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Abstract— Opinion dynamics models study how the opinions
of individuals evolve in social settings. An important aspect
of this often is social pressure, in which an individual feels
pressure to conform her expressed opinions to the opinions
of those around her, even against her true beliefs. This work
studies an interacting Pólya urn model for opinion dynamics
under social pressure, originally proposed in [1]. In this paper,
we consider the behavior of this model on random graphs.
Previous work has shown conditions for when the agents on
the network approach consensus [2], in which all the agents
asymptotically express the same opinion over time, even if this
opinion is contrary to some of their true beliefs; however these
conditions are not interpreted as explicit graph properties or
characteristics. In this work, we bridge this gap by examining
what kinds of basic network properties determine whether the
network approaches consensus. We show that when the agents’
network structure is a random graph, homophily, the tendency
for agents to be connected to those more similar to themselves,
diminishes the likelihood of consensus to occur. This result gives
insight on how network characteristics affect the possibility of
consensus.

I. INTRODUCTION

Opinion dynamics – the study of how the opinions and
beliefs of communicating agents evolve over time – is an
increasingly important field of study, with a variety of ap-
plications including marketing, running political campaigns,
and public-health outreach such as the effort to curb vac-
cine hesitancy [3]. While there are many opinion dynamics
models with a variety of properties, we study an interacting
Pólya urn model of opinion dynamics, which originated in
the work of [1] and was subsequently studied by [2]. In
this model, there are two basic beliefs (labeled 0 and 1),
and each agent i (privately) believes in one of them; then,
at discrete time steps, each agent simultaneously declares
an opinion (either 0 or 1) to their neighbors. This opinion
is chosen randomly under the influence of agent i’s private
inherent belief (denoted ϕi) and the opinions that they have
previously observed from their neighbors, mediated by their
bias parameter (denoted γi) indicating their susceptibility to
social pressure. The model thus captures a situation where
agents may lie about their belief due to social pressure to
conform to their neighbors’ opinions. One consequence of
this is the possibility of consensus, in which social pressure
causes the entire network to converge to (declaring) a single
opinion, even if not all members actually believe in it.
Whether the network approaches consensus is a key property
of its behavior and affects many other aspects, such as
estimating the agents’ true beliefs from their behavior [1].

The interacting Pólya urn model is similar to the Friedkin-
Johnsen model (see Section I-B) [4] in that both models
update the declared opinion of each agent using both the

(declared) opinion of her neighbors as well as a private
fixed belief parameter. However, the Friedkin-Johnsen model
uses deterministic updates with opinions given by arbitrary-
precision real numbers, and (when the beliefs are from a
bounded range) prevents the declared opinions of the agents
from moving too far from their fixed belief regardless of
how much social pressure is applied. The interacting Pólya
urn model, in contrast, assumes very limited communication
bandwidth (one bit per step), and allows social pressure in
sufficient amounts to change the agents’ behavior to any
degree. This enables consensus to happen. Previously, in
[2], the authors determined conditions for consensus based
on the structure of the network and the bias parameters
of the agents; however, these are only given as algebraic
expressions. In this work, we analyze what relations these
conditions have with different graph structures and bias
parameters, particularly focusing on random graphs.

A. Model Details and Notation

We use the same interacting Pólya urn model as defined in
[2]. Readers should refer to [1] and [2] for a more detailed
explanation and justification of the model. Here we sum-
marize the key points and relevant aspects. Bold lower-case
characters denote (column) vectors, e.g. γ = [γ1, . . . , γn]

⊤,
and bold upper-case characters denote matrices, and let 0,1
denote vectors of all 0 and all 1 respectively.

