
CONCURRENT ENGINEERING: Research and Applications

Overcoming the 90% Syndrome: Iteration Management
in Concurrent Development Projects

David N. Ford1,* and John D. Sterman2

1Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA

2Sloan School of Management, Massachusetts Institute of Technology,

50 Memorial Drive, E53-351, Cambridge, MA 02142 USA

Abstract: Successfully implementing concurrent development to reduce cycle time has proven difficult due to unanticipated iterations. We

develop a dynamic project model that explicitly models these interactions to investigate the causes of the ‘‘90% syndrome,’’ a common form of

schedule failure in concurrent development. We find that increasing concurrence and common managerial responses to schedule pressure

aggravate the syndrome and degrade schedule performance and project quality. We show how understanding of and policies to avoid the 90%

syndrome require integration of the technical attributes of the project, the flows of information among participants, and the behavioral decision-

making heuristics participants use to respond to unanticipated problems and perturbations.

Key Words: concurrent development, concurrent engineering, iteration, rework, cycle time, project management, system dynamics.

1. Introduction

Developing products faster has become critical to

success in many industries, whether the product is an

office building, software package, or computer chip.

Calls for faster product development have simulta-

neously taken on the sacred tone of a mantra and the

volume of a brass band [34]. Perhaps with good reason.

Cycle time reduction is considered crucial to success by

many researchers (e.g., [34,41]) and practitioners (e.g.,

[29,33]). Developing products faster than competitors

can increase market share, profit, and long-term

competitive advantage [29,33,41].

In response many firms have shifted from sequential

to concurrent development (aka Integrated Product

Development or Fast Track development). Large

reductions in cycle time can be realized by applying

concurrent development [4,9,31,41,42]. Despite some

successes, implementing concurrent development has

proven difficult for many [30,41]. These failures arise in

part because cycle time reduction through concurrent

development increases process and organizational com-

plexity [8,26,41]. Concurrent methods often increase the

frequency and number of information transfers among

project phases [7,8]. More tasks are begun with

incomplete or preliminary information, increasing itera-

tion. Management policies have not generally improved

to address the effects of increased complexity created by

concurrent development.

Many explanations have been suggested for the

concurrent development implementation challenge.

Backhouse and Brookes [4] suggest implementation

fails due to mismatches among a development organiza-

tion’s people, controls, tools, processes and structure,

and the organization’s need for efficiency, focus,

incremental change, radical innovation, and proficiency.

Other researchers focus on the disaggregation of work

into smaller pieces [35,43] and mismatches between

attributes of the technology and the degree of over-

lapping employed [25]. Still others focus on activity

sequencing [22,35], coordination caused by overlapping

activities [21], and information transfer [6,25].

In this paper we develop a formal model to explore

how concurrent process structures can cause a particular

form of development project schedule failure, the 90%

syndrome. We show how development processes such as

overlapping of activities, activity durations, and delays

in the discovery of rework requirements can create

unplanned iteration, delays, higher costs, and lower

quality. We explore policies that can help improve

project performance. In the companion paper ([19], this

issue), we use the model to explore the interactions

between the process structure of concurrent projects and

behavioral responses of developers and managers.
*Author to whom correspondence should be addressed.
E-mail: DavidFord@tamu.edu

Volume 11 Number 3 September 2003 177
1063-293X/03/03 0177–10 $10.00/0 DOI: 10.1177/106329303038031

� 2003 Sage Publications

+ [25.9.2003–8:44am] [177–186] [Page No. 177] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

http:\\www.sagepublications.com

2. The 90% Syndrome

One common concurrent development problem is the
‘‘90% syndrome.’’ The syndrome describes a project
that reaches about 90% completion on schedule but
then stalls, finally finishing after about twice the
originally projected duration. A senior manager in one
company we worked with described their experience as
‘‘The average time to develop a product is 225% of the
projected time, with a standard deviation of 85%. We
can tell you how long it will take, plus or minus a
project’’ [16]. The syndrome is common in many
industries including software, construction, consumer
electronics, and semiconductors [2,12,24]. Consider the
following example from our fieldwork with a leading
semiconductor firm, describing an ASIC (Application
Specific Integrated Circuit) project we call Rattlesnake.
The original schedule called for a 34 week project, with a
smooth, single-pass flow of work through product
definition, design, layout, mask preparation, prototype
fabrication, prototype testing, manufacturing process
design, and production rollout—no iterations were
anticipated. The project appeared to progress smoothly,
though somewhat more slowly than planned, apparently
completing 79% of the project scope by the original
deadline. However, prototype testing revealed major
problems, requiring an unplanned iteration with revi-
sions in the design. Tests of the second prototype found
still more problems, requiring another major iteration.
The project was finally completed in week 81, more than
twice the original schedule (see Figure 1 in [19], this
issue). The slow progress experienced late in the project
is typical of the 90% syndrome, and the unplanned

inter-phase iterations suggest the importance of the late

discovery of unanticipated rework.

