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Abstract

Thoughtful leaders increasingly recognize that we are not only failing to solve the persistent
problems we face, but are in fact causing them. System dynamics is designed to help avoid such
policy resistance and identify high-leverage policies for sustained improvement. What does it
take to be an effective systems thinker, and to teach system dynamics fruitfully? Understanding
complex systems requires mastery of concepts such as feedback, stocks and flows, time delays,
and nonlinearity. Research shows that these concepts are highly counterintuitive and poorly
understood. It also shows how they can be taught and learned. Doing so requires the use of
formal models and simulations to test our mental models and develop our intuition about complex
systems. Yet, though essential, these concepts and tools are not sufficient. Becoming an effective
systems thinker also requires the rigorous and disciplined use of scientific inquiry skills so that
we can uncover our hidden assumptions and biases. It requires respect and empathy for others
and other viewpoints. Most important, and most difficult to learn, systems thinking requires
understanding that all models are wrong and humility about the limitations of our knowledge.
Such humility is essential in creating an environment in which we can learn about the complex
systems in which we are embedded and work effectively to create the world we truly desire.
The paper is based on the talk the author delivered at the 2002 International System Dynamics
Conference upon presentation of the Jay W. Forrester Award. Copyright  2002 John Wiley & Sons,
Ltd.
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It’s humbling to be honored by one’s colleagues with the Jay W. Forrester
Award. Thank you. I’m deeply appreciative.

When John Morecroft called to tell me about the award, he reminded me
that one of my responsibilities was to give a talk here at the conference.
Then he said, ‘‘But please, you have to make it shorter than the book.’’1

This talk provides an opportunity to share some personal reflections on
what I learned from the process of writing Business Dynamics, and from
teaching system dynamics. Writing the book helped me become a better
teacher, but I am keenly aware of how far short of my goals I fall in helping
the students develop their systems thinking skills. And the students let me
know it—one once told me I was a model professor. I thought this was
high praise until I realized that a model is a small imitation of the real
thing.
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It takes a village

They say it takes a village to raise a child (a systems perspective if ever there
was one). Well, it takes a worldwide community of systems thinkers to write a
textbook. Business Dynamics benefited immensely from the advice, criticism,
and encouragement of dozens of colleagues, students, and friends, many of
whom are here today. It wouldn’t have been possible to write the book at
all without being able to draw on the great work and report the successful
applications of system dynamics you all have done. You may find it hard to
believe, but it was a struggle to keep the book as short as it is. It’s a wonderful
sign of the breadth and vitality of our field that one can write a thousand-page
textbook and still only scratch the surface.

I am especially grateful to my colleagues at MIT and in the system dynamics
community around the world who helped by providing data and examples,
reviewing drafts, testing early versions in their courses, and in countless other
ways. That list includes a great many of the people here today and many others
who are not. So please excuse me if I can’t name you all individually.

Still, a few words of thanks are needed. Business Dynamics would not
be nearly as useful without the disc containing the more than 60 models
developed in the book, and the software to run them. All the models are
included in iThink, Powersim, and Vensim formats. This was possible only
because High Performance Systems, Powersim Solutions, and Ventana Systems
generously provided versions of their wonderful software for free. I’m most
grateful to these companies and their hardworking people. My editor, Scott
Isenberg, and the other terrific people at McGraw-Hill were enthusiastic and,
above all, understanding, as the number of pages kept growing. I also want to
recognize the vital help of my students, who constantly challenge me to make
the discipline of system dynamics relevant, useful, and exciting. I can only
hope they’ve learned as much from me as I’ve learned from them.

I owe an immeasurable debt of gratitude to my first system dynamics teachers,
Dennis Meadows, the late Dana Meadows, and Jay Forrester. Besides the best
system dynamics training I can imagine, they led by example, with high
standards, integrity, and their passionate commitment. I feel blessed to have
had the opportunity to learn from them. Finally, and most importantly, I thank
my family. Though they couldn’t be here today, I wouldn’t be here without the
love and support of my wife Cindy and my children David and Sarah.

Systems thinking and modeling for a complex world

Let me turn now to some reflections on the experience of writing Business
Dynamics, of learning and teaching system dynamics for what is now 30 years.
I’m sure I don’t know the best way. I’m still learning and hope I’m still
getting better at it. Of course, there isn’t any one right or best way to teach
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system dynamics. There are many paths up the mountain. But not all paths
are equal—many lead not to the summit but straight into the swamp. I’ve been
down many of those.

Despite all these years of teaching and applying system dynamics, I still
have trouble explaining it to people who ask me what I do. Is system dynamics
science, engineering, or applied mathematics? Is it social science? Is it a
philosophy? Is it a form of consulting, a theory of action? Is it hard or soft?
The difficulty in answering the question ‘‘what is system dynamics’’ arises not
because we don’t know which of these things it is, but because it is all these
things and more. The subtitle of Business Dynamics is Systems Thinking and
Modeling for a Complex World. The word ‘‘and’’ here is important. System
dynamics is grounded in control theory and the modern theory of nonlinear
dynamics. There is an elegant and rigorous mathematical foundation for the
theory and models we develop. System dynamics is also a practical tool policy
makers can use to help solve important problems. And system dynamics is
also a worldview, a paradigm in the sense of Thomas Kuhn. Like all powerful
paradigms, it shapes every aspect of the way I experience the world.

Such breadth creates a tension. Many scientists and academics are deeply
immersed in their specialties and skeptical of vague claims about ‘‘complexity’’
and ‘‘systems’’ studies that, they fear, lack rigor. Most managers have never
studied science, nonlinear differential equations, or even calculus, or have
forgotten it if they did. And most people, regardless of their background,
are comfortable with their current philosophy, if they give such matters any
thought at all. To be useful, system dynamics must be accessible to the widest
range of scholars, students and policy makers, but without becoming a vague
set of qualitative tools and unreliable generalizations. To be effective, it is
often necessary to challenge some of our most deeply held beliefs, beliefs we
often don’t explicitly recognize. The resulting tension, the tension between
qualitative systems thinking and formal modeling, between scientific rigor and
the need to make decisions today, between gaining acceptance by clients and
challenging dearly held beliefs, is compounded by the diversity of backgrounds
within the community of managers, students and scholars interested in system
dynamics, backgrounds ranging from people with no mathematics training to
those with doctorates in physics.