Let (undirected) graph G = (V,E) be a network of n
agents (corresponding to the vertices) labeled i = 1, 2, . . . , n.
The graph G can have self-loops. For each edge (i, j) ∈ E,
there is a weight ai,j ≥ 0, where by convention we let
ai,j = 0 if (i, j) ̸∈ E. We denote the matrix of these
weights as A ∈ Rn×n, i.e. the weighted adjacency matrix
of G; since G is undirected, A is symmetric. We denote the
weighted degree of vertex i as deg(i) =

∑
j ai,j , the vector

of weighted degrees of all agents as

d
△
= [deg(1), deg(2), . . . , deg(n)] (1)

and its diagonalization as D = diag(d). Let the normalized
adjacency matrix be W = D−1A, which can be interpreted
as the transition matrix for a random walk weighted graph
G. We assume that W is irreducible (G is connected).

Each agent i has two fixed parameters: an inherent belief
ϕi ∈ {0, 1} and bias parameter γi ∈ (0,∞) where γi ̸= 1,
representing her weight on opinion ‘1’ relative to opinion
‘0’. If ϕi = 1, then γi > 1, and if ϕi = 0, then γi < 1.

Then, at each time step t, each agent i (simultaneously)
announces a declared opinion ψi,t ∈ {0, 1}. The declarations
ψi,t are based on a probabilistic rule which we define by
the previously observed ψi,τ for τ < t. Let m0

i ,m
1
i > 0



represent the initial settings of the model. (Initial settings
are used in place of declared opinions at time 1. Some
requirements for the initial settings are given shortly.) Define

µ0
i (t)

△
=
m0

i +
∑t

τ=2

∑n
j=1 ai,jI[ψi,τ = 0]

m0
i +m1

i + (t− 1) deg(i)
(2)

µ1
i (t)

△
=
m1

i +
∑t

τ=2

∑n
j=1 ai,jI[ψi,τ = 1]

m0
i +m1

i + (t− 1) deg(i)
. (3)

The parameter µ1
i (t) is essentially the sufficient statistic

that summarizes the proportion of declared opinions in the
neighborhood of given agent i up to time t. Since µ0

i (t) =

1− µ1
i (t), we simplify the notation to µi(t)

△
= µ1

i (t) .
We then define the function (note that µ, γ are scalars)

f(µ, γ)
△
=

γµ

1 + (γ − 1)µ
=

1

1 + 1
γ

(
1
µ − 1

) (4)

which governs the probabilities of the declared opinions:

ψi,t+1
△
=

{
1 with probability f(µi(t), γi)
0 with probability 1− f(µi(t), γi)

. (5)

Note that the bias parameter γi is always defined as
agent i’s bias towards opinion ‘1’. However, the model is
symmetric in the following way: a γ bias towards ‘1’ is
equivalent to a 1/γ bias towards ‘0’, which is captured by
the equation f(µ1

i (t), γ) = 1− f(µ0
i (t), 1/γ) .

We also define a sufficient statistic that summarizes agent
i’s declarations. Let b0i , b

1
i > 0 (the initialization) be such

that b0i + b1i = 1 for each i. For t ∈ Z+, let

β0
i (t) =

b0i
t
+

1

t

t∑
τ=2

(1− ψi,τ ) (6)

β1
i (t) =

b1i
t
+

1

t

t∑
τ=2

ψi,τ . (7)

These are the proportions of declarations of each opinion (or
“time-averaged declarations”) for each agent i (plus initial
conditions) up to time t. Since β0

i (t) + β1
i (t) = 1, we can

just specify βi(t)
△
= β1

i (t). We also assume that

m0
i =

n∑
j=1

ai,jb
0
j and m1

i =

n∑
j=1

ai,jb
1
j , (8)

so that it follows by definition that

µi(t) =
1

deg(i)

n∑
j=1

ai,jβj(t) . (9)

We denote the vectors (over i) of the values βi(t) and the
values µi(t) as β(t) and µ(t), respectively.

A key concept for this model since its introduction in [1]
is consensus, and which needs to be defined appropriately
for our stochastic system.

Definition 1: Consensus is approached if

β(t) → 1 or β(t) → 0 as t→ ∞ . (10)

Since βi(t) represents the ratio of ‘1’s agent i has declared,
consensus occurs when this ratio goes to 0 or 1.