3. The Development Project Model

To investigate the impacts of the interaction of

physical and information processes with managerial

decision-making we built a dynamic project simulation

model that integrates several constraints usually treated

separately:

1. Characteristic Process Durations: Development activ-
ities require minimum times to be performed regard-
less of the resources allocated to the activity.

2. Development Activity Sequencing: Development
activities occur in a specific sequence within phases.

3. Dynamic Information Requirements: Development
phases are constrained by information dependencies
within and among project phases. These dependen-
cies vary with phase progress and management
decisions.

4. Work Release Policies: Work is often not released as
it is completed, but in discrete packets. Policies
governing packet size and release timing strongly
affect the availability of information across project
phases.

5. Coordination: When released work is discovered to
require rework developers in the originating and
discovering phases must coordinate prior to revising
the work.

Our model simulates the performance of a multiple-

phase development project. Each phase is represented by

Design

Prototype
Testing

Reliability
& Quality

Product
Definition

Supplying Phase

Product
Definition

Receiving
Phase

Reliability
& Quality

Design Prototype
Testing

X

X

X

X

X

X

X

X X

X

X

X

X

Prototype
Testing

Reliability
& QualityDesign

Product
Definition

Network Legend

Products of Development Phase

Development Phase

Return Errors for Rework

Figure 1. A project phase network and its corresponding Design Structure Matrix.

178 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:44am] [177–186] [Page No. 178] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

a generic structure, which is parameterized to reflect a
specific stage of product development such as preparing
construction drawings, writing software, or testing
prototypes. The unit of measure for development work
is the ‘‘task’’ or work package, an atomic piece of work.
Examples include writing a line of code or installing a
steel beam. When tasks within a phase are hetero-
geneous the unit of work can be defined as the average
amount an experienced person can accomplish in a given
interval (e.g., an hour or day). Information concerning
the quality of completed tasks is generated through
testing or quality assurance efforts. Tasks may require
rework because they were done incorrectly or because
the work or information they were based on was itself
erroneous or has changed.

The model is a system of nonlinear differential
equations. The model is based on existing product
development theories and our field studies of develop-
ment projects. For example, the development process
structure is based on theories of project constraints
and resources [32] and previous dynamic project
models including [1,10,17]. Because no closed-
form solutions are known, we simulate the
system’s behavior. The full model is available at
<ceprofs.tamu.edu/dford> in the Vensim simulation
language (see <www.vensim.com>).

3.1 Modeling Work and Information Flows

The flow of work and information among phases
defines the network structure of the project. Figure 1
shows a simple but common example. The links shown
in Figure 1 represent several forms of interphase
interaction, including:

. Work progress in which supplying phases provide
development products or other information to
receiving phases. These flows are shown by the
solid arrows.

. Work inherited by receiving phases from supplying
phases may require rework (either mandatory due to
errors or optional for improvement). Inheriting work
containing errors or requiring rework corrupts work
done by the receiving phases. When corrupted work is
discovered it is reported to the phase responsible for
the problem so it can be reworked. These information
flows are shown by the dashed arrows in the project
network.

. Rework requires coordination between the phase that
discovered the change requirement and the phase that
generated and must correct the work. Coordination
must occur prior to the revision of the work.
Coordination is an activity in individual phases
(boxes) generated by the reporting of problems
requiring rework (dashed arrows).

The information flows among phases in the model are
bi-directional, as in the Design Structure Matrix (DSM)
approach [13,35,36]. The DSM identifies bi-directional
dependencies between phases in which the activity
initiated first (upstream) receives products from the
activity initiated later (downstream) as well as the more
traditional dependence in the general direction of work
flow. Figure 1 also shows the DSM corresponding to the
project network in the diagram. Several iterative loops
are created by the bi-directional dependencies among
phases. Our model allows any DSM to be represented
by specifying the number of phases and the dependen-
cies among them.

All development processes are constrained by the
physical and information relationships among the
activities and phases within a project. These constraints
include development activity durations and precedence
relationships, information dependencies leading to
iteration [36], the availability of work [17], coordination
mechanisms [22], the characteristics of information
transferred among development phases [25], and the
number, skill, and experience of project staff [2]. These
processes and policies can interact to constrain progress.
Consider the erection of the structural steel skeleton for a
ten story building. Each member (the columns, beams,
and bracing) must be installed, inspected, and corrected
if the installation is found to be defective. These activities
can only occur in a specific order: install, inspect, approve
or discover a problem, rework, and re-inspect; when
no further problems are found the work is approved
and released so other work dependent on that task
can proceed (e.g., installation of floors, walls, etc.).
Management policies such as the number of floors that
must be approved prior to release also affect progress and
information availability downstream. Figure 2 shows the
states of work within a single development phase in the
model and the flows of work among them.

