1

−1
µi(t−1)

1−µi(t−1)
+1

if ψ̃i,t = 1
(117)

=

{
µi(t− 1) if ψ̃i,t = −1

µi(t− 1)− 1 if ψ̃i,t = 1
(118)

= µi(t− 1)− I{ψi,t = 1} . (119)

And thus the derivative of the entire negative log-likelihood
evaluated at 0 is given by

∂

∂χ
L̃i(χ, t)

∣∣∣∣
χ=0

=

t∑
τ=2

µi(τ − 1)− I{ψi,t = 1} (120)

=

(
t−1∑
τ=1

µi(τ)

)
− (t− 1)β̄i(t) . (121)

This shows (iii) and completes the proof.

VIII. CONVERGENCE RATES FOR INFERRING INHERENT
BELIEFS

While we have shown that the estimator for inherent beliefs
in Definition 4 will eventually correctly converge to an agent’s
inherent belief, we are also interested in how fast it converges.
Since the estimator ϕ̂i(t) only takes values of 0 and 1 (and is
therefore always exactly correct or exactly wrong) we say the
estimator converges by time t∗ if

ϕ̂i(t) = ϕi for all t ≥ t∗ . (122)

The question is: for any δ > 0, how many steps t∗ does it take
for the estimator to have a 1 − δ probability of converging?
Or, in other words, for what t∗ do we have

P
[
∃t ≥ t∗ : ϕ̂i(t) ̸= ϕi

]
≤ δ ? (123)

In this section, we give bounds for the worst-case conver-
gence rate. As in Section VI we fix the agent i and omit it
from the notation. Also as in Section VI, we assume that agent
i has inherent belief ϕi = 1 (so γi > 1).

A. Analysis for Estimator

The analysis for the convergence rate of the inherent belief
estimator is similar to the analysis above for showing the
convergence of the MLE. We use many of the same symbols
in this proof as we did for the proof in the previous section
(such as X(t), Y (t), etc.) but these will represent different
(though analogous) quantities.

Note that ϕ̂i(t) = ϕi = 1 if and only if

Z(t)
△
= (t− 1)β̄i(t)−

t−1∑
τ=1

µi(τ) > 0 . (124)

Then Z(t) is a stochastic process with differences

z(t)
△
= Z(t)− Z(t− 1) = I{ψi,t = 1} − µi(t− 1) . (125)

We then make a martingale Y (t) as in Section VI: first, the
expected updates and (cumulative) predictable expected value

x(t)
△
= E[z(t)|Ht−1] and X(t)

△
=

t∑
τ=2

x(τ) . (126)

We then derive x(t) as

x(t) = f(µi(t− 1), γi)− µi(t− 1) (127)

=
(γi − 1)µi(t− 1)(1− µi(t− 1))

1 + (γi − 1)µi(t− 1)
(128)

Note that since γi > 1 and µi(t − 1) ∈ (0, 1), we have
x(t) > 0 for all t, and hence X(t) is increasing and Z(t) is
a submartingale.

Proposition 3. If X(t) > g(t), and X(t0) > 2 for some t0,
then

P
[
∃t ≥ t∗ : ϕ̂i(t) ̸= ϕi

]
≤ δ (129)

holds for

t∗ ≥ max

{
g−1

(
1

ξi
log

1

δ(eξi − 1)

)
, t0

}
(130)

ξi =
1

4ci + 2/3
(131)

and ci = γi
γi−1 .

Proof. First, note that g must be a monotonic function. We
define

y(t)
△
= x(t)− z(t) and Y (t)

△
=

t∑
τ=2

y(τ) = X(t)− Z(t) .

(132)

Then Y (t) is a martingale, as x(t) = E[z(t)|Ht−1] =⇒
E[y(t)|Ht−1] = 0. Furthermore, the martingale Y (t) has
bounded step sizes. We define the predictable quadratic vari-
ation as:

w(t)
△
= Var[y(t)|Ht−1] and W (t)

△
=

t∑
τ=2

w(τ) (133)

Noting that (given Ht−1) the value µi(t) is fixed yields

w(t) = Var[ψi,t|Ht−1] =
γiµi(t− 1)(1− µi(t− 1))

(1 + (γi − 1)µi(t− 1))2
(134)

This then implies bounds on the ratio between w(t) and x(t):

1

γi − 1
x(t) ≤ w(t) ≤ γi

γi − 1
x(t) (135)

Since ci = γi
γi−1 , this gives

W (t) ≤ ci

t∑
τ=2

x(τ) ≤ ciX(t) (136)

Rewriting as W (t)/ci ≤ X(t), we note that X(t) ≥ 2 implies
W (t)/(2ci) ≤ X(t) − 1; this means that when X(t) ≥ 2,
if Y (t) > X(t) there must be some integer s such that
W (t)/(2ci) < s < Y (t).
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Let t0 be when X(t0) ≥ 2. For any t > t0, the estimator
being wrong then implies

Z(t) < 0 ⇐⇒ X(t)− Y (t) < 0 (137)
⇐⇒ Y (t) > X(t) (138)
=⇒ ∃s ∈ Z+ : X(t)− 1 < s < Y (t) (139)
=⇒ ∃s ∈ Z+ :W (t)/(2ci) < s < Y (t) (140)