The obvious strategy to deal with these tensions is to segment the market:
Write a technical book on modeling for those with technical backgrounds,
and a more popular book stressing the systems worldview for those with
none; a treatise for the academic audience and a how-to book for practitioners.
I rejected this strategy for several reasons. First, it has already been done
very well. On the systems thinking side, Peter Senge’s (1990) Fifth Discipline
presents the concepts of system dynamics wonderfully, and places them in the
context of learning and organizational change, all without any mathematics.
On the technical side, there are many excellent treatises on the mathematics
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of complex nonlinear systems, though most focus on physical and biological
examples (see, for example, Bar-Yam 1997, Mosekilde 1996, and Strogatz 1994).

But there is a more fundamental reason I rejected the segmentation strategy.
The gulf between C.P. Snow’s famous ‘‘two cultures’’ is unfortunately wider
than when he first described it in 1959, while at the same time the need for
basic numeracy and scientific literacy has never been greater (Snow 1959/1993;
see also Paulos 2001). As systems thinkers, we must constantly strive to break
down the false barriers that divide us, whether they rise up between the
functional silos in a corporation, between scientific specialties, between the
sciences and the humanities, or between the scholar’s world of ideas and the
policy maker’s world of action. I believe a book focusing only on the technical
side of system dynamics, or only on the qualitative, systems thinking side, only
on theory or only on practice, only on business examples or only on public
policy examples, would be inconsistent with the spirit and goals of system
dynamics, would underestimate people’s interests and capabilities, and would
not provide readers with the resources they need to succeed in a world of
growing dynamism and interconnection.

Policy resistance

While it’s hard to define what system dynamics is, I don’t have any trouble
answering why it is valuable. As the world changes ever faster, thoughtful
leaders increasingly recognize that we are not only failing to solve the
persistent problems we face, but are in fact causing them. All too often,
well-intentioned efforts to solve pressing problems create unanticipated ‘‘side
effects.’’ Our decisions provoke reactions we did not foresee. Today’s solutions
become tomorrow’s problems. The result is policy resistance, the tendency
for interventions to be defeated by the response of the system to the
intervention itself. From California’s failed electricity reforms, to road building
programs that create suburban sprawl and actually increase traffic congestion,
to pathogens that evolve resistance to antibiotics, our best efforts to solve
problems often make them worse.

At the root of this phenomenon lies the narrow, event-oriented, reductionist
worldview most people live by. We have been trained to see the world as a
series of events, to view our situation as the result of forces outside ourselves,
forces largely unpredictable and uncontrollable. The concept of unanticipated
events and ‘‘side effects’’ I just mentioned provides a good illustration. People
frequently talk about unexpected surprises and side effects as if they were
a feature of reality. A doctor may say, ‘‘The patient was responding well to
treatment, but died from unanticipated side effects.’’ Our political leaders
blame recession on unanticipated shocks such as corporate fraud or terrorism.
Managers blame any difficulty on events outside their firms and (they want us
to believe) outside their control, as for example when Cisco Systems blamed
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their record $2.2 billion inventory writeoff and massive layoffs on ‘‘reduced
capital spending and the global macroeconomic environment, which resulted
in the reduction in our workforce and inventory charges we announced.’’
(Cisco Systems 2001 Annual Report). In fact, there is compelling evidence
that, like other firms in the high-tech/telecommunications sector, Cisco’s own
policies—from the design of its supply chain to pricing, production planning,
and even the credit terms it offered customers—were central to the inflation
and implosion of the great demand bubble (Goncalves 2002; Shi 2002).

There are no side effects—only effects. Those we thought of in advance,
the ones we like, we call the main, or intended, effects, and take credit for
them. The ones we didn’t anticipate, the ones that came around and bit us in
the rear—those are the ‘‘side effects’’. When we point to outside shocks and
side effects to excuse the failure of our policies, we think we are describing a
capricious and unpredictable reality. In fact, we are highlighting the limitations
of our mental models. System dynamics helps us expand the boundaries of
our mental models so that we become aware of and take responsibility for the
feedbacks created by our decisions.

(Almost) nothing is exogenous

It is hard to underestimate the power of the feedback view. Indeed, almost
nothing is exogenous. If you ask people to name processes that strongly affect
human welfare but over which we have no control, many people name the
weather, echoing Mark Twain’s famous quip that ‘‘Everybody talks about the
weather, but nobody does anything about it.’’ But today even the weather is
endogenous. We shape the weather around the globe, from global warming to
urban heat islands, the Antarctic ozone hole to the ‘‘Asian brown cloud.’’2 For
those who feel that global warming, ozone holes, and the brown cloud are too
distant to worry about, consider this: Human influence over the weather is now
so great that it extends even to the chance of rain on the weekend. Cerveny and
Balling (1998) showed that there is a seven-day cycle in the concentration of
aerosol pollutants around the eastern seaboard of the United States. Pollution
from autos and industry builds up throughout the workweek, and dissipates
over the weekend. They further show that the probability of tropical cyclones
around the eastern seaboard also varies with a seven-day cycle. Since there are
no natural seven-day cycles, they suggest that the weekly forcing by pollutant
aerosols affects cloud formation and hence the probability of rain. Their data
show that the chance of rain is highest on the weekend, while on average the
nicest day is Monday, when few are free to enjoy the out of doors. Few people
understand that driving that SUV to work helps spoil their weekend plans.

In similar fashion, we are unaware of the majority of the feedback effects
of our actions. Instead, we see most of our experience as a kind of weather:
something that happens to us but over which we have no control. Failure to
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recognize the feedbacks in which we are embedded, the way in which we
shape the situation in which we find ourselves, leads to policy resistance as
we persistently react to the symptoms of difficulty, intervening at low leverage
points and triggering delayed and distant, but powerful feedbacks. The problem
intensifies, and we react by pulling those same policy levers with renewed
vigor, at the least wasting our talents and energy, and all too often, triggering
an unrecognized vicious cycle that carries us farther and farther from our
goals. Policy resistance breeds a sense of futility about our ability to make a
difference, a creeping cynicism about the possibility of changing our world for
the better. One of the main challenges in teaching system dynamics is helping
people to see themselves as part of a larger system, one in which their actions
feed back to shape the world in ways large and small, desired and undesired.
The greater challenge is to do so in a way that empowers people rather than
reinforcing the belief that we are helpless, mere leaves tossed uncontrollably
by storm systems of inscrutable complexity and scope.

Bathtub dynamics

As important as feedback is, it is only one of the basic building blocks of
complex systems. Enhancing our capability to understand counterintuitive
dynamics also requires understanding stocks and flows, time delays, and
nonlinearities. Consider one of the most basic of these concepts: stocks
and flows.