As work is first completed it enters the stock of work
awaiting quality assurance (QA). If it passes QA (either
because it is correct or the need for changes is not
detected), it is approved and enters the stock of
approved work. When sufficient work has been
approved, a package is released, adding to the stock of
work released to other phases or customers. The release
package size is a management decision and is condi-
tioned by characteristics of the phase. For example, in
semiconductor development the vast majority of the
design code must be completed prior to release for a
prototype build since almost all the code is needed to
design the masks. In other development settings
managers have broad discretion in setting release
package sizes.

Work found to require changes must be resolved
through coordination with the phase responsible for
the problem. Classic examples include designers work-
ing with marketers to refine ambiguous product

Iteration Management in Concurrent Development Projects 179

+ [25.9.2003–8:44am] [177–186] [Page No. 179] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

specifications and manufacturing engineers meeting
with designers to explain why parts cannot be built as
specified in the drawings. After coordination resolves
disputed issues, these tasks move to the stock of work to
be changed and are subsequently reworked, then
returned to quality assurance for re-inspection. Quality
assurance is imperfect, so some tasks requiring rework
can be missed and are erroneously approved and
released. Such rework requirements may be discovered
later by another phase—if not, they remain embedded in
the product, to be discovered by the customer. When the
phase reports problems, the affected tasks are moved
from the stock of work considered finished to the
coordination backlog, then eventually reworked. For
example, a test phase may discover a short circuit across
two layers in a prototype chip. If the error is traced to
the design, test engineers must work with the designers
to specify the location and characteristics of the short
circuit. The designers then must rework, recheck and
rerelease the design, followed by layout, masking,
prototype fabrication, and retesting of the new chip.
The probability of error detection depends on a

variety of behavioral factors and management deci-
sions. The probability of detecting problems declines
as the information available is less current, complete,
and accurate. High overlap between dependent phases
in concurrent development means many tasks are done
on the basis of specifications and components that
are unavailable or changing. Our fieldwork shows that
activities such as quality assurance, testing, documen-
tation, and validation commonly suffer under con-
current development as development activities are
overlapped. For example, we asked engineers in
a large manufacturing firm how they accommodated
the schedule compression and concurrency created
by the organization’s official product development
process:

‘‘The technology may not be ready before alpha phase.

Sometimes we have no choice, we just have to put

something in’’—Development Engineer

‘‘We might accept a lower level of maturity [in the

prototype]. Maybe maturity isn’t a good word. We

might accept a lower level of design representativeness

than we would like’’—Engineering Manager

‘‘Often, we’ll put [early prototype] parts in a [later

prototype] . . . There’s no getting around it as long as we

have to go fast’’—Program Manager

Schedule compression also biases workers towards
getting their tasks done, even when that means spending
less time on validation and quality assurance. An
engineer in the organization above admitted that ‘‘We
might not be able to finish the part, finish the FMEA’s
[Failure Modes and Effects Analysis], etc. We’ll do the
FMEA’s, but they won’t be as thorough as they would
[be] otherwise.’’ Another commented: ‘‘We haven’t done
the FMEA yet. We’ll probably do it for beta [second
prototype], but not for alpha [first prototype]. We just
don’t have time to do it.’’

These quotes illustrate a phenomenon we find
repeatedly in our fieldwork: The greater the degree of
concurrence, the greater the schedule pressure, and the
greater the gap between resources available and
resources required, the less effort is devoted to quality
assurance and the lower the effectiveness of that effort.
We capture these effects parsimoniously by assuming
the probability of detecting the need for rework declines
as the degree of concurrence increases.

3.2 Modeling the Speed of Development Activities
and Concurrence

The rates at which development activities are per-
formed depend on two types of constraints: resources
and processes. Obviously, progress can be constrained
by inadequate resources—too few workers, insufficient
worker skill and experience, or insufficient supporting
infrastructure (such as CAD/CAM systems). A variety
of models explore how underestimating project scope,
overestimating productivity, delays in the discovery of
errors, or unexpected changes in customer requirements

Work needing
Quality

Assurance

Work
Approved

Work Finished
and Released

Work needing
Coordination

Initial Completion
Rate

Approval
Rate

Coordination rate

Discovery of
Needed Rework

Rework
Rate

Release
Rate

Notification and Return
Rate

Work needing
Initial

Completion

Work known to
need Rework

Figure 2. Work flows within a single development phase.