B. Previous Literature

We refer the reader to [1] and [2] for a more detailed
review of the literature.

A classic opinion dynamics model is the DeGroot model
[5]. Agents are connected on a network and each agent’s
opinion is represented by a real number. At each time step,
every agent averages their neighbors’ opinions according to
the edge-weights on the network. It was shown that in the
DeGroot model, all agents eventually converge to having
the same opinion (if the network is strongly connected
and aperiodic). However, it is not realistic that all agents
eventually agree. Many models were developed to understand
disagreement among agents. A notable model similar to the
DeGroot model is the Friedkin-Johnsen model [4] where
agents not only average their neighbors’ opinions to update
their opinion, but also include their own initial opinion.
The interacting Pólya urn model we study has a similar
aspect, as the inherent beliefs have a similar role to the
initial opinions of the Friedkin-Johnsen model, acting as a
constant which affects each update step. Other models similar
to the interacting Pólya urn model include those in [6] and
[7]. Authors in [6] use a model similar to Friedkin-Johnsen
model but where agents have an internal opinion that evolves
differently than their external opinion.

In [7], the authors use a model to explain how agents
can be pressured to conform to opinions they do not believe
in. Though, like the interacting Pólya urn model, their
model considers only binary opinions, it follows a more
complex set of rules, including an explicit action agents
may decide to take to pressure their neighbors to comply
and a threshold function governing the agents’ actions. They
found that in their model, a small number of ‘true believer’
agents clustered together can cause a cascade resulting in
the acceptance of an unpopular norm. As part of our work,
we analyze if an analogous situation occurs in our more
streamlined model.

The interacting Pólya urn model for stochastic opinion
dynamics was introduced in [1], where authors studied the
dynamics when the network is the complete graph and exam-
ined their asymptotic behavior. In particular, they considered
when it is possible to deduce the inherent beliefs of all
agents given only access to the declared opinions and bias
parameters. A key result shown is that when consensus
occurs, an aggregate estimator is incapable of inferring the
inherent beliefs of the agents.

In [2], asymptotic behavior of the dynamics described
in Section I-A was studied for general graphs, and it was
shown that β(t) always converges to an equilibrium point.
Also, the following theorem shown in [2] determines under
what conditions (and to which of the two equilibrium points)
consensus is achieved. Let

J1 = Γ−1W and J0 = ΓW (11)

where Γ = diag(γ) is the diagonal matrix of bias parameters.



Theorem 1 ([2] Theorem 3):

γmax(J0) ≤ 1 =⇒ P[β(t) → 0] = 1 (12)
γmax(J1) ≤ 1 =⇒ P[β(t) → 1] = 1 (13)

otherwise =⇒ P[β(t) → 0 or 1] = 0 (14)

While this theorem gives a very precise mathematical condi-
tion for consensus, it gives little understanding of what kinds
of features on networks lead to consensus.

Note that all probabilities in Theorem 1 are 0 or 1; this
means that whether a random network approaches consensus
(almost surely) depends only on the structure of the network
and bias parameters, rather than the starting conditions or
evolution of the social network over any finite span.

C. Contributions

Using Theorem 1, which characterizes conditions for con-
sensus for the interacting Pólya urn model, this work looks
at what specific properties of randomly generated graphs
determine whether consensus is approached:

1) For opinion dynamics on Erdős-Renyi random net-
works, we show the key to determining whether con-
sensus to 1 is approached is to compute a quantity that
sums the inverse of all the bias parameters of the agents.
If this quantity is less than 1, we can then show that
Erdős-Renyi random networks have high probability of
approaching consensus.

2) We look at opinion dynamics on a stochastic block
model with two communities, one with inherent belief
‘1’ and the other with inherent belief ‘0’. Similar to
the Erdős-Renyi random networks, we determine when
agents approach consensus with high probability. The
condition to be determined depends on the eigenvalues
of a 2 × 2 matrix. We then restrict the problem to
looking at a special case of when all agents have the
same expected degree and determine how parameters
like the bias parameter, number of agents in each com-
munity, and proportion of in-community edges affect
whether consensus is approached. This block model is
a common simplified representation of how real-world
communities often form around a common interest or
belief, which results in distinct clusters with a higher
density of edges within them (than between them).