In Business Dynamics I devote two full chapters (6 and 7) to the concept
of stocks and flows, providing extensive examples and challenges designed to
help people learn how to identify stocks and flows, map them, and understand
their dynamics. Several reviewers of the manuscript complained that readers
did not need such a remedial treatment of elementary calculus. Many of
my students at MIT similarly complain that the class time I devote to this
material is review. After all, they’ve all had calculus. Most have backgrounds
in engineering, the sciences, economics, or mathematics, and many have prior
graduate degrees in these disciplines.

Why then include two chapters on stocks and flows, on graphical integration?
Experimental studies show that most people do not have a good grasp of these
concepts. Linda Booth Sweeney and I presented the students in my classes
with simple stock–flow structures and asked them to infer the behavior of
the stock from information on the flows (Booth Sweeney and Sterman 2000;
Sterman and Booth Sweeney 2002). Figure 1 shows an example in which you
are shown simple patterns for the inflow and outflow to a single stock and
asked to sketch the path for the quantity of water in the bathtub. The task
is among the simplest possible examples of stock-and-flow thinking. There
are no feedback processes, no time delays, no nonlinearities. There is only
one stock. The outflow is constant, and the inflow follows a simple pattern.
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Unfortunately, only 36 percent of the MIT graduate students given this task
answered correctly, even with generous coding criteria. Many appear to use a
‘‘pattern matching’’ heuristic, that is, assuming that the output of the system
(the level of water in the tub) should follow the input (the sawtooth pattern
of the net flow), as the erroneous responses in Figure 2 illustrate. Pattern
matching often leads to wildly erroneous inferences about system behavior,
causes people to dramatically underestimate the inertia of systems, and leads
to incorrect policy conclusions. For example, a stock can rise even if the
inflow is falling (obviously, when the inflow, though falling, remains above the
outflow). A nation’s debt grows even as it reduces its deficits. Of course, you
may say. Yet many people find such behavior highly counterintuitive. When
asked, for example, about global climate change, most people don’t understand
that atmospheric concentrations of greenhouse gases, already higher than at
any time in the past 400,000 years, would continue to rise even if emissions
fell to the rates called for in the Kyoto protocol—because current emission
rates are roughly double the rate at which greenhouse gases are removed from
the atmosphere by natural processes, while Kyoto calls for much smaller cuts.
Most people believe that stabilizing emissions near current rates will stabilize
the climate, when in fact stable emissions would guarantee continued increases
in atmospheric greenhouse gas concentrations and a further increase in net
radiative forcing, leading to still more warming. These errors are widespread
even when people are explicitly told that current emissions are roughly double
the natural uptake rate (Sterman and Booth Sweeney 2002).

These dismal results have now been replicated with diverse populations,
from Austrian university students (Kainz and Ossimitz 2002; Ossimitz 2002)
to MBAs at the University of Chicago (Sterman and Booth Sweeney 2002) to
sophomores at the California Institute of Technology.3 But are the results really
a failure of systems thinking? Perhaps the reason people do poorly on these
bathtub problems is not that they don’t understand stocks and flows, but that
they can’t read graphs, or can’t do the arithmetic, or aren’t given enough time.
So, inspired by a task developed by Günther Ossimitz (2002), I developed an
even simpler challenge (Figure 3).

The task presents you with a graph showing, over 30 minutes, the rate at
which people enter and leave a department store. You are asked four questions.
The first two (when did the most people enter/leave the store?) test whether
you can read the graph and know the difference between the number entering
and the number leaving.

The figures in italics show the correct answer and the fraction of 172 subjects
at the MIT Sloan School of Management responding correctly, along with the
fraction who selected ‘‘Can’t be determined.’’ Answers were considered correct
if they were within š1 of the correct response (e.g., 3, 4, or 5 for question 1).
Half the subjects received the questions in the order shown; half received the
two stock and flow questions (3 & 4) first. There were no significant differences



508 System Dynamics Review Volume 18 Number 4 Winter 2002

Fig. 1. A simple
‘bathtub’ task (Booth
Sweeney and
Sterman 2000)

Consider the bathtub shown below. Water flows in at a certain rate, and exits through the drain at
another rate:

The graph below shows the hypothetical behavior of the inflow and outflow rates for the
bathtub. From that information, draw the behavior of the quantity of water in the tub on the
second graph below.

Assume the initial quantity in the tub (at time zero) is 100 liters.
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in responses by question order; the results above aggregate the results of the
two question order treatments.

Ninety-four percent of the MIT graduate students doing this task correctly
answered these two questions.4 The third and fourth questions (when were the
most/fewest people in the store?) test your understanding of stocks and flows.
To determine when the most people were in the store one need only recognize
that the number in the store accumulates the flow of people entering less the
flow of people leaving. Until minute 13 the number entering always exceeds
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Fig. 2. Typical
erroneous answers to
the bathtub task
(Booth Sweeney and
Sterman 2000)

the number leaving, so the number in the store grows, while from minute 14
on, the number leaving exceeds the number entering, so the number of people
in the store falls. The most people are in the store where the two curves cross.
Only 42 percent correctly answered this question, and 17 percent indicated that
the answer could not be determined from the information provided. Because
the number in the store rises through minute 13 and falls thereafter, the fewest
people are in the store either at the beginning or at the end. To determine
which, you must judge whether more people enter up to minute 13 than leave
afterwards, that is, whether the area between the rate of entering and rate of
leaving up to minute 13 is greater or smaller than the area between the two
curves from minute 14 on. Inspection of the graph readily reveals that the area
between the curves from minute 14 on is larger than the area between the
curves through minute 13 (in fact it is twice as large). More people left after
minute 13 than were added up to that point. The fewest people are therefore
in the store at minute 30. Only 30 percent correctly answered this question.
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Fig. 3. The department
store task The graph below shows the number of people entering and leaving a department store

over a 30 minute period.
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Check the box if the answer cannot be determined from the information provided.

1. During which minute did the most people enter the store?

Minute _______4 (94%) Can’t be determined (0%))

2. During which minute did the most people leave the store?

Minute _______21 (94%) Can’t be determined (0%)

3. During which minute were the most people in the store?

Minute _______13 (42%) Can’t be determined (17%)

4. During which minute were the fewest people in the store?

Minute _______30 (30%) Can’t be determined (28%)

Fully 28 percent indicated that the question could not be answered, including
one subject who wrote:

Can’t be determined^ by me.

Note that determining when the most people are in the store does not require
any calculation—one need only understand that a stock rises when its inflow
exceeds its outflow and falls when outflow exceeds inflow, then note where
the two curves cross. Determining when the fewest are in the store does require
a qualitative judgment of whether the area between the curves is largest before
or after minute 13, but people have no trouble determining which area is larger
when asked. The problem, at least among these highly educated subjects, is not
the inability to read graphs, but difficulty with the concept of accumulation,
with stocks and flows.