Let event As for integer s be defined as

As = {∃t > t0 : X(t)− 1 < s < Y (t)} (141)

If As occurs, we call s a separator; by the above, for any
t > t0, if the estimator is wrong at time t there must be a
separator corresponding to t (note however that one separator s
can work for multiple t). We now apply Freedman’s Inequality
(Theorem 1) to bound the probability that any given s is a
separator:

P[As] = P[∃t > t0 : X(t)− 1 < s < Y (t)] (142)
≤ P[∃t : Y (t) ≥ s,W (t) ≤ 2cis] (143)

≤ exp

(
−s

2(2ci + 1/3)

)
. (144)

However, given some s0, we want to bound the probability
that any integer s > s0 is a separator. We thus define

Bs0 = {̸ ∃ s ∈ Z > s0 such that As holds} . (145)

Using (131) gives:

1− P[Bs0 ] =
∞∑

s=s0+1

P[As] ≤
∞∑

s=s0+1

exp (−ξis) (146)

=
e−ξi(s0+1)

eξi − 1
. (147)

If t is such that

s0 + 1 ≤ g(t) ≤ X(t) =⇒ t ≥ g−1(s0 + 1) (148)

and Bs0 holds, then Z(t) > 0 and the estimator is correct.
Thus, if (148) holds, then

P[Z(t) < 0] ≤ 1− P[Bs0 ] ≤
e−ξi(s0+1)

eξi − 1
. (149)

If we want

P[Z(t) < 0] ≤ e−ξi(s0+1)

eξi − 1
≤ δ (150)

then

e−ξi(s0+1) ≤ δ(eξi − 1) (151)

=⇒ s0 + 1 ≥ 1

ξi
log

1

δ(eξi − 1)
. (152)

Combining this with (148) gives

g(t) ≥ 1

ξi
log

1

δ(eξi − 1)
. (153)

To use Proposition 3, we need to determine how quickly
µi(t) or βi(t) approaches 0. Before doing a calculation of

this, we show what happens if we use a worst-case bound on
µi(t). Since µi(t− 1) ∈ [κ/t, 1− κ/t], we have

x(t) ≥ γi − 1

γi

1

2

κ

t
(154)

as µi(t)(1 − µi(t)) ≥ 1
2 min(µi(t), 1 − µi(t)). This implies

that for t ≥ 3,

X(t) ≥ γi − 1

γi

1

4
κ log(t) . (155)

By (155), we know that X(t) ≥ 2 when

t ≥ e
8

γi
γi−1κ

−1 △
= t0 . (156)

Then the estimator has converged with probability ≥ 1−δ for
all t such that

γi − 1

4γi
κ log(t) ≥ 1

ξi
log

1

δ(eξi − 1)
(157)

=⇒ t ≥
(

1

δ(eξi − 1)

) 4
κ

γi
γi−1

(
4

γi
γi−1+

2
3

)
= Θ((1/δ)c)

(158)

where c is a constant depending on κ and γi. Thus, we know
that for some t∗ on the order of (1/δ)c, the inherent belief
estimator converges by time t∗ with probability at least 1− δ.

However, since (155) is a lower bound, corresponding to
using the lower bound of Θ(1/t) for µi(t), the computed
convergence rate (158) is too low. This raises the question
of improving it by using better bounds on µi(t), thus yielding
a better bound of X(t) in (155). This can be divided into two
cases: consensus and non-consensus.

If the system does not approach consensus (i.e. it converges
to an interior equilibrium point) then X(t) is linear since for
large enough t, x(t) will be very close to a constant, and thus
X(t) ≥ Kt for some constant K. Using Proposition 3 then
gives that we converge for all t such that

t ≥ max

{
2

K
,
1

K

1

ξi
log

1

δ(eξi − 1)

}
= Θ

(
log

1

δ

)
(159)

(where ξi = 1
4ci+2/3 as defined in proposition 3).

When the system approaches consensus X(t) will be sub-
linear as µi(t) → 0 as t → ∞; however, by analyzing the
rate of convergence to consensus, we will obtain a better
bound on µi(t) than Θ(1/t), which will yield a more precise
convergence rate for the inherent belief estimator.

IX. BOUNDS ON RATE OF CONVERGENCE TO CONSENSUS

In this section, we look at what the rate of convergence
to consensus is. Consensus occurs when either λmax(J0) or
λmax(J1) is less than 1 (see [4]). For this section, suppose
that λmax(J0) < 1 meaning that consensus to 0 occurs.

We define that βi(t) for agent i converges to 0 at a rate of
tr if for every constant ϵ > 0, we have that

lim
t→∞

βi(t)

tr+ϵ
= 0 and lim

t→∞

βi(t)

tr−ϵ
= ∞ . (160)

(We note that this definition does exclude subpolynomial
terms, for instance, tr log t and tr/ log t will both satisfy the
conditions.)
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Let λ = λmax(J0). Let v be the associated (left) eigen-
vector of eigenvalue λ. Since J0 is irreducible (since W is
irreducible) and a nonnegative matrix, the Perron-Frobenius
theorem [13] implies that v is a positive eigenvector. Scale v
so that v⊤1 = 1. Let

V (β) = v⊤β . (161)

For convenience, we represent the declared opinions at a
given step t as a (random) vector ψ(β(t)) depending on the
state β(t). Thus the dynamics follow the update

β(t+ 1) =
t

t+ 1
β(t) +

1

t+ 1
ψ(β(t)) (162)

and ψ(β(t)) is a vector with ith component is given by

ψi(β(t)) =

{
1 w.p. f(µi(t), γi)
0 w.p. 1− f(µi(t), γi)

. (163)

Since consensus to 0 occurs, this implies that
limt→∞ V (β(t)) = 0. We will show that the rate at
which V (β(t)) approaches 0 is also the rate at which each
βi(t) → 0 up to a constant factor.