Finally, it is worth mentioning that similar results for con-
sensus to 0 can be replicated by replacing each γi with 1/γi.

II. EIGENVALUES OF RANDOM GRAPH LAPLACIANS

In this section, we give a result connecting the eigenvalues
of random graph Laplacians to the eigenvalues of Γ−1W .
This will be important for our results on Erdős-Renyi and
stochastic block model random graphs.

Suppose the adjacency matrix A is generated according to
the following random graph model. Let Ā be the expectation
of A, i.e. Ā has entries pi,j ∈ [0, 1] denoting the probability
of an edge occurring between i and j. Then ai,j = 1 with
probability pi,j , and ai,j = 0 otherwise, independently for all
i, j. Let D̄ = diag(Ā1) be the diagonal matrix of expected

degrees of A. We require that Ā1 > 0 and let W̄ = D̄
−1

Ā.
We denote by δ = mini(Ā1)i the minimum expected degree
of any vertex of G generated from Ā.

Let D = diag(d), and let L̄ = I − D̄
−1/2

ĀD̄
−1/2 and

L = I−D−1/2AD−1/2. It is possible that there are isolated
vertices in the random graph represented by A. If node i is
an isolated vertex, to avoid division by zero, we will use
the convention that ith diagonal entry of D−1 or D−1/2 is
defined as 0. Matrices L̄ and L are the expected Laplacian
and Laplacian for random graph with adjacency matrix A.
Let ∥ · ∥ be the spectral norm.

Next, we cite a theorem which will be pivotal to our
results. This result (combined with Weyl’s inequality) will
show that the eigenvalues of a random generated edge-
independent graph approach the eigenvalues of the expec-
tation of the random graph.

Theorem 2 ([8] Theorem 2): Let G be a random graph
generated with independent edges and expected adjacency
matrix Ā. For fixed ϵ > 0, there exists a constant k such
that if δ > k log n, then with probability at least 1− ϵ

∥L− L̄∥ ≤ 3

√
3 log(4n/ϵ)

δ
. (15)

The value of k needs to be sufficiently large so that
3 log(4n/ϵ)

δ < 1.
Note that [8] specifically states Theorem 2 for |λi(L) −

λi(L̄)| instead of ∥L− L̄∥, but uses the inequality

|λi(L)− λi(L̄)| ≤ ∥L− L̄∥ ≤ 3

√
3 log(4n/ϵ)

δ
(16)

to prove their result. (The first inequality is given by Weyl’s
inequality.) We specifically use the intermediate result of
their proofs in our statement of Theorem 2.

There are other similar results which bound the same
quantity as Theorem 2 in [8], such as [9] (but the constants
are worse). The result in [10] gives a tighter bound on
∥L − L̄∥, but it is stated as an almost surely result instead
of one which bounds the probability as 1− ϵ.

Let γmin = mini γi, i.e, the smallest bias parameter of any
agent in the network. The following will be the main result
we use to analyze the likelihood of reaching consensus for
opinion dynamics on random networks.

Proposition 1: Fix the bias parameters of all agents. For a
random edge-independent graph G, if the minimum expected
degree δ satisfies δ ≥ k log n, then with probability ≥ 1− ϵ,

|λ1(Γ−1W )− λ1(Γ
−1W̄ )| ≤ 1

γmin
3

√
3 log(4n/ϵ)

δ
. (17)

The value of k needs to be large enough that 3 log(4n/ϵ)
δ < 1.

Proof: Substituting for L and L̄ in Theorem 2 gives∥∥∥D−1/2AD−1/2 − D̄
−1/2

ĀD̄
−1/2

∥∥∥ ≤ 3

√
3 log(4n/ϵ)

δ
.