180 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:44am] [177–186] [Page No. 180] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

can cause resource shortages that lead to delays, cost

overruns, and quality problems (e.g., [2,10,37 Ch. 2.3]).

In this paper, however, we seek to show how the

structure of a development process interacts with

managerial decision making to contribute to the 90%

syndrome, even when resources are ample. If so,

throwing more people and money at a project in trouble

will have low leverage; effective policies will require

changes in project structure and management policies.

Even when resources are ample, progress can be

constrained by the interdependencies among phases and

tasks. As an example, consider again the erection of the

steel skeleton for a building. Each steel member must be

installed (base work), and inspected (quality assurance).

If an error is found, the affected supervisors and skilled

trades must work together to devise a plan to remedy it

(coordination) before the error can be corrected

(rework). For any given technology, a certain minimum

amount of time is required for each of these activities

even when resources such as laborers and cranes are

ample. Further, certain tasks cannot be started or

completed until others are done. For example, the steel

members for the upper floors cannot be installed until

the beams and girders for lower floors are in place.

These constraints are captured in our model through

concurrence relationships. The function relating how

much steel for upper floors can be placed to the progress

of lower floors defines an intraphase concurrency

relationship (the constraint arises within the steel

erection phase).

Analogously, interphase concurrence relationships

answer the question ‘‘How much work can we now

complete given the work released by the phases upon

which we depend?’’ For example, the erection of the

steel for an office building depends on the release of

construction drawings by the design phase and the

progress of foundation work (among others). These

constraints require two interphase concurrence relation-

ships: one describing how much of the steel can be

erected based on the release of construction drawings,

and another describing how much steel erection can

proceed based on the state of the foundations. Either of

these interphase relationships might constrain steel

erection. Each interphase concurrence relationship

describes the fraction of a phase’s total scope that can

be done based on the fraction of work released by a

supplying phase. Interphase concurrence relationships

characterize the dependencies among the off-diagonal

terms in the Design Structure Matrix. They are

potentially nonlinear, allowing our model to capture

changes in the degree of dependence among phases as a

project evolves. For example, ASIC designers may be

able to develop certain standard elements of the design

(memory registers, data bus) with early information

about customer requirements, but may be unable to

continue until full specifications for the required

functionality are released.

Concurrence relationships are characteristic features

of a project’s network structure and must be estimated

for each project. We tested our model against the

behavior of a medium-sized chip development project at

a major U.S. semiconductor firm (the Python project)

[18]. Ford and Sterman describe the protocol used to

elicit these concurrence relationships from project

personnel and provide examples. Figure 3 shows four

expert estimates of the interphase concurrence relation-

ship between the product definition and design phases of

the Python project. The product definition phase

develops product architecture and specifications based

on the Python chip’s market and target performance.

The designers use these specifications as the basis for the

detailed design embodied in the software code used to

Fraction Released by
 Product Definition Phase (%)

100

0
1000

Fraction
Available

for
Initial

Completion
by

Design
Phase
(%)

Strategic Marketing Representative

Product
Arch

ite
ct

Design Manager

Designer

Figure 3. Four estimates of the interphase concurrence relationship between the product definition and design phases.

Iteration Management in Concurrent Development Projects 181

+ [25.9.2003–8:44am] [177–186] [Page No. 181] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

lay out individual components on the silicon. Each
estimate in Figure 3 describes the mental model of a
participant concerning the question ‘‘How much design
work can be completed based on the fraction of the
product definition work that has been completed,
approved and released?’’
Interestingly, the two ‘‘upstream’’ people (the market-

ing representative and the product architect) believed
the ‘‘downstream’’ people (the design manager and
designer) could, and presumably should, begin their
work quite early, when few product specifications have
been released, while those downstream believed their
work could only progress when a majority of the
specifications were available. These differences in mental
models had led to conflict and delay in prior develop-
ment projects. The explicit description of these mental
models initiated and facilitated discussions for improv-
ing the organization’s development processes.

3.3 Model Testing

The model was tested for structural and behavioral
similarity to actual development projects using standard
methods [20,37, Ch. 21]. Model structure was based on
product development project processes and organiza-
tions as described in the literature and derived from our
fieldwork. We examined the ability of the model to
replicate the experience of the Python project described
above. Python applied all the major precepts of
concurrent development including overlapping phases
and cross-functional teams. The organization was well
trained in concurrent development practices [15,40].
Figure 4 compares Python’s original schedule and actual
performance, developed from records of the phase
durations and completion dates (e.g., by counting lines
of code in each version of the design code). As is
common in semiconductor development, and verified in
our interviews, the design phase planned to release its
work in a single large package, generating the jump in

planned progress 12 weeks after the project began.