To analyze the convergence of V (β(t)), we will define
linear functions which we can use to upper and lower bound
the value of V (β(t) when β(t) is in a certain region.

For ζ > 0, let random vector ψ̄(β(t), ζ) be such that the
ith component is given by

ψ̄i(β(t), ζ) =


{
1 w.p. ζγiµi(t)
0 w.p. 1− ζγiµi(t)

if ζγiµi(t) ≤ 1

ζγiµi(t) if ζγiµi(t) > 1

(164)

(The case where ζγiµi(t) > 1 is a technicality we need
to consider) where ψ̄(β(t), ζ) is also maximally coupled
with ψ(β(t)).This means that the joint distribution between
ψ̄(β(t), ζ) and ψ(β(t)) is such that

P[ψ̄i(β(t), ζ) = ψi(β(t))] (165)

is maximized. Note that by (164),

E[ψ̄i(β(t), ζ) |µi(t)] = ζγiµi(t) and (166)
Var[ψ̄i(β(t), ζ) |µi(t)] ≤ ζγiµi(t) . (167)

where the variance term follows from

Var[ψ̄i(β(t), ζ) |µi(t)] = max(ζγiµi(t)(1− ζγiµi(t)), 0) .
(168)

Definition 5 (Linearized Process). Given t0 and β(t0), for
each constant value α > 0 define the stochastic process hα(t)
for t ≥ t0 to have the following joint distribution with random
stochastic process β(t):

hα(t0) = V (β(t0)) (169)

hα(t+ 1) =
t

t+ 1
hα(t) +

1

t+ 1
v⊤ψ̄

(
β(t), α

hα(t)

V (β(t))

)
.

(170)

While in the above hα(t) is defined with respect to random
process β(t), we will show shortly that the marginal distribu-
tion of hα(t) will have expectation and a variance bound that

does not depend on β(t). The processes hα(t) will be used
as linear upper and lower bounds to V (β(t)). Let us define

R(t+ 1, η) =

t∏
τ=0

τ + η

τ + 1
(171)

for η ∈ (0, 1) and time t. We then get the following result:

Lemma 5.
1

Γ(η)(t+ 1)1−η
≤ R(t, η) ≤ 1

Γ(η)(t)1−η
(172)

Proof. This follows from Gautschi’s inequality.

Lemma 6. Some properties of hα(·) are:
(a) For any ϵ > 0, there is a time t0, where for t > t0, β(t)

remains in a disc of radius r(ϵ) from 0. Then the trajectory
V (β(t)) is such that there exists an 1 < α+ < 1 + ϵ and
1− ϵ < α− < 1 such that

hα−(t) ≤ V (β(t)) ≤ hα+(t) (173)

for t > t0.
(b) For t ≥ t1 and any α > 0 where αλ < 1,

E[hα(t)|hα(t1)] =
R(t, αλ)

R(t1, αλ)
h(t1) (174)

= (1 + o(1))
tαλ−1

tαλ−1
1

h(t1) (175)

(c) For sufficiently large t1 there is a constant c where for
t > t1 and any α > 0,

Var[hα(t)|hα(t1)] ≤ c
t2αλ−2

t2αλ−1
1

hα(t1) (176)

Proof. Proof of Part (a):
From [4, Theorem 2], we know that β(t) almost surely

converges to an equilibrium point. In this case, that equilibrium
point is 0 and thus there must be some time t0 after which
which β(t) lies in a disc around 0. When β(t) is within a
disc of radius r of 0, each µi(t) must also be within r of 0.

There are constants α− and α+ so that for each agent i,

α−γiµi ≤ f(µi, γi) ≤ α+γiµi (177)

for all µi ≤ r. (The values α− and α+ get closer to 1 as r
decreases.) We focus on showing hα−(t) ≤ V (β(t)) (showing
the other case is symmetric).

First, by definition hα−(t0) = V (β(t0)). If we assume that
hα−(t) ≤ V (β(t)), then

hα−(t+ 1) (178)

=
t

t+ 1
hα−(t) +

1

t+ 1
v⊤ψ̄

(
β(t), α−

hα−(t)

V (β(t))

)
(179)

≤ t

t+ 1
V (β(t)) +

1

t+ 1
v⊤ψ̄

(
β(t), α−

hα−(t)

V (β(t))

)
(180)

Since hα−(t) ≤ V (β(t)), random variable

ψ̄i

(
β(t), α−

hα−(t)

V (β(t))

)
(181)
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is 1 with probability

α−
hα−(t)

V (β(t))
γiµi(t) ≤ α−γiµi(t) ≤ f(µi, γi) (182)

where f(µi, γi) is the probability of ψi(β(t)) = 1. Because
the two variables are maximally coupled, every instance when
(181) is 1, it must also be that ψi(β(t)) = 1. Then