I now ask students to try these simple bathtub tasks before we introduce the
concept of stocks and flows. The purpose is not to embarrass, but rather to
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motivate them to build their intuitive understanding of these critical concepts.
Most see that, far from being a waste of time, they can gain significant insight
into dynamics by developing their ability to identify, map, and understand the
behavior of stocks and flows, even if they have a strong technical background.

Yet people should learn how stocks and flows are related before they reach
graduate school. The concepts can and ought to be taught early in grade school.
Calculus is not necessary. Students usually wonder why they were never
taught these skills, and we have had some wonderful conversations about the
fractionation of knowledge in the K-12 grades (ages 5–18), the drive to learn
formulae and do well on standardized tests rather than build intuition, the
lack of real-world relevance in the curriculum, and other pressures that may
contribute to this deficit in our reasoning skills. We also talk about the exciting
work being done by the growing stock of teachers who successfully incorporate
system dynamics concepts into their teaching.5 It’s gratifying to see so many
business students engage in such a spirited way with questions of social policy.

These basics (feedback, stocks and flows, time delays, nonlinearities) are
essential foundations for effective systems thinking and modeling. It is clear
that people have poor understanding of these concepts. At the same time,
we know that people can learn to think in feedback terms, to recognize and
understand stocks and flows, time delays, and nonlinearities. It takes training
and practice, and must be supported by tools such as management flight
simulators. But it can be done. More difficult for people to learn, and perhaps
even more important, are other core concepts of systems thinking and system
dynamics. Failure to appreciate and live by these concepts hurts us more than
failing to understand feedback and time delays.

Model boundary: Invisible fences in the mind

The first system dynamics article I ever read was Jay Forrester’s (1971a)
Counterintuitive Behavior of Social Systems. Jay argues that most people
believe cause and effect are closely related in time and space, while in complex
dynamic systems cause and effect are often distant in time and space. One
of the goals of system dynamics is to expand the boundaries of our mental
models, to lengthen the time horizon we consider so we can see the patterns
of behavior created by the underlying feedback structure, not only the most
recent events. I found and still find his argument compelling.

But expanding the boundaries of our mental models is much more than just
recognizing the delayed and distant effects of our decisions. It requires crossing
disciplinary boundaries, boundaries between departments and functions in a
company, between specialties in the academy. It requires breaching barriers
erected by culture and class, by race and religion.

In affluent suburbs of the United States many dog owners now use invisible
fences. The invisible fence folks bury a cable around the perimeter of your
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yard. They put a special collar on your dog. Whenever the dog gets too close
to edge of the yard, the collar detects a radio signal from the buried cable and
gives the dog a shock. Dogs quickly learn where the boundary is and refuse to
cross it. After a short training period, you can turn off the collar. The dog will
still not cross the invisible fence.

We are just the same. We live in a society that trains us to stay within
artificial and damaging boundaries far more effectively than any invisible fence
trains a dog. Much of our education consists of getting punished for crossing
boundaries. School teaches us that every subject is different, and knowledge is
fragmented (math is completely separate from social studies, which is different
from literature). You learn that there are jocks and nerds, our team and their
team, good guys and bad guys; that you are either ‘‘with us or against us.’’
These invisible lines in the mind are the boundaries of our mental models
(Meadows 1991: 281–283). Like dogs, we waste a lot of time barking uselessly
at people who get too close to our territory. Academics too often look down on
those outside their own specialties, which are defined ever more narrowly. Or
consider discussions of the economy. We hear pundits pontificate about how
economic events will affect workers, consumers, taxpayers, and investors, as if
these were separate species competing for survival in a zero-sum world, when
each of us is all of the above: we work, we consume, we pay taxes, we benefit
from government services, and we invest our savings for retirement. We are told
logging old-growth forests is another case of jobs versus the environment, as if
the economy could exist without a healthy environment, or the environment
remain healthy if people have no jobs. Or perhaps you pursue a business career.
What do you hear? That’s a marketing problem. That’s an operations problem.
That’s a human resources problem. And whatever you do, don’t bring your
personal problems to work.6

But we do not face marketing problems, operations problems, financial
problems, and people problems; we don’t have workplace issues, personal
problems, and family problems. We don’t have problems as workers,
consumers, taxpayers, or investors. We just have problems. We create
these boundaries and impose these categories on the world to simplify its
overwhelming complexity. Some boundaries are necessary and inevitable. But
all too often, the invisible fences in our minds cut critical feedbacks, deny us
the insights of people with different experience and perspectives, and breed
arrogance about our ability to control nature and other people—and then our
problems grow worse.

In system dynamics we’ve developed tools and processes to help expand the
boundaries of our mental and formal models. We build model boundary charts,
listing the variables that are endogenous, exogenous, and, as best we can,
excluded. We have sophisticated protocols for group modeling. We are trained
to be suspicious of exogenous variables. Perhaps, we say to an innocent-looking
coefficient in an equation, you are not really constant, but part of the feedback
structure of the system. As the late Barry Richmond urged, we ‘‘challenge
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the clouds’’ in our stock and flow networks. Sources and sinks are modeling
abstractions—is it really acceptable to assume there is an unlimited source and
infinite absorption capacity for the material flowing through the stocks in your
model? Is there an infinite pool of customers to buy your product? Is there an
infinite sink to absorb the wastes we spew into the environment?

Yet we and other modelers use these simple disciplines too little. Narrow
model boundaries are all too common, from the mental models of the person on
the street to the formal models published in the most highly respected scientific
journals. By model boundary I mean not only substantive assumptions such as
whether the interest rate is endogenous or exogenous or whether the production
function assumes constant returns to scale, but also the more subtle boundaries
imposed by all modeling methodologies, such as the assumption that data
are numbers, or that human beings make decisions to maximize expected
utility. Most of the critical assumptions in any model, mental or formal, are
the implicit ones, the ones buried so deep that the modelers themselves are
unaware of them (Meadows 1980; Meadows and Robinson 1985; 2002). The
most important assumptions of a model are not in the equations, but what’s
not in them; not in the documentation, but unstated; not in the variables on
the computer screen, but in the blank spaces around them.