However after development began the decision was

made to design the Python chip in two components

instead of one, resulting in two design releases and

therefore two jumps in performance. Like the

Rattlesnake project, Python suffered from the 90%

syndrome. The project remained close to the original

schedule through week 20 and was 73% complete by the

original deadline. Progress then slowed from 1.8% per

week to 0.9% per week, and the project was ultimately

completed 77% late (week 69 vs. 39).

We drew on our fieldwork and prior research (e.g.,

[11]) to estimate the parameters for the Python case.

Ford and Sterman [18] describe the protocol used to

elicit the concurrence relationships and provide exam-

ples from the Python project. Figure 5 shows planned

and actual project performance as simulated by our

model. Planned progress simulates management’s plan

for a single design release, their assumption of no

interphase iteration, and overestimation of productivity.

Experienced managers expect iteration but are often

required to use ‘‘stretch objectives’’ in planning because

management believes they keep motivation and pressure

to perform high. Python project developers repeatedly

described the unrealistic optimism used to plan projects,

including the assumption of little or no rework.

The model simulation (Figure 5) closely matches

actual project behavior (Figure 4) and recreates the 90%

syndrome experienced by the Python project.

Differences between our simulation and the project’s

actual behavior are largely due to resource constraints

omitted from the model, specifically staffing problems

created by the unanticipated iterations. The similarity

between Figures 4 and 5 indicates that even projects

staffed by skilled personnel with ample resources can

experience the 90% syndrome, solely as a function of the

informational and physical dependencies created by

concurrency.

.

Time (weeks from project start)

C
um

m
ul

at
iv

e
P

ro
gr

es
s

(p
er

ce
nt

)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Planned Progress

Actual Progress

Figure 4. Planned and actual progress of the Python project.

182 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:44am] [177–186] [Page No. 182] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

4. Implementing Concurrent
Development Processes

To examine the impact of concurrence on schedule

performance, we simulated the model with different

levels of concurrence. We vary all inter- and intraphase

concurrence constraints. We preserve start time con-

straints such as cases where a phase cannot start until at

least some work has been released by a supplying phase.

Figure 6 shows the impact on project duration,

iteration, and quality of varying the degree of concur-

rence from fully sequential (�100% of the base case) to

highly overlapped activities (þ150% of the base case).1

As expected, large reductions in the degree of

concurrence cause sharp increases in duration

(Figure 6). As overlapping decreases some phases

delay the start of their work well after the point at

which the supplying phases have completed theirs.

Increasing concurrency reduces duration, but with

sharply diminishing returns: a 50% increase in overlap

compared to the base case reduces duration by 22%,

while another 50% increase cuts duration only another

6%, and improvement essentially ceases beyond that

point. Figure 6 also shows total work effort relative to

total project scope, defined as the cumulative number of

tasks completed (both initially and through rework),

and is a proxy for project cost.2

Note that in the base case, total work effort is 55%
greater than project scope due to the impact of rework
(if all tasks were completed perfectly with no need for
changes work effort would equal project scope).
Interestingly, increasing concurrence decreases total
work effort—a 50% increase in concurrence cuts total
work effort from 1.55 to 1.27 times the project scope.
One might argue that total work effort should rise with
increasing concurrence since more work must be redone
when errors are discovered. This effect does occur, but is
overwhelmed by another, less intuitive impact: increased
concurrence increases the average iteration path length
by delaying the discovery of the need for rework to
phases farther from the generating phase. In an iteration
cycle, rework requirements are passed from the dis-
covering phase to the originating phase. After coordina-
tion, changes are made to the flawed work in the
originating phase and to contaminated work in all
affected phases. The reworked tasks are re-inspected,
rereleased and arrive at the location of its discovery
again. For example, a test phase may discover an error
in the chip and trace it to the design. Test engineers
notify and coordinate with the designers to specify the
location and characteristics of the flaw. The designers
then must rework, recheck and rerelease the design,
followed by changes in layout, tape out, masking, and
prototype fabrication. The cycle is completed when
testing of the redesigned prototype begins. High
concurrency means downstream activities carry out a
substantial portion of their work before they (or any
other phase) have a chance to detect and correct errors.
In essence, the downstream phases outrun the discovery
of inherited rework requirements.