ψ̄i

(
β(t), α−

hα−(t)

V (β(t))

)
≤ ψi(β(t)) (183)

and thus

hα−(t+ 1) ≤ t

t+ 1
V (β(t)) +

1

t+ 1
v⊤ψ(β(t)) (184)

= V (β(t+ 1)) . (185)

Proof of Part (b): We will use proof by induction. For the base
case we trivially have

E[hα(t1)|hα(t1)] = hα(t1) =
R(t1, αλ)

R(t1, αλ)
hα(t1) . (186)

For the inductive step, we can assume that

E[hα(t)|hα(t1)] =
R(t, αλ)

R(t1, αλ)
hα(t1) . (187)

Then we consider t+ 1:

E[hα(t+ 1)|hα(t1)] =
t

t+ 1
E[ha(t)|hα(t1)]

+
1

t+ 1
E
[
v⊤ψ̄

(
β(t), α

hα(t)

V (β(t))

) ∣∣∣∣hα(t1)] . (188)

The expectation in the second term is equivalent to

E
[
v⊤ hα(t)

V (β(t))
αΓWβ(t)

∣∣∣∣hα(t1)] (189)

= E
[
hα(t)

V (β(t))
αλv⊤β(t)

∣∣∣∣hα(t1)] (190)

= αλE[hα(t)|hα(t1)] (191)

which gives that

E[hα(t+ 1)|hα(t1)] (192)

=
t

t+ 1
E[hα(t)|hα(t1)] +

1

t+ 1
αλE[hα(t)|hα(t1)]

(193)

=
R(t+ 1, αλ)

R(t1, αλ)
h(t1) . (194)

Then by Lemma 5 we have for any ϵ > 0, there is a
sufficiently large t1 such that for all t ≥ t1,

(1− ϵ)
tλ−1

tλ−1
1

hα(t1) ≤ E[hα(t) |hα(t1)] ≤ (1 + ϵ)
tλ−1

tλ−1
1

hα(t1) .

(195)

Proof of Part (c):
When we apply the law of total variance, we get that

Var[hα(t+ 1)|hα(t1)] (196)

= E
[
Var[hα(t+ 1)|Ht, h

α(t1)]
∣∣hα(t1)]

+Var
[
E[hα(t+ 1)|Ht, h

α(t1)]
∣∣hα(t1)] . (197)

We compute the first term in (197) by starting with

Var

[
ψ̄i

(
β(t), α

hα(t)

V (β(t))

) ∣∣∣∣Ht, h
α(t1)

]
(198)

≤ α
hα(t)

V (β(t))
γiµi(t) . (199)

where we used (167).
Let c0 = maxi{vi}. Then we can compute

Var[hα(t+ 1)|Ht, h
α(t1)] (200)

= Var

[
1

t+ 1
v⊤ψ̄

(
β(t), α

hα(t)

V (β(t))

) ∣∣∣∣Ht, h
α(t1)

]
(201)

=
1

(t+ 1)2

n∑
i=1

v2iVar

[
ψ̄i

(
β(t), α

hα(t)

V (β(t))

) ∣∣∣∣Ht, h
α(t1)

]
(202)

≤ 1

(t+ 1)2

n∑
i=1

v2i α
hα(t)

V (β(t))
γiµi(t) (203)

≤ 1

(t+ 1)2
α

hα(t)

V (β(t))
c0λv

⊤β(t) =
c0αλ

(t+ 1)2
hα(t) . (204)

To finish computing the first term in (197), we have

E
[
Var[hα(t+ 1)|Ht, h

α(t1)]
∣∣hα(t1)] (205)

≤ E
[
c0αλ

(t+ 1)2
hα(t1)

∣∣∣∣hα(t1)] (206)

≤ c1αλ
1

t2
tαλ−1

tαλ−1
1

hα(t1) (207)

where we used the approximation result from Lemma 6(b)
which is a correct upper bound for some constant c1 and suf-
ficiently large t1. For the second term in (197), the expectation
inside the variance is

E[hα(t+ 1)|Ht, h
α(t1)] =

R(t+ 1, αλ)

R(t, αλ)
hα(t) (208)

and thus

Var
[
E[hα(t+ 1)|Ht, h

α(t1)]
∣∣hα(t1)] (209)

=

(
R(t+ 1, αλ)

R(t, αλ)

)2

Var[hα(t)|hα(t1)] . (210)

Putting this together gets

Var[hα(t+ 1)|hα(t1)] ≤ c1αλ
1

t2
tαλ−1

tαλ−1
1

hα(t1)

+

(
R(t+ 1, αλ)

R(t, αλ)

)2

Var[hα(t)|hα(t1)] . (211)

Telescoping the variance terms yields:

Var[hα(t+ 1)|hα(t1)] (212)

≤ c2αλ

t∑
τ=t1

(
(t+ 1)αλ−1

ταλ−1

)2
1

τ2
ταλ−1

tαλ−1
1

hα(t1) (213)

= c2αλ
(t+ 1)2αλ−2

tαλ−1
1

hα(t1)

t∑
τ=t1

1

ταλ+1
. (214)
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Approximating the sum using an integral then gives:
t∑

τ=t1

1

ταλ+1
≤
∫ ∞

t1

1

ταλ+1
dτ =

1

αλ
t−αλ1 (215)

which results in

Var[hα(t)|hα(t1)] ≤ c2αλ
t2α(λ−1)

tαλ−1
1

hα(t1)
1

αλ
t−αλ1 (216)

= c2
t2(αλ−1)

tαλ−1
1

hα(t1)t
−αλ
1 . (217)

where c2 is a constant not depending on α, λ, or t (so long
as t1 is sufficiently large).