Let me illustrate with two examples, both drawn from resource economics.
First, consider the debate over the future supply of energy and mineral
resources. Here’s what Morris Adelman, a leading energy economist, had
to say in 1993:

Minerals are inexhaustible and will never be depleted. A stream of investment creates
additions to proved reserves, a very large in-ground inventory, constantly renewed as
it is extracted. . .. How much was in the ground at the start and how much will be left
at the end are unknown and irrelevant. (p. xi)
The fixed stock does not exist. (p. xiii)
What exists, and can be observed and measured, is not a stock but a flow. (p. xiv)

Figure 4 shows the stock and flow structure corresponding to Adelman’s
statements. The only stock is the stock of proven reserves, increased by a
flow of investment, and drained by extraction. Adelman’s assertion that ‘‘The
much larger amount in the ground is unknowable and irrelevant, a nonbinding
constraint’’ (p. xiii) means additions to proven reserves, in his view, are best
modeled as flowing from an infinite source.

Adelman’s statements violate conservation of matter. Every ton of titanium
and every barrel of oil added to the stock of proven reserves reduces the
stock of titanium and oil remaining to be found in the future. Every ton and
barrel extracted reduces the quantity remaining in the ground. As exploration
adds to the stock of proven reserves, the stock of undiscovered resource
falls. Ceteris paribus, the smaller the stock of resources remaining to be
discovered, the lower the productivity of exploration activity must be (on



514 System Dynamics Review Volume 18 Number 4 Winter 2002

Fig. 4. Simplistic
economic model of
mineral resources.
Investment includes
improvements in
technology

Additions to
Reserves

Resource
Extraction

Price
Substitute
(Backstop)

Price

–

+

+

–

+

B1

Substitution

B2

Exploration

Proven
Reserves

Investment in
Exploration and

Recovery

average), and the smaller the rate of addition to proven reserves will be for
any investment rate. In the limit, if the stock of undiscovered resource fell
to zero, the rate of additions to proven reserves would necessarily fall to
zero.

Economists argue that a drop in proven reserves will raise prices, leading
through the familiar feedbacks of the free market to substitution of other
resources (the Substitution loop B1 in Figure 4) and inducing additional
exploration activity and improvements in technology that can increase
exploration and recovery (the Exploration loop B2). And they are right. But
additional exploration only drains the stock of undiscovered resource faster.
Depletion must continue—the stock of resources in the ground must fall—as
long as there is any extraction. Only if there is a ‘‘backstop’’ technology that
can fully substitute for all uses of the nonrenewable resource at a finite price,
in finite time, will demand fall to zero and halt depletion. How large the
resource base is, what the costs of backstop technologies are, and whether a
backstop technology can be developed before depletion constrains extraction
and reduces economic welfare are empirical questions, not matters of faith.
The very possibility that depletion might matter cannot be assumed away,
to be made untestable with models in which resources are assumed infinite,
the price system always functions perfectly, delays are short and technology
provides backstops at low cost.

Turnabout is fair play. Narrow model boundaries are not restricted to
economic models. Models that focus only on geological factors and calculate
the lifetime of the resource remaining by assuming exogenous technology and
extraction rates make the equally serious error of omitting the possibility that
prices can alter incentives for innovation, exploration, and substitution. I am
not arguing against economic models, or against geological models, but against
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narrow model boundaries. Models that consider only the price system or only
geological factors omit important feedbacks, provide a poor guide to the future,
and offer harmful policy advice.

A better model is shown in Figure 5. Here the total stock of resource
remaining is the sum of proven reserves and the stock of undiscovered
resources. For clarity the diagram omits many relevant feedbacks and aggregates
resources into the two stocks shown. (See Davidsen, Sterman, and Richardson
1990 for a model in which the resource base is disaggregated into the
standard categories used by the USGS, and with a full range of economic,
technological, and geological feedbacks.) The total stock of resource in place
falls with extraction.7 Falling reserves raise prices, leading to substitution
and boosting exploration, as in the simplistic economic model (though with
delays). However, as exploration activity identifies more of the resource, the
productivity of current exploration activity falls (the Depletion loop B3). The
lower the productivity of exploration activity, the lower the expected return
to exploration will be at any given price, so future investment in exploration
drops (the Cost Escalation loop B4).

System dynamics models that integrate these geological, economic, and
technological feedbacks date at least to the early 1970s (see Behrens 1973
and other models in Meadows and Meadows 1973); Sterman and Richardson
(1985), Sterman, Richardson, and Davidsen (1988), and Davidsen, Sterman,
and Richardson (1990) develop models for US and world petroleum resources
integrating depletion and market forces with explicit, endogenous technology
for exploration and recovery. These models show that extraction often grows
rapidly and real prices often fall in the first part of the resource lifecycle as
new discoveries and improving technology build proven reserves and lower
exploration and extraction costs. As production grows, however, the stock of

Fig. 5. Improved
model of mineral
resources, integrating
economic and
geological feedbacks
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resource remaining falls. Unless and until a backstop technology completely
substitutes for the resource, the quantity of resource remaining continues to
drop, triggering the inevitable shift in feedback loop dominance from the
production-enhancing feedbacks of technology and price to the production-
limiting depletion and cost-escalation loops. To illustrate, Figure 6 shows
production and consumption of petroleum in the Unites States from roughly
1859, when Col. Drake drilled the first modern well in Titusville, Pennsylvania.
For about a century, exploration and innovation in exploration and recovery
technology allowed production to keep pace with the extraordinary exponential
growth of the rapidly industrializing economy. Estimates of the ultimate
recoverable resource base rose dramatically, from less than 20 billion barrels
for the lower 48 states in 1910 to as high as 600 billion barrels by 1960 (Sterman
and Richardson 1985). Exploration and extraction were so successful, however,
that by the 1950s new discoveries slowed and the yield to exploration effort
fell. Production peaked in 1970 and has fallen ever since. Production from
the lower 48 states and adjacent offshore areas is now less than half its peak
value and continues to sink, while imports have grown to more than half of
total consumption. Estimates of the ultimate recoverable resource fell by more
than half. All this despite dramatic improvements in exploration and recovery
technology and extended periods in which real oil prices and drilling activity
reached all-time highs.

Yet the narrow boundaries in resource models persist. In the early 1990s
William Nordhaus developed the DICE (Dynamic Integrated Climate Economy)
model. One of the first and most influential of the so-called ‘‘Integrated Climate-
Economy Models,’’ DICE has many features system dynamics modelers should
view with approval. It links the climate and global warming with the dynamics
of the economy. Until the integrated models were developed, research programs
in climate change were fragmented. On the one hand were models of the
biogeochemical processes governing the climate, such as the detailed GCMs
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(general circulation models) that simulate global climate by tracking insolation,
heat transport in the atmosphere and oceans, etc. in a spatially disaggregated
framework. The concentration of greenhouse gases (GHGs) in these models is
exogenous. Likewise carbon cycle models, which generate GHG concentrations,
take emissions as exogenous. On the other hand were traditional economic
growth models in which climate had no role whatever. Integrated models like
DICE close an important feedback: the economy generates GHGs, which alter
the climate, which feeds back to reduce economic growth and emissions.