(18)



Let S = D−1/2AD−1/2 and S̄ = D̄
−1/2

ĀD̄
−1/2; then∥∥Γ−1/2SΓ−1/2 − Γ−1/2S̄Γ−1/2

∥∥ (19)

=
∥∥Γ−1/2(S − S̄)Γ−1/2

∥∥ (20)

≤ ∥Γ−1/2∥ · ∥S − S̄∥ · ∥Γ−1/2∥ (21)

≤ 1
√
γmin

3

√
3 log(4n/ϵ)

δ

1
√
γmin

(22)

where in the last inequality we used (18) and that

∥Γ−1/2∥ =
1

√
γmin

. (23)

We get (23) since Γ−1/2 is diagonal matrix of positive
values, so the spectral norm is the largest value.

The matrices Γ−1W and Γ−1W̄ are similar to
Γ−1/2SΓ−1/2 and Γ−1/2S̄Γ−1/2 respectively, which means
they have the same eigenvalues. Using this and Weyl’s
inequality gives

|λ1(Γ−1W )− λ1(Γ
−1W̄ )| (24)

= |λ1(Γ−1/2SΓ−1/2)− λ1(Γ
−1/2S̄Γ−1/2)| (25)

≤
∥∥Γ−1/2SΓ−1/2 − Γ−1/2S̄Γ−1/2

∥∥ (26)

≤ 1

γmin
3

√
3 log(4n/ϵ)

δ
. (27)

Corollary 1: Fix the bias parameters, n and δ where
δ is the minimum expected degree. Suppose the largest
eigenvalue of Γ−1W̄ is λ where λ < 1 and 1 − λ = ∆.
Then for a randomly generated edge-independent graph,

P[β(t) → 1] ≥ 1− 4n exp

(
−δ∆

2γ2min

27

)
− (1 + o(1))ne−δ . (28)

Proof: If the random graph is not connected, it is
possible for condition λ1(Γ−1W ) < 1 to hold but consensus
is not reached. Let B be the event that the random graph is
connected. Then, over the distribution of random graphs,

P[β(t) → 1] ≥ P[λ1(Γ−1W ) < 1 and B] (29)

≥ 1− P[λ1(Γ−1W ) > 1]− P[not B] (30)

Computing from [11], we have that the probability a
random graph is not connected is given by

P[not B] ≤ (1 + o(1))ne−δ . (31)

Note that in this regime, this is approximately the probability
that the graph has isolated vertices.

By Proposition 1, if ∆ ≥ 1
γmin

3
√

3 log(4n/ϵ)
δ then

P[λ1(Γ−1W ) < 1] ≥ P[|λ1(Γ−1W )− λ1(Γ
−1W̄ )| ≤ ∆]

(32)
≥ 1− ϵ (33)

which holds if ϵ satisfies

ϵ ≥ 4n exp

(
−δ∆

2γ2min

27

)
. (34)

Choosing ϵ for which equality holds completes the proof.
If δ is not sufficiently large, the probability in Corollary 1

could be bounded below by a negative number and thus
becomes meaningless. We note that unlike in Proposition 1,
we do not need a condition such as δ ≥ k log n, since values
of δ where the Corollary 1 is non-negative automatically
satisfies the condition of k in Proposition 1.

III. ERDŐS-RENYI RANDOM GRAPHS

Let GER(n, p) be a randomly generated Erdős-Renyi
graph on n nodes and (independent) edge probabilities p.
(Recall that each node can have an edge with itself.) Let
A ∼ GER(n, p) be the adjacency matrix of a random graph
from the distribution GER(n, p). Then Ā is the matrix will
all entries p and D̄ is a diagonal matrix with entries np.

Lemma 1: For A ∼ G(n, p),

λ1(Γ
−1W̄ ) =

1

n

n∑
i=1

1

γi
. (35)

Proof: First note that Γ−1W̄ is diagonalizable since it
is similar to a symmetric matrix. We can write

Γ−1W̄ = Γ−1 p

pn
11⊤ =

1

n
Γ−111⊤ . (36)

Matrix Γ−1W̄ must have rank 1 as each row is propor-
tional to 1⊤. Thus it must only have one nonzero eigenvalue.