From the preceding it appears that increasing
concurrence both speeds the project and cuts project
costs. However, the third graph in Figure 6 shows the
cost of concurrency: project quality drops significantly.
In the base case, the number of uncorrected errors

1A stretch factor of þ50% more concurrence means each phase can now do 75%
of its work at the point where it could have done 50% in the base case; a stretch
factor of �50% means the phase could do only 25% of its work at the point
where it could do 50% in the base case. In implementing different levels of
concurrence we preserve constraints, where they exist, that, e.g., phase j cannot
begin its work until phase i has released as least some of its work. Such
constraints mean the ‘‘stretch’’ factor is nonlinear. The web-appendix provides
full documentation.
2Project cost is actually the sum of the tasks completed by each phase weighted
by the unit cost of tasks in each phase. To preserve confidentiality we report
total work–not cost, implicitly assuming the unit cost of tasks in each phase are
equal.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Time (weeks from project start)

C
um

m
ul

at
iv

e
P

ro
gr

es
s

(p
er

ce
nt

)

Simulated planned progress

Simulated actual progress

Figure 5. Planned and actual progress of the Python project as simulated by the model.

Iteration Management in Concurrent Development Projects 183

+ [25.9.2003–8:44am] [177–186] [Page No. 183] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

released to the customer is 5% of total project scope.
These uncorrected errors include both outright defects
(where the product does not function as designed) and
instances where the design does not correspond to
customer requirements. In the chip development context
such errors include features the customer wanted that
are not available (e.g., power consumption is too high),
features that do not function as designed (e.g., a certain
combination of inputs gives a fatal error), or design
attributes that cause low manufacturing yield.
Increasing concurrence 50% raises errors remaining
at project completion to 6.7% of project scope—
a 34% increase over the base case. At the same time
that increasing concurrence delays the discovery and
correction of errors, it also increases the likelihood of
releasing tasks requiring rework. As concurrence
increases, the information, technologies, and compo-
nents of each phase relies upon as the basis for its work

are necessarily less complete, less accurate, and more
ambiguous. The number of tasks requiring rework
grows while at the same time the ability of personnel
in each phase to detect these problems falls, increasing
the number of tasks released with errors and thus the
chance that needed rework will not be discovered and
corrected before the project is completed.

The simulations show a strong tradeoff between
schedule and quality performance. Increased concur-
rency interacts unfavorably with the delays in the
discovery of rework needs. The greater the overlap,
the more work is completed and released before rework
requirements can be detected, leading to more
unplanned iteration. Greater concurrence increases the
vulnerability of a project to delays in discovering rework
and increases the fraction of work requiring such
changes. The result is lower suitability to customer
requirements and lower product quality.

0.8
1.0

3.0

5.0

-1.0 -0.5 0.0 0.5 1.0 1.5

L
o

g
 (

D
u

ra
ti

o
n

/B
as

e
C

as
e)

(Concurrence – Base Concurrence)/Base Concurrence

Project Duration

1.0

1.2

1.4

1.6

-1.0 -0.5 0.0 0.5 1.0 1.5

T
o

ta
l T

as
ks

 D
o

n
e/

P
ro

je
ct

 S
co

p
e

Work Effort

(Concurrence – Base Concurrence)/Base Concurrence

0.00

0.02

0.04

0.06

0.08

-1.0 -0.5 0.0 0.5 1.0 1.5

E
rr

o
rs

 R
em

ai
n

in
g

/P
ro

je
ct

 S
co

p
e

Errors Remaining at Completion

(Concurrence – Base Concurrence)/Base Concurrence

Figure 6. Impact of varying concurrence (internal and external).

184 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:44am] [177–186] [Page No. 184] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

5. Conclusions

In this paper we use a dynamic model of development

projects to describe, quantify, and simulate how physical

and information processes interact with managerial

decision making to constrain progress and cause project

overruns. We have shown the critical role of iteration

cycles in explaining the 90% syndrome. Our research

suggests that an effective strategy addresses the manage-

rial behaviors that cause iteration cycles to constrain

progress. Iteration cycles can delay projects by being

more in number, longer in the distance which informa-

tion must travel, slower in traversing that distance, and

occurring later than possible. Researchers have pro-

posed process designs to manage iteration cycle number,

speed, length, or timing. For example Terwiesch et al.

(1998) recommend ‘‘a fast process of problem detection,

problem solving and engineering change implementa-

tion’’ to increase iteration cycle speed. They suggest

‘‘loosening the coupling (dependence) between develop-

ment activities’’ and improving the accuracy of pre-

liminary information, both of which reduce the number

of cycles. McAllister and Backhouse (1996) suggest

redesigning work flows to reduce the number of

iteration paths in a project network. However increased

concurrence works against all these recommendations.

Our work has several implications for concurrent

development research. The model and simulations

demonstrate that effective modeling of development

processes must include the structure of information

dependencies to explain problematic project behaviors.