Despite its virtues, the DICE are loaded. Consider its carbon cycle (Eq. 8 in
Nordhaus 1992):

M�t� D ˇE�t� C �1–υM �M�t � 1� �1�

‘‘where M�t� is CO2 concentrations relative to preindustrial times, ˇ is the
marginal atmospheric retention ratio, and υM is the rate of transfer from the
rapidly mixing reservoirs to the deep ocean’’ (p. 1316). Figure 7 shows the
stock and flow structure for the model’s carbon cycle. First note that the carbon
sinks that remove CO2 from the atmosphere (as it is taken up by biomass
and dissolves in the ocean) are assumed to have infinite absorption capacity.
Carbon, once removed from the atmosphere, disappears forever. In fact, these
carbon sinks are finite. The carbon taken up by the land and oceans reduces
net transfer (for example as the concentration of carbon in the ocean increases)
and eventually makes its way back into the atmosphere. Further, the transfer
rate is assumed to be a linear, first-order process (the removal time constant
1/υM is constant and set to 120 years). However, there are important nonlinear
constraints on carbon uptake by biomass as primary production is increasingly
constrained by other nutrients; similarly ocean uptake is sharply constrained
by the rise in the partial pressure of CO2 as oceanic carbon concentrations grow
(Oeschger et al. 1975). Carbon cycle models show that these feedbacks cause
the fractional removal rate υM to decline as atmospheric CO2 concentrations
rise, as terrestrial and oceanic carbon sinks saturate, and as global mean
temperatures increase (e.g., Sarmiento et al. 1995).

On the emissions front, Nordhaus estimated the ‘‘atmospheric retention
ratio’’ ˇ by regression, finding it to be 0.64. More than one-third of all CO2

generated by the economy never enters the atmosphere. Where does it go? The
value of ˇ was estimated with annual data from the following equation:

M�t� � 0.9917 M�t � 1� D ˇE�t� �2�

where 0.9917 D 1–υM D �1–1/120�. The left side is the net change in
atmospheric CO2, assuming removal is governed by a linear, first-order removal
process with a 120-year time constant. A charitable interpretation is that 36
percent of total emissions is quickly absorbed out of the atmosphere (within a
year), with the rest requiring an average of 120 years to be removed. However,
the emissions that leave the atmosphere quickly are presumably absorbed
by biomass or by the mixed, surface layer of the ocean. As these stocks
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Fig. 7. Carbon cycle in
the DICE model
(Nordhaus 1992).
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fill, additional removal from the atmosphere is constrained. And the carbon
absorbed into these stocks either cycles back to the atmosphere, reducing net
transfer, or is transferred to longer-lived carbon sinks such as the deep ocean,
contributing to their saturation and reducing net transfer out of the atmosphere.
Since none of these carbon reservoirs are represented, however, Nordhaus has
not only assumed that much of the carbon quickly leaves the atmosphere, but
that 36 percent of total emissions disappear forever, without a trace.

The DICE model violates conservation of matter, and the violation matters.
Even a basic relaxation of these limiting assumptions, to account for sink
capacities and conserve carbon, increases the warming generated by a given
rate of CO2 emissions, thus working against Nordhaus’ conclusion that optimal
carbon taxes are low (Fiddaman 2002).

Professor Nordhaus later developed the DICE model into RICE, the Regional
Integrated Climate Economy model (Nordhaus and Boyer 2000, Nordhaus
20018). RICE is similar to DICE, but disaggregated to represent eight regions so
that carbon permit trading and other policies such as the Kyoto–Bonn accord
can be represented. The climate sector now conserves carbon, and includes
three compartments for carbon (atmosphere, ocean surface/biosphere, and
deep ocean), but is still linear and remains overoptimistic. The other core
assumptions of the original DICE model have been retained. Nordhaus (2001)
describes the model, then comments on its limitations:

Economic models, whether of the economics of global warming or of other phenomena
such as business cycles, have great difficulty incorporating the many ‘‘frictions’’ that
arise in real-world markets. In the present case, frictions are likely to plague the
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emissions market and to prevent equalization of carbon prices (that is, the prices
of permits to emit carbon dioxide) in all participating countries and industries.
Important frictions include impediments to trade, . . .; the inability of countries to get
full credit for ‘‘forestry’’ options if regulations are tightly written; limits on the sale
of permits by countries to ensure that ‘‘overbooking’’ of allowances does not occur;
and a host of features such as transactions costs, regulatory and tax differences, risk
and uncertainty, and unfamiliarity. Such frictions will force carbon prices to diverge
in different regions or industries and thereby lead to higher costs of attaining the
accord’s emissions reductions targets.

These are indeed important issues that may affect the design and impact of
policies to mitigate warming. But the next sentence is:

Notwithstanding their importance, frictions are omitted from the present simulations.

There is something fundamentally wrong with a modeling process and peer
review system that encourages modelers to build and allows the publication of
models in which many of the factors the modelers themselves view as important
are omitted. Now, we should commend Professor Nordhaus for listing some
of the heroic boundary assumptions of his model. Many modelers are not so
forthcoming, and the audience and client are left to discover the limitations of
the models on their own, something most are ill-equipped to do, even in the
too-rare circumstance that the model is available and properly documented.

Yet several serious problems remain. The omissions cited above constitute
only a subset of the important boundary and methodological assumptions in the
updated DICE and RICE models. As in many of the integrated climate–economy
models, Professor Nordhaus makes many other assumptions, assumptions that
work against his conclusions, assumptions that are not questioned or tested.
These include:

ž Consumers and producers make decisions that are consistent with global,
intertemporal optimization under full information. (We never make mistakes
in economic decisions; the distant and delayed effects of our decisions, even
those occurring over centuries, are fully internalized.)

ž Instant or rapid equilibration of factor inputs to prices. (The economy and
energy demand respond to prices very quickly; there are no significant lags
in the turnover of carbon energy consuming capital stocks, the development
of new technologies, changes in settlement patterns or transportation
infrastructure, and so on.)

ž Energy efficiency improves and the carbon intensity of the economy falls
exogenously. (Technology improves automatically and without costs, delays,
or ‘‘side effects’’.)

ž All non-energy resources are excluded. (Interactions between climate change
and other issues are unimportant.)
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ž World population stabilizes early in the next century. (All regions of the
world quickly move through a demographic transition similar to but faster
than the transition in the industrialized world.)9

ž Future potential economic output per person declines exogenously, limiting
economic growth, carbon emissions, and the demand on the world’s climate
and other resources. (The end of greed: the people of the world stop seeking
economic growth and higher incomes.)