We will use the results from the above lemma to get a bound
on the variance with regard to the square of the expected value.
For this bound, we need to use that at any time t, we expect
that V (β(t)) > cκ/t

△
= κ∗/t (this is discussed in (IV-A)).

Lemma 7. For any sufficiently large t0 and any t > t0,

Var[hα(t) |hα(t0)]
E[hα(t) |hα(t0)]2

≤ c

hα(t0)t0
≤ c∗ (218)

for some constant c∗ which does not depend on t or t0.

Proof.

Var[hα(t) |hα(t0)]
E[hα(t) |hα(t0)]2

≤
c t

(αλ−1)2

t2αλ−1
0

hα(t0)(
tαλ−1

tαλ−1
0

hα(t0)
)2 (219)

=
c tαλ−1

0

hα(t0)

1

tαλ0
=

c

hα(t0)t0
≤ c∗ (220)

where the last step uses hα(t0) = V (β(t0)) = Ω(t−1
0 ).

Note that hα(t0) ∝ t−1
0 is a (guaranteed, not probabilistic)

worst-case bound, and significantly worse than the expected
hα(t0) ∝ tαλ−1

0 . Note also that replacing hα(t) on the left
hand side by a scaled version ρ hα(t) (where ρ can depend on
t, t0 but not on the value of hα(t) itself) will not change the
bound, as it multiplies both the numerator and denominator
by ρ2. We therefore define a martingale h̄α(t) as follows:

Definition 6. Given a t0, consider the process h̄α(·) starting
from time t0: h̄α(t0) = hα(t0); then for any t > t0 we define
the normalized convergence process as

h̄α(t) =
R(t0, αλ)

R(t, αλ)
hα(t) . (221)

We also define the random variable h̄α as follows:

h̄α = lim inf
t→∞

h̄α(t) . (222)

Then h̄α(t) is nonnegative, uniformly integrable, and is a
martingale.

Lemma 8. The sequence {h̄α(t)}t≥t0 is a uniformly inte-
grable martingale and limt→∞ h̄α(t) = h̄α almost surely.
Furthermore, for any t, we have h̄α(t) = E[h̄α |H(t)].

Proof. The process {h̄α(t)}t≥t0 is a martingale due to
Lemma 6(b). The Martingale Convergence Theorem shows

that it converges to a well-defined (random) limit almost
surely, since h̄α(t) ≥ 0 and by definition

E[|h̄α(t)|] = E[h̄α(t)] = h̄α(t0) <∞ (223)

Note that this means that almost surely,

h̄α = lim
t→∞

h̄α(t) (224)

as the limit almost surely exists.
Finally, Lemma 7 (and the fact that {h̄α(t)}t≥t0 is a

martingale) shows that E[|h̄α(t)|2] is bounded for all t, which
implies uniform integrability by [14, Section 13.3].

Then Lemma 7 yields the following:

Corollary 1. For any sufficiently large t∗, for any t > t∗

P
[
h̄α(t) ≤ h̄α(t∗)

2

∣∣∣H(t∗)

]
≤ c∗

c∗ + 1/4
(225)

This also implies that for any sufficiently large t∗,

P
[
h̄α ≤ h̄α(t∗)

4

∣∣∣H(t∗)

]
≤ c∗

c∗ + 1/8
(226)

where c∗ is the constant used in Lemma 7.

Proof. Note that if h̄α(t) ≤ h̄α(t∗)
2 then h̄α(t∗) − h̄α(t) ≥

h̄α(t∗)
2 ; since h̄α(t∗) − h̄α(t) has mean 0 (conditioned on

H(t∗)) and variance ≤ c∗ given by Lemma 7, the Chebyshev-
Cantelli inequality states that

P
[
h̄α(t∗)− h̄α(t) ≥ h̄α(t∗)

2

∣∣∣∣H(t∗)

]
(227)

≤ Var[h̄α(t)]

Var[h̄α(t)] + ( h̄
α(t∗)
2 )2

(228)

≤ c∗h̄α(t∗)2

c∗h̄α(t∗)2 + ( h̄
α(t∗)
2 )2

=
c∗

c∗ + 1/4
(229)

Note that the function x
x+y is increasing in x if y is posi-

tive, so we appropriately get an upperbound when applying
Var[h̄α(t)] ≤ c∗h̄α(t∗)2.