Consider x = Γ−11. Then

Γ−1W̄x =
1

n
Γ−111⊤Γ−11 (37)

=
1

n
Γ−11

n∑
i=1

1

γi
=

(
1

n

n∑
i=1

1

γi

)
x . (38)

Hence x is an eigenvector of Γ−1W̄ with an eigenvalue
of 1

n

∑n
i=1

1
γi

. This is the only nonzero eigenvalue so it must
also be the largest eigenvalue, which gives the result.

Theorem 3: Suppose each agent has bias parameter γi >
γmin. For an Erdős-Renyi random graph with edge probabil-
ities p, if λ1(Γ−1W̄ ) = 1

n

∑n
i=1

1
γi
< 1−∆ then

PA∼G(n,p)[β(t) → 1]

≥1− 4n exp

(
−np∆

2γ2min

27

)
− (1 + o(1))ne−np .

(39)

Proof: We use Corollary 1 and Lemma 1. We can let
δ = np since all nodes have the same expected degree.

Theorem 3 shows that if all agents are equally likely
to share an edge with any other agent, the only quantity
that governs whether consensus is approached with high
probability is given by looking at the sum of the inverse
of the bias parameters. This directly shows how to link the
values of the bias parameters to the likelihood of consensus
being approached. If p is not constant, say p = k logn

n , then
the constant k would need to be large enough compared
to ∆2 and γ2min to ensure the probability of approaching
consensus goes to 1.



IV. STOCHASTIC BLOCK MODELS

In this section, we will study in detail conditions for
consensus for the stochastic block model with two commu-
nities, labeled A and B and containing nA and nB members
respectively; we label their member sets VA and VB .

All agents in community A have a bias towards opinion
1. We will use the simplifying assumption that the bias
parameter of all agents in A is γA > 1. Similarly the bias
parameter of all agents in B is γB < 1. We also define the
edge probabilities:

• pA
△
= P[ai,j = 1 | i, j ∈ VA];

• pB
△
= P[ai,j = 1 | i, j ∈ VB ];

• q
△
= P[ai,j = 1 | i ∈ VA, j ∈ VB ].

We denote the random graph model using these parameters
as GSB(nA, nB , pA, pB , q). Note that in this model, δ =
min(pAnA + qnB , pBnB + qnA).

For example, if A ∼ GSB(3, 2, pA, pB , q), then if VA =
{1, 2, 3} and VB = {4, 5}, we have

Ā =


pA pA pA q q
pA pA pA q q
pA pA pA q q
q q q pB pB
q q q pB pB

 . (40)

The matrix W̄ = D̄
−1

Ā has four different entries, where

w̄i,j =


pA

pAnA+qnB
if i ∈ VA, j ∈ VA

q
pAnA+qnB

if i ∈ VA, j ∈ VB
q

qnA+pBnB
if i ∈ VB , j ∈ VA

pB

qnA+pBnB
if i ∈ VB , j ∈ VB

. (41)

A. Conditions for Approaching Consensus

To find conditions on approaching consensus for ran-
dom graphs A ∼ GSB(nA, nB , pA, pB , q), we ana-
lyze the eigenvalues of matrix Γ−1W̄ . For fixed model
GSB(nA, nB , pA, pB , q) and bias parameters γA and γB for
community A agents and B agents respectively, let

J
(2)
1 =

[ 1
γA

0

0 1
γB

] [ pAnA

pAnA+qnB

qnB

pAnA+qnB
qnA

pBnB+qnA

pBnB

pBnB+qnA

]
. (42)

Proposition 2: Matrix Γ−1W̄ has (at most) two nonzero
eigenvalues, which are also the eigenvalues of the 2 × 2

matrix J
(2)
1 .