ž Nature and other species only matter insofar as they contribute to economic
output and to the extent that their contribution might be compromised
by warming. (The potential extinction of the Orangutan or polar bear is
irrelevant unless their loss reduces gross world product.)

ž Utility is determined by economic output per capita and is discounted over
time. (Your children are less important than you.)10

As Tom Fiddaman (1997; 2002) shows, these assumptions bias the results
of integrated models towards the conclusion that significant reductions in
emissions are economically suboptimal. I submit that these assumptions range
from the debatable (world population growth will stabilize rapidly, at about
11.3 billion) to the counterfactual (consumers and producers are intertemporal
optimizers; there are no market failures; the economy equilibrates quickly;
technology improves automatically and without cost or delays) to the immoral
(the objective of policy is to maximize discounted utility with a utility function
in which our children are much less important than we are and in which
nature’s only role is to promote production—indeed, if the extinction of the
polar bear increased the availability of fish for humans it would be counted as
a benefit of warming).

The assumption that growth in economic output per capita (or, equivalently,
in the growth of factor productivity) declines autonomously so that gross
world product eventually stabilizes, even absent any climate pressures, is
particularly ironic, coming as it does from a critic of studies such as World
Dynamics (Forrester 1971b) and The Limits to Growth (Meadows et al. 1972,
1974). The assumed exogenous reduction in growth can result only from
Malthusian pressures other than climate change—which Nordhaus and Boyer
(1999: 3–15) explicitly rule out—or from the utopian assumption that the
people of the world are spontaneously becoming content with their material
standard of living, even though large income gaps between rich and poor
regions remain in the RICE projections. Assuming instead that people will
continue to strive for higher incomes leads to such high emissions and such
large climate changes that optimal policy would call for significant carbon
taxes and deep emissions cuts today. The conclusions of the DICE and RICE
models are not robust to correction of their errors and alternative plausible
assumptions.
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Model testing

The importance and difficulty of uncovering hidden assumptions requires
a far greater role for model testing than is common in the social sciences.
System dynamics has long had a sophisticated, flexible approach to testing.
We stress multiple tests, from dimensional consistency to extreme conditions
tests to tests of sensitivity to structural assumptions and aggregation. We
emphasize the use of all types of data, not only statistical tests on numerical
data. Because all models are wrong, we reject the notion that models can
be validated in the dictionary definition sense of ‘establishing truthfulness’,
instead focusing on creating models that are useful, on the process of testing,
on the ongoing comparison of the model against all data of all types, and on the
continual iteration between experiments with the virtual world of the model
and experiments in the real world. We argue that focusing on the process of
modeling rather than on the results of any particular model speeds learning and
leads to better models, better policies, and a greater chance of implementation
and system improvement (Forrester 1971/1985).

When Jay Forrester first articulated these views he was a lone voice in
the modeling and social science community, which was dominated by the
logical positivism imported to economics by Milton Friedman (1953). Today,
more and more social scientists recognize the impossibility of validation, the
provisional character of all models, and the need for a more eclectic and
diverse set of tests (see Oreskes et al. 1994, Sterman 1994, and Chapter 21
in Business Dynamics); see also Herbert Simon’s (1963, 1979) and Paul
Sameulson’s (1963) critiques of Friedman’s positivism). But we have a long
way to go. Many important tests are simply never done. Many modelers
focus excessively on replication of historical data without regard to the
appropriateness of underlying assumptions, robustness, and the sensitivity
of results to assumptions about model boundary and feedback structure.
Modelers often fail to document their work, preventing others from replicating
and extending it (see Business Dynamics, Chapter 21). Modelers and clients
often suffer from confirmation bias, selectively presenting data favorable to
their preconceptions. Such behavior only succeeds in generating mistrust of
the model and suspicion about the intentions of the modelers, counter to the
modeler’s goals (a fine example of policy resistance).

If modeling is to fulfill its promise, a different approach is needed. Models
rarely fail because we used the wrong regression technique or because the
model didn’t fit the historical data well enough. Models fail because more
basic questions about the suitability of the model to the purpose weren’t
asked, because a narrow boundary cut critical feedbacks, because we kept the
assumptions hidden from the clients, or because we failed to include important
stakeholders in the process (Meadows and Robinson 1985, 2002).

To avoid such problems, whether as modeler or client, we must recognize
that no one test is adequate. We must strive to use all types of data, both
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numerical and qualitative. We must do a better job of testing the robustness of
our conclusions to uncertainty in our assumptions. Such testing requires far
more than merely assessing parametric sensitivity, though we should encourage
greater use of Monte-Carlo and other multiparameter tests in our work. Model
results are usually far more sensitive to assumptions about the model boundary,
level of aggregation, and representation of decision-making than to variations
in parameters, yet sensitivity to these issues is only rarely assessed.11

We must insist on the highest standards of documentation. Models must be
fully replicable and available for critical review. Build into the budget and
time line sufficient resources to assess the impact of the work and document it
fully so others can help you improve it. We must open the modeling process
to the widest range of people we can, including our critics. We must design
assessment into our work from the start so we can discover errors more quickly,
measure the extent to which we meet our goals, and learn how to work more
effectively in the future.

Unfortunately, all too often testing is inadequate, documentation is
incomplete, important critics and stakeholders are excluded, and assessment
is never undertaken. Worse, model testing is often designed to ‘‘prove’’ the
model is ‘‘right’’ and model tests are presented as evidence designed to promote
client acceptance. We are continually pressured by our clients, our students,
our colleagues, and our own egos to slip out of the role of questioner and
learner into the role of expert and teacher. Doing so often fails, by generating
defensiveness and resistance. The phrase ‘‘getting client buy-in’’ should be
banned from our lexicon. Taking the perspective that we are selling a ‘‘product’’
to the client is antithetical to a genuine inquiry process. Such an approach
is designed to deflect criticism and promote the status and authority of the
modeler. Instead, it makes learning difficult and ultimately erodes the impact
of the model and the credibility of the modeler—and of all modelers.

Not surprisingly, the highest leverage point to enhance the impact of our
modeling work is counterintuitive. Implementation success requires changing
the clients’ mental models. To do so the clients must become partners with
us in the modeling process. Ultimately, our chances of success are greatest
when we work with our clients to find the flaws in our models, mental and
formal, then work together to improve them. In this fashion we all—modelers
and clients—gradually develop a deeper understanding of the system and the
confidence to use that understanding to take action. Paradoxically, a testing
process designed to highlight the shortcomings of our models increases the
chances of implementation and sustained success.