To prove (226) (note that the bound is now h̄α(t∗)
4 rather

than h̄α(t∗)
2 ) we have that by Lemma 8, h̄α(t) → h̄α almost

surely; this means that h̄α(t) → h̄α in probability as well, so
for any δ1, δ2 > 0, and for sufficiently large t,

P[|h̄α − h̄α(t)| > δ1] ≤ δ2 (230)

Set δ1 = h̄α(t∗)
4 and δ2 = c∗

c∗+1/8 − c∗

c∗+1/4 . Then we assume
to the contrary that

P
[
h̄α ≤ h̄α(t∗)

4

∣∣∣H(t∗)

]
>

c∗

c∗ + 1/8
(231)

This means that, for any sufficiently large t,

P
[
h̄α ≤ h̄α(t∗)

4
and h̄α(t) >

h̄α(t∗)

2

∣∣∣∣H(t∗)

]
(232)

>
c∗

c∗ + 1/8
− c∗

c∗ + 1/4
(233)

which yields the desired contradiction given by (230).

Lemma 9. For any α, almost surely h̄α > 0
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Proof. Therefore we have established that for any α:
• h̄α(t) is a uniformly integrable martingale;
• h̄α(t) → h̄α almost surely;
• for any sufficiently large t∗,

P
[
h̄α ≤ h̄α(t∗)

4

∣∣∣H(t∗)

]
≤ c∗

c∗ + 1/8
(234)

which implies that for all sufficiently large t∗,

P[h̄α > 0 |H(t∗)] ≥ 1− c∗

c∗ + 1/8
> 0 (235)

We define the process η(t) as

η(t) = P[h̄α > 0 |H(t)] (236)

which is a martingale due to the tower property (and uniformly
integrable because it is bounded). We likewise define

η = 1{h̄α > 0} (237)

and (due to uniform integrability) almost surely η(t) → η
because of to Levy’s 0-1 Law [15, Theorem 5.5.8]. But
limt→∞ η(t) ≥ 1 − c∗

c∗+1/8 > 0, thus showing that 1 is the
only possible limit out of {0, 1}. Thus, η = 1 almost surely,
so h̄α > 0 almost surely.

Theorem 5. For any ϵ > 0, we have that

lim
t→∞

V (β(t))

tλ−1+ϵ
= 0 and lim

t→∞

V (β(t))

tλ−1−ϵ = ∞ (238)

almost surely.

Proof. For a given ϵ, using Lemma 6(a), we can find a δ(ϵ)
with corresponding t0 large enough and an α+ and α− which
are such that

α+ < 1 + ϵ/λ and α− > 1− ϵ/λ (239)

Then for any trajectory V (β(t)), there exists some trajectory
hα−(t) and hα+(t) such that

hα−(t) ≤ V (β(t)) ≤ hα+(t) (240)

Using Lemma 9, any trajectory of hα−(t) has a correspond-
ing martingale h̄α−(t) which converges to a constant. Thus
hα−(t) converges to zero at a rate of Ω(tα−λ−1) almost surely.
Similarly, hα+(t) converges to zero at a rate of Ω(tα+λ−1)
almost surely.

Since the value of t0 does not affect the asymptotic rate
after t0, we have

lim
t→∞

V (β(t))

tλ−1+ϵ
≤ lim
t→∞

hα+(t)

tλ−1+ϵ
≤ lim
t→∞

c+t
α+λ−1

tλ−1+ϵ
= 0 (241)

lim
t→∞

V (β(t))

tλ−1+ϵ
≥ lim
t→∞

hα−(t)

tλ−1+ϵ
≥ lim
t→∞

c−t
α−λ−1

tλ−1−ϵ = ∞
(242)

Next we need the above result on V (β(t)) to imply a result
on all βi(t). We prove a few lemmas first.

Lemma 10. Given any ϵ > 0, there exists some time t0 and
some c, such that for all t > t0, there exists some i such that

βi(t) ≥ ctλ−1−ϵ (243)

almost surely. Additionally, for any t2 > t0, there exists some
i such that βi(t) ≥ cit

λ−1−ϵ holds at least 1/n of the times t
in t2 < t ≤ 2t2.

Proof. First, V (β(t) converges at a rate at least Ω(tλ−1−ϵ).
Thus, there is some t0, where for t > t0,

V (β(t)) ≥ ctλ−1−ϵ . (244)

At time t > t0, let k be such that βk(t) ≥ βi(t) for all i.
Since v is a vector so that v⊤1 = 1, we have that

βk(t) = (v⊤1)βk(t) ≥ v⊤β(t) = V (β(t)) . (245)

And thus this shows (243) for each t.
For the second statement, we know that there must be some

i which satisfies (243). Since there are only n candidates for
i, at least one i must occur the most often, which means this
i occurs at least 1/n of the time in a certain interval.

Definition 7. For any agent i and constants c, ρ > 0, we say
that time t1 > 0 is (c, ρ)-good for agent i if

βi(t) ≥ ctλ−1−ϵ (246)

for at least ρ fraction of the times t ∈ [t1/2, t1]. We denote
the set of times where this holds as

Ti(c, ρ) = {t1 : t1 is (c, ρ)-good for i} (247)

For shorthand, once c, ρ are fixed, we denote the set of
good times for i as Ti. The key observation is that the set of
good times for an agent i eventually becomes good for all her
neighbors j, which then eventually become good for all their
neighbors, and so forth until the set of good times for i must
be good for all agents.

Lemma 11. Fix an agent i and constants ci, ρi > 0, and let
Ti := Ti(ci, ρi), and let j be adjacent to i. Then there is some
cj , ρj > 0 such that, almost surely, there is some t∗ for which

t1 > t∗ and t1 ∈ Ti =⇒ t1 ∈ Tj (248)

where Tj := Tj(cj , ρj).