Proof: Since Γ−1W̄ is similar to a symmetric matrix
Γ−1/2D̄

−1/2
ĀD̄

−1/2
Γ−1/2, we can conclude that Γ−1W̄

is diagonalizable and its rank is equivalent to its number
of nonzero eigenvalues. Since rank(Γ−1W̄ ) ≤ 2, we can
conclude there are only at most two nonzero eigenvalues.

Matrix J
(2)
1 has two eigenvalues. Suppose that one

eigenvalue-eigenvector pair is λ and v = [v1, v2]
⊤. Then

J
(2)
1 v = λv (43)

=⇒

{
1
γA
v1

pAnA

pAnA+qnB
+ 1

γA
v2

qnB

pAnA+qnB
= λv1

1
γB
v1

qnA

pBnB+qnA
+ 1

γB
v2

pBnB

pBnB+qnA
= λv2

. (44)

Now let x be an n-length vector where

xi =

{
v1 if i ∈ VA

v2 if i ∈ VB
. (45)

Letting (Γ−1W̄x)i denote the i entry of Γ−1W̄x,

(Γ−1W̄x)i =

{
1
γA

v1pAnA+v2qnB

pAnA+qnB
if i ∈ VA

1
γB

v1qnA+v2pBnB

pBnA+qnA
if i ∈ VB

(46)

=

{
λv1 if i ∈ VA

λv2 if i ∈ VB
(47)

so Γ−1W̄x = λx and so λ is an eigenvalue of Γ−1W̄ .
Theorem 4: For fixed model GSB(nA, nB , pA, pB , q) and

bias parameters γA and γB for community A agents and B
agents respectively, if λmax(J

(2)
1 ) < 1−∆ then

PA∼GSB(nA,nB ,pA,pB ,q)[β(t) → 1] (48)

≥ 1− 4n exp

(
−δ∆

2γ2min

27

)
− (1 + o(1))ne−δ (49)

Proof: Using Corollary 1 with Proposition 2 gives the
result. The expected degree of agents in community A is
given by pAnA + qnB and that of agents in community B
is given by pBnB + qnA. Taking the minimum of the two
gives the value for δ.

It is known that for a 2× 2 matrix M with entries mi,j ,

λmax(M) < 1 ⇐⇒ (50)
0 < m1,1 < 1 (51)
0 < m2,2 < 1 (52)

and m1,2m2,1 < (1−m1,1)(1−m2,2) . (53)

B. Numerical Simulation

Experiments show that the probability bound given in
Theorem 4 is very loose. Let the minimum expected degree
δ in Theorem 4 be expressed as k log n. Then Theorem 4
requires k to be large enough compared to 27/(∆2γ2min)
for the probability lower bound to be meaningful. How-
ever, numerical simulations show that in networks where
λmax(J

(2)
1 ) < 1, even for small k, the probability of

consensus can go to 1 very quickly for reasonable values
of n. One such experiment is given in Figure 1. In the
experiment, we fix the relative sizes of nA and nB and the
relative proportions of pA, pB and q so that ∆ < 0.0697
and γmin = 0.9. We then vary n and k and show how how
many of 1000 randomly generated stochastic block model
networks approach consensus at 1. Since random graphs may
not be connected, we also record in Figure 1 the proportion
of connected networks; as consensus is only a meaningful
property for connected networks, any network which is not
connected is counted as not approaching consensus.