More specifically, the role of iteration cycles in

the 90% syndrome demonstrates the need for explicitly

including iteration. Future research can identify and

test metrics that relate iteration to different forms

of project and phase performance and how specific

iteration features constrain progress. Most interesting

and relevant for managers, the model can be used to

study the interaction of the process structure described

in this paper and the behavioral decision rules used

by engineers and managers under pressure to meet

aggressive deadlines (see [19], this issue). In that paper

we show how common behaviors such as concealing

the need for rework from managers and colleagues

interacts with the structure of concurrent development

programs to intensify the 90% syndrome, lower product

quality, and undercut the benefits of increased con-

currency. We argue that sustained improvements in

project performance require integration of both the

physical and informational structure of concurrent deve-

lopment processes with the behavioral decision rules of

the engineers and managers who work within them.

Acknowledgments

The authors thank the Organizational Learning
Center and the System Dynamics Group at the MIT
Sloan School of Management and the Python organiza-
tion for financial support. Special thanks to the
members of the Python team for their interest, commit-
ment, and time.

References

1. Abdel-Hamid, T. and Madnick, S. (1991). Software Project
Dynamics, An Integrated Approach, Prentice-Hall, Inc:
Englewood Cliffs, NJ.

2. Abdel-Hamid, T. (1988). Understanding the ‘‘90%
Syndrome’’ in Software Project Management: A
Simulation-Based Case Study, The Journal of Systems
and Software, 8: 319–330.

3. Adler, P.S., Mandelbaum, A., Vien, N. and Schwerer, E.
(1995). From Project to Process Management: An
Empirically-based Framework for Analyzing Product
Development Time, Management Science, 41(3): 458–484.

4. Backhouse, C.J. and Brookes, N.J. (1996). Concurrent
Engineering, What’s Working Where, Gower, Brookfield,
VT: The Design Council.

5. Bohn, R. (July–Aug 2000). Stop Fighting Fires, Harvard
Business Review, 78(4): 83–91.

6. Browning, T. (Oct. 1999). Sources of Schedule Risk in
Complex System Development, Systems Engineering, 2(3):
129–142.

7. Clark, K.B. and Fujimoto, T. (1991). Product Development
Performance, Strategy, Organization, and Management in
the World Auto Industry, Boston, MA: Harvard Business
School Press.

8. Clark, K.B. and Fujimoto, T. (1989). Reducing the Time
to Market: The Case of the World Auto Industry, Design
Management Journal, v. 1(1): 49–57.

9. Componation, P.J., Utley, D.R. and Armacost, R.L.
(1999). Prioritizing Components of Concurrent Engineer-
ing Programs to Support New Product Development,
Systems Engineering, Oct 4, 1999, 2(3): 168–176.

10. Cooper, K.G. (1980). Naval Ship Production: A Claim
Settled and a Framework Built, Interfaces, 10(6): 20–36.

11. Cooper, K.G. and Mullen, T.W (1993). Swords and
Plowshares: The Rework Cycle of Defense and
Commercial Software Development Projects, American
Programmer, 6(5).

12. DeMarco, T. (1982). Controlling Software Projects, New
York: Yourdon.

13. Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala,
D.A. (1994). A Model-Based Method for Organizing
Tasks in Product Development, Research in Engineering
Design, 6: 1–13.

14. Ettlie, J.E. (1995). Product-Process Development Integra-
tion inManufacturing,ManagementScience,41: 1224–1237.

15. Ford, D.N. (1995). The Dynamics of Project Management:
An Investigation of the Impacts of Project Process and
Coordination on Performance, Doctoral Thesis,
Cambridge, MA: Massachusetts Institute of Technology.

16. Ford, D.N., Hou, A. and Seville, D. (1993). An
Exploration of Systems Product Development at Gadget
Inc. Report D-4460, System Dynamics Group, Sloan

Iteration Management in Concurrent Development Projects 185

+ [25.9.2003–8:44am] [177–186] [Page No. 185] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

School of Management, Cambridge, MA: Massachusetts
Institute of Technology.

17. Ford, D.N. and Sterman, J.D. (1998a). Dynamic Modeling
of Product Development Processes, System Dynamics
Review, 14(1): 31–68.

18. Ford, D.N. and Sterman, J.D. (1998b). Expert Knowledge
Elicitation to Improve Formal and Mental Models, System
Dynamics Review, 14(4): 309–340.

19. Ford, D.N. and Sterman, J.D. (2003). The Liar’s Club:
Concealing Rework in Concurrent Development, Concur-
rent Engineering: Research and Applications (this issue).

20. Forrester, J and Senge, P. (1980). Tests for Building
Confidence in System Dynamics Models, TIMS Studies in
the Management Sciences, 14: 209–228.

21. Haddad, C.J. (1996). Operationalizing the Concept of
Concurrent Engineering: A Case Study from the U.S. Auto
Industry, IEEE Transactions on Engineering Management,
43(2): 124–132.