A hard look at soft variables

Another source of puzzlement for students of system dynamics relates to
so-called soft variables and the role of numerical data. Jay Forrester argued
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early and, I believe correctly, that data are not only numerical data, that ‘soft’
(unmeasured) variables should be included in our models if they are important
to the purpose. Despite the critical importance of qualitative information some
modelers restrict the constructs and variables in their models to those for which
numerical data are available, and include only those parameters that can be
estimated statistically. These modelers defend the rejection of soft variables
as being more scientific than ‘‘making up’’ the values of parameters and
relationships. How, they ask, can the accuracy of estimates for soft variables
be tested? How can statistical tests be performed without numerical data?

Omitting structures or variables known to be important because numerical
data are unavailable is actually less scientific and less accurate than using your
best judgment to estimate their values. ‘‘To omit such variables is equivalent
to saying they have zero effect—probably the only value that is known to be
wrong!’’ Forrester (1961, p. 57).

We should never compromise this principle. Omitting concepts because we
have no numerical data is a sure route to narrow model boundaries, biased
results, and policy resistance. Of course, we must evaluate the sensitivity of our
results to uncertainty in assumptions—whether we estimated the parameters
judgmentally or by statistical means. Modelers who follow these principles for
modeling and testing developed owe no apology to those who would judge
model ‘‘validity’’ by historical fit and statistical tests alone.

That said, it is important to use proper statistical methods to estimate
parameters and assess the ability of the model to replicate historical data
when numerical data are available. Unfortunately, some advocates of systems
thinking go to the extreme of discounting the role of statistical parameter
estimation and numerical data in general. They argue that qualitative insights
are more important than numerical precision and that model behavior is
insensitive to variations in most parameter values. They say that building a
model for insight means they don’t have to assess the behavior of the model
against the historical data. These are serious errors, even when the purpose
of a model is insight. Rigorously defining constructs, attempting to measure
them, and using the most appropriate methods to estimate their magnitudes
are important antidotes to casual empiricism, muddled formulations, and
the erroneous conclusions we often draw from our mental models (Homer
1996; 1997). Ignoring numerical data or failing to use statistical tools when
appropriate is sloppy and lazy. In my experience, many who avoid the proper
use of numerical data do so not because they believe it is the best way to
help people learn or solve important problems but because they don’t want to
take the time or don’t have the skills to do it. No excuse. Failing to use these
tools increases the chance that the insights you derive from your model will be
wrong or harmful to the client.

Most important, we should not accept the availability of data as given, as
outside the boundaries of our project or research. We must ask why concepts
our modeling suggests are important have not been measured. Frequently, it
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is because no one thought these concepts were important. That perception, in
turn, most often stems from the narrow boundaries of our understanding. There
is a strong feedback: we measure what we care about, and those measurements
alter what we believe is important. Because we tend to have short-term, event-
oriented mental models, with narrow boundaries, with few feedbacks, and with
weak understanding of the systems in which we are embedded, we tend to
think what’s important is what’s salient, tangible, and familiar. As we measure
these things they become even more real, while the delayed and distant effects
of our decisions, the unfamiliar, and the intangible fade like wraiths. Thus
we confuse the net income of the firm with the health of the enterprise, the
amount we spend on training with the skills and knowledge of our employees,
GDP per capita with happiness, and the size of our houses with the quality of
our home life.

Human creativity is great: once we recognize the importance of a concept,
we can almost always find ways to measure it. Within living memory there
were no national income accounts, no survey methodologies to assess political
sentiments, no psychological inventories for depression or subjective well-
being, no protocols for semi-structured interviews or coding criteria for
ethnographic data. Today, many apparently soft variables such as customer
perceptions of quality, employee morale, investor optimism, and political
values are routinely quantified with tools such as content analysis, surveys,
and conjoint analysis. Of course, all measurements are imperfect. Metrics for
so-called soft variables continue to be refined, just as metrics for so-called hard
variables are. Quantification often yields important insights into the structure
and dynamics of a problem. Often the greatest benefit of a modeling project is
to help the client see the importance of and begin to measure and account for
soft variables and concepts previously ignored.12

Why simulation is essential

Some advocates of systems thinking go even further, arguing that it is not
necessary to build a formal, working simulation at all—that causal maps or
other purely conceptual models are sufficient. They are mistaken. Simulation
is essential for effective systems thinking, even when the purpose is insight,
even when we are faced with a ‘‘mess’’ rather than a well-structured problem.

I am not opposed to all qualitative modeling. I do it myself. Building a
formal model takes time. The data you need to build and test your model
are rarely available without significant cost and effort. We must constantly
make judgments about whether the time and cost of additional modeling
and data collection are justified. A good qualitative mapping process will
surface the mental models of the client. Often these have narrow boundaries
and are dynamically impoverished. There is no doubt that many students,
senior executives, and policy makers derive enormous value from expanding
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their mental models to include previously unrecognized feedbacks. But we
must recognize that such qualitative modeling exposes us to one of the most
fundamental bounds on human cognition: our inability to simulate mentally
the dynamics of complex nonlinear systems. Indeed, our experimental studies
show that people are unable to accurately infer the behavior of even the
simplest systems, systems far simpler than those emerging from qualitative
modeling work. Formal models, grounded in data and subjected to a wide
range of tests, lead to more reliable inferences about dynamics and uncover
errors in our mental simulations.13

Most importantly, computer simulations help build our intuition and
improve our mental simulation capability. It is no accident that the most
effective practitioners of qualitative modeling have extensive backgrounds in
formal modeling. Their ability to identify the important feedbacks in a messy
situation and draw useful and compelling inferences from them developed
from their years of experience with formal modeling and simulation.

There is an even more fundamental reason why simulation is essential. There
is no learning without feedback, without knowledge of the results of our actions.
Traditionally, scientists generated that feedback through experimentation. But
experiments are impossible in many of the most important systems. When
experimentation is too slow, too costly, unethical, or just plain impossible,
when the consequences of our decisions take months, years, or centuries to
manifest, that is, for most of the important issues we face, simulation becomes
the main—perhaps the only—way we can discover for ourselves how complex
systems work, where the high leverage points may lie. The alternative is rote
learning based on the authority of a consultant, teacher, or textbook, a method
that dulls creativity, stunts the very systems thinking and scientific reasoning
skills we hope to develop, and thwarts implementation.

All decisions are based on models . . . and all models are
wrong

The concepts of system dynamics people find most difficult to grasp are these:
All decisions are based on models, and all models are wrong. These statements
are deeply counterintuitive. Few people actually believe them. Yet accepting