C. Equal Expected Degree

To gain some intuition about what kinds of random two
community networks approach consensus with high proba-
bility and which do not, we will look at the case when the



n k = .5 k = 1 k = 2 k = 3
10 Connected 0.131 0.681 0.991 1.000

Consensus to 1 0.048 0.531 0.979 1.000
100 Connected 0.002 0.662 0.999 1.000

Consensus to 1 0.000 0.647 0.999 1.000
1000 Connected 0.000 0.658 1.000 1.000

Consensus to 1 0.000 0.657 1.000 1.000

Fig. 1. Numerical simulations on a stochastic block model with two
communities. We fix a particular structure so that λmax(J

(2)
1 ) ≈ 0.93

in all experiments (so consensus occurs in the expected graph). We vary the
number of agents n and the parameter k governing the minimum expected
degree δ = k logn. Results show the proportion of trials where the random
network was connected and where consensus to 1 occurs (consensus only
occurs in connected networks by definition).

averaged expected degree of agents in both community A
and community B are the same. This implies that

pAnA + qnB = qnA + pBnB
△
= d . (54)

Proposition 3: In the random two community model
where all agents have the same expected degree d and
γB < 1 < γA, the largest eigenvalue of J

(2)
1 is less than

1 if all the following hold:
0 < nB(γB − 1) + nA(γA − 1) (55)

pBnB
d

< γB (56)

pAnA
d

<
γAnB(γB − 1) + nA(γA − 1)

nB(γB − 1) + nA(γA − 1)
. (57)

Proof: Let dAB be the expected number of edges each
agent in A has with agents in B and dBA be the expected
number of edges each agent in B has with agents in A. The
total number of edges between A and B is expressed as

nBdBA = nAdAB =⇒ dBA =
nA
nB

dAB . (58)

Let p′ = pAnA

d . Then we get that

Ā
(2)

=

[
pAnA

d
qnB

d
qnA

d
pBnB

d

]
(59)

=

[
pAnA

d
d−pAnA

d
nA

nB

d−pAnA

d 1− nA

nB

d−pAnA

d

]
(60)

=

[
p′ 1− p′

nA

nB
(1− p′) 1− nA

nB
(1− p′)

]
(61)

J
(2)
1 =

[ 1
γA
p′ 1

γA
(1− p′)

1
γB

nA

nB
(1− p′) 1

γB

(
1− nA

nB
(1− p′)

)] . (62)

Applying (52) gives the condition (56) of the result. (Note
that applying (51) gives pAnA

d < γA which is always true
since γA > 1.) By (53), one of the following needs to hold:{

0 < nB(γB − 1) + nA(γA − 1)

p′ < γAnB(γB−1)+nA(γA−1)
nB(γB−1)+nA(γA−1)

(63)

or

{
0 > nB(γB − 1) + nA(γA − 1)

p′ > γAnB(1−γB)+nA(1−γA)
nB(1−γB)+nA(1−γA)

. (64)

However, notice that since γB < 1 < γA,

γAnB(1− γB) > nB(1− γB) (65)

and thus the right-hand side of the second equation in (64)
is always greater than 1. Since p′ < 1, this condition never
occurs. Thus, we need to satisfy (63).

We note that Proposition 3 gives some interesting insights
on when consensus occurs. First, we see that it is certainly
possible to approach a consensus of ‘1’ even if there are
fewer agents who have inherent belief ‘1’. The necessary
condition is (55). Given any setting of nB and nA and pA,
we can always increase γA so that both (55) and (57) hold.
Exactly how much to increase γA is given by (57).

Second, Proposition 3 explains the effects of homophily,
the tendency for agents to be connected to those more similar
to themselves. Both the quantities pA and pB represents
probabilities of edges within the same community of an
agent. We can observe the effect of the homophily in
our model by fixing nA, nB and d. The Erdős-Renyi (no
homophily) corresponds to pA = pB = q = d

nA+nB

(see (54)). Increasing q results in lower values for both pA
and pB . Proposition 3 indicates that lower values of pA
and pB make it easier for consensus to occur. This brings
about the following point: When agents are connected with
those more similar to them, it is harder for consensus to be
approached. This is different from the observations made in
[7]. Their conclusions were that a cascade of complying with
a unpopular norm (a situation which parallels approaching
consensus) occurs when a small number of true believers of
the norm are clustered together (a situation which parallels
pA being larger). As we do not get this in our two community
model, this leads to the conclusion that the different aspects
of the model in [7], in particular the threshold function and
the enforcement step, affect the cascades of opinions.
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