Note that ρj can be less than ρi, meaning that in the
argument where good times spread from a source i, the ρ’s
diminish as the process gets further from i.

Proof. Recall that t1 ∈ Ti means that βi ≥ cit
λ−1−ϵ for at

least a ρi fraction of t ∈ [t1/2, t1]; we say a time t is ci-
enough (for agent i) if βi ≥ cit

λ−1−ϵ (unlike good times t1,
this only depends on the value of βi at time t, not at any
previous time).

First, note that at least (ρi/4)t1 different t in [t1/2, (1 −
ρi/4)t1] are ci-enough (since there are at least (ρi/2)t1 ci-
enough times in total). For any t ∈ [t1/2, t1],

βi(t) ≥

{
cit

λ−1−ϵ
1 if t is ci-enough

0 otherwise
(249)

since t ≤ t1, and therefore (as wj,i =
aj,i

deg(j) )

µj(t) ≥

{
ciwj,it

λ−1−ϵ
1 if t is ci-enough

0 otherwise
. (250)
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So, when t is ci-enough, we get

f(µj(t), γj) ≥ f(wj,icit
λ−1−ϵ
1 , γj) (251)

=
γjwj,icit

λ−1−ϵ
1

γjwj,icit
λ−1−ϵ
1 + 1− wj,icit

λ−1−ϵ
1

(252)

≥ c′jt
λ−1−ϵ
1 (253)

where c′j = min(γj , 1)wj,ici, which is a lower bound on
the probability of agent j declaring 1 at any ci-enough time.
Consider the ≥ ρi/4 such times in [t1/2, (1 − ρi/4)t1]; the
number of 1’s declared by j in the range [t1/2, (1− ρi/4)t1]
thus stochastically dominates the sum of (ρi/4)t1 indepen-
dent Bernoulli random variables with probability c′jt

λ−1−ϵ
1

each (whose sum has expected value (ρi/4)c
′
jt
λ−ϵ
1 ). By the

Chernoff bound, this then yields that

P

[
(1−ρi/4)t1∑
t=t1/2

ψj,t ≤
ρic

′
j

8
tλ−ϵ1

]
≤ e−

ρi
32 c

′
jt

λ−ϵ
1 (254)

meaning that there is a very high probability of getting at least
ρic

′
j

8 tλ−ϵ1 declarations of 1 from agent j by time (1− ρi/4)t1.
But then for the (ρi/4)t1 times t ∈ [(1−ρi/4)t1, t1], we have

βj(t) ≥
ρic

′
j

8
tλ−1−ϵ
1 (255)

so t1 ∈ Tj(c′′j , ρj) where c′′j =
ρic

′
j

8 and ρj = ρi/2 (since
(ρi/4)t1 needs to be a ρj proportion of t1/2).

Finally, we need to show that this probabilistic bound then
implies that almost surely there are only finitely many t1 which
are in Ti(ci, ρi) but not Tj(c′′j , ρj). This case only happens

when
∑(1−ρi/4)t1
t=t1/2

ψj,t ≤
ρic

′
j

8 tλ−ϵ1 , and the probability of this
(by (254)) decreases faster than any inverse polynomial of
t1, and hence has a finite sum over all t1 ∈ Ti (notably,∑∞
t1=1 e

− ρi
32 c

′
jt

λ−ϵ
1 < ∞, so summing only over t1 ∈ Ti

must also be finite). Thus, by the Borel-Cantelli Lemma,
almost surely it happens only finitely many times, and we
are done.

Proposition 4. For any agent i and constants ci, ρi > 0, let
Ti := Ti(ci, ρi). Then there is a set of constants cj , ρj > 0 for
all j ̸= i such that, almost surely, there is some t∗ > 0 such
that

t1 > t∗ and t1 ∈ Ti =⇒ t1 ∈ Tj for all j (256)

where Tj := Tj(cj , ρj).

Proof. This follows from Lemma 11 by induction over dis-
tance to i. Let dist(i, j) denote the distance of vertex j from
i, and Ni(k) := {j : dist(i, j) ≤ k}. We can show that if the
condition holds for all j ∈ Ni(k), it holds for all j ∈ Ni(k+1)
as well, and therefore it holds for all j ∈ Ni(n) (i.e. for all j,
since no vertex can be more than n distance from i).

It is important that the graph is finite, since then we only
have a finite number of induction steps.

We also need that t1 being a good time for agent i means
that βi(t1) also obeys a constant factor lower bound of order
tλ−1−ϵ
1 (for all sufficiently large t1):

Lemma 12. For any t1 ≥ 2/ρi, if t1 ∈ Ti(ci, ρi), then

βi(t1) ≥ (ci/2)t
λ−1−ϵ
1 . (257)

Proof. This follows since t1 ∈ Ti(ci, ρi) and t1 ≥ 2/ρi means
that there is at least one t ∈ [t1/2, t1] such that

βi(t) ≥ cit
λ−1−ϵ ≥ cit

λ−1−ϵ
1 . (258)

But this means that

βi(t1) =

∑t1
τ=1 ψi,τ
t1

≥ 1

2

∑t1
τ=1 ψi,τ
t1/2

(259)

≥ 1

2

∑t
τ=1 ψi,τ
t

=
1

2
βi(t) ≥ (ci/2)t

λ−1−ϵ
1 . (260)