22. Hauptman, O. and Hirji, K.K. (1996). The Influence of
Process Concurrency on Project Outcomes in Product
Development: An Empirical Study of Cross-Functional
Teams, IEEE Transactions on Engineering Management,
43(2): 153–178.

23. Joglekar, N.R., Yassine, A.A., Eppinger, S.D. and
Whitney, D.E. (2001). Performance of Coupled
Development Activities with a Deadline, Management
Science, 47(12): 1605–1620.

24. Kiewel, B. (January 1998). Measuring Progress in Software
Development, PM Network, Project Management
Institute, 12(1): 29–32.

25. Krishnan, V. (1996). Managing the Simultaneous
Execution of Coupled Phases in Concurrent Product
Development, IEEE Transactions on Engineering
Management, 43(2): 210–217.

26. Krishnan, V., Eppinger, S.D. and Whitney, D.E. (1995).
A Model-Based Framework to Overlap Product
Development Activities,Management Science, 43: 437–451.

27. Loch, C.H. and Terwiesch, C. (1998). Communication and
Uncertainty in Concurrent Engineering, Management
Science, 44(8): 1032–1048.

28. McAllister, J. and Backhouse, C. (1996). An Evolving
Product Introduction Process in Backhouse, C. and
Brookes, N. (eds.) Concurrent Engineering, What Works
Where. Gower. Brookfield, VT.

29. Meyer, C. (1993). Fast Cycle Time, How to Align Purpose,
Strategy, and Structure for Speed, New York: The Free
Press.

30. Moffat, L.K. (1998). Tools and Teams: Competing Models
of Integrated Product Development Project Performance,
Journal of Engineering Technology and Management, 15:
55–85.

31. Nevins, J.L. and Whitney, D. (1989). Concurrent Design of
Products & Processes, A Strategy for the Next Generation
in Manufacturing, New York: McGraw-Hill.

32. Noreen, E., Smith, D. and Mackey, J. (1995). The Theory
of Constraints and its Implications for Management
Accounting, Great Barrington, MA: North River Press.

33. Patterson, M.L. (1993). Accelerating Innovation, Improving
the Process of Product Development, New York: Van
Nostrand Reinhold.

34. Rosenthal, S.R. (1992). Effective Product Design and
Development, Homewood, IL: Business One Irwin.

35. Smith, R.P. and Eppinger, S.D. (1997a). A Predictive
Model of Sequential Iteration in Engineering Design,
Management Science, 43(8): 1104–1120.

36. Smith, R.P. and Eppinger, S.D. (1997b). Identifying
Controlling Features of Engineering Design Iteration,
Management Science, 43(3): 276–293.

37. Sterman, J.S. (2000). Business Dynamics, Systems Thinking
and Modeling for a Complex World, New York: Irwin
McGraw-Hill.

38. Sterman, J.D. (1994). Learning in and about Complex
Systems, System Dynamics Review, 10(2–3): 291–330.

39. Terwiesch, C., Loch, C.H. and De Meyer, A. (2002).
Exchanging Preliminary Information in Concurrent
Engineering: Alternative Coordination Strategies,
Organization Science, 13(4): 402–419.

40. Voyer, J., Gould, J. and Ford, D.N. (1997). Systematic
Creation of Organizational Anxiety: An Empirical Study,
Journal of Applied Behavioral Science, 33(4): 471–489.

41. Wheelwright, S.C. and Clark, K.B. (1992). Revolutionizing
Product Development, Quantum Leaps in Speed, Efficiency,
and Quality, New York: The Free Press.

42. Womack, J.P., Jones, D. and Roos, D. (1990). The
Machine that Changed the World, The Story of Lean
Production, New York: Rawson Associates.

43. Zirger, B.J. and Hartley, J.L. (1996). The Effect of
Acceleration Techniques on Product Development Time,
IEEE Transactions on Engineering Management, 43(2):
143–152.

Biographies

David N. Ford

David N. Ford, PhD, P.E. is
an Assistant Professor in the
Construction Engineering and
Management Program in the
Department of Civil Engineer-
ing, Texas A&M University.
He researches development
project strategy, processes,
and resource management.
Dr. Ford earned his PhD
from MIT and Master and
Bachelors degrees from Tulane

University. He has over 14 years of engineering and
project management experience.

John D. Sterman

John D. Sterman is the
Jay W. Forrester Professor of
Management at the MIT Sloan
School of Management and
Director of MIT’s System
Dynamics Group. His most
recent book is Business Dyna-
mics: Systems Thinking and
Modeling for a Complex
World.

186 D. N. FORD AND J. D. STERMAN

+ [25.9.2003–8:44am] [177–186] [Page No. 186] REVISE PROOFS I:/Sage/Cer/Cer11-3/CER-38031.3d (CER) Paper: CER-38031 Keyword