Finally, this yields the result that, almost surely, as t→ ∞,
for all i, βi(t) = Õ(tλ−1) Formally, this is:

Proposition 5. For any i ∈ [n] and any ϵ > 0, almost surely

lim
t→∞

βi(t)

tλ−1+ϵ
= 0 (261)

lim
t→∞

βi(t)

tλ−1−ϵ = ∞ (262)

Proof. First, we can show (261) as a corollary of Theorem 5.
Since V (β(t)) = v⊤β(t) =

∑n
i=1 viβi(t) and each vi > 0

is constant, for each i there is some ci such that βi(t) ≤
ciV (β(t)) and therefore

lim
t→∞

βi(t)

tλ−1+ϵ
≤ lim
t→∞

ciV (β(t))

tλ−1+ϵ
= 0 . (263)

Next, Lemma 10 shows that there is some c > 0 and time
t0 such that for all t > t0, there is some i such that t ∈
Ti(c, 1/n). By Proposition 4, there is (almost surely) some
time t∗ and constants c′j , ρj > 0 such that for any i, any t > t∗

and j ∈ [n], we have t ∈ Ti(c, 1/n) =⇒ t ∈ Tj(c′j , ρj).
Thus, for all t > max(t0, t

∗), we have t ∈ Tj(c′j , ρj) for all j.
Finally, Lemma 12 shows this implies that there are constants
cj > 0 such that βj(t) ≥ cjt

λ−1−ϵ for all t > max(t∗, t0)
and we are done.

Finally, we can use this consensus rate to bound the con-
vergence rate of the inherent belief estimator. If for each i, if
βi(t) ≥ ctλ−1−ϵ, then µi(t) ≥ ctλ−1−ϵ. Using (128), we have
that x(t) ≥ (γi − 1)µi(t) ≥ (γi − 1)ctλ−1−ϵ. Then

X(t) ≥ (γi − 1)c

t∑
τ=t0

τλ−1−ϵ ≈ c1t
λ−ϵ . (264)

Proposition 3 yields that P
[
∃t ≥ t∗ : ϕ̂i(t) ̸= ϕi

]
≤ δ if

t∗ ≥
(

1

c1

1

ξi
log

1

δ(eξi − 1)

)1/(λ−ϵ)

(265)

(assuming that t∗ is such that c1(t∗)λ−ϵ > 2).
Compared to (158), we see that instead of a rate which is

1/δ to some power, we get Θ̃(log(1/δ)1/λ) (since (265) holds
for all ϵ > 0), which is a big improvement. This, along with
(159), yields the following theorem, suggesting that estimating
inherent beliefs in consensus is more difficult:
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Theorem 6. For the inherent belief estimator ϕ̂i(t) given in
Definition 4, let t∗ be defined as the time of convergence:

t∗ := max(t : ϕ̂i(t) ̸= ϕi) (266)

i.e. the first time such that ϕ̂i(t) = ϕi for all t > t∗. Then:

t∗ =

{
O(log(1/δ)) if no consensus
O(log(1/δ)

1
λ+ϵ) for any ϵ > 0 if consensus

(267)

with probability ≥ 1− δ, where λ is the largest eigenvalue of
ΓW if the consensus is to 0, and of Γ−1W if to 1.

Proof. This follows directly from (159) (for the non-consensus
case) and from (265) (for the consensus case). Note that if
something holds for an exponent of 1

λ−ϵ for all ϵ > 0, this is
equivalent to holding for an exponent of 1

λ + ϵ for all ϵ > 0,
so we can make the substitution.

X. CONCLUSION

In this work, we study the interacting Pólya urn model of
opinion dynamics model under social pressure. We expanded
upon [1] by showing there exists an estimator for bias pa-
rameters and inherent beliefs. Specifically, we showed that
the history of any agent and their neighbors’ declarations is
sufficient in the limit to determine an agent’s inherent belief
and bias parameter for any network structure, using estimators
based on maximum likelihoods. We also analyzed the rate at
which the inherent belief estimator converges.

REFERENCES

[1] Ali Jadbabaie, Anuran Makur, Elchanan Mossel, and Rabih Salhab, “In-
ference in opinion dynamics under social pressure,” IEEE Transactions
on Automatic Control, vol. 68, no. 6, pp. 3377–3392, 2023.

[2] Camilla Ancona, Francesco Lo Iudice, Franco Garofalo, and Pietro
De Lellis, “A model-based opinion dynamics approach to tackle vaccine
hesitancy,” Scientific Reports, vol. 12, no. 1, pp. 11835, 2022.

[3] Damon Centola, Robb Willer, and Michael Macy, “The emperor’s
dilemma: A computational model of self-enforcing norms,” American
Journal of Sociology, vol. 110, no. 4, pp. 1009–1040, 2005.

[4] Jennifer Tang, Aviv Adler, Amir Ajorlou, and Ali Jadbabaie, “Stochastic
opinion dynamics under social pressure in arbitrary networks,” arXiv
preprint arXiv:2308.09275, 2023.

[5] Morris H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[6] Noah E Friedkin and Eugene C Johnsen, “Social influence and
opinions,” Journal of Mathematical Sociology, vol. 15, no. 3-4, pp.
193–206, 1990.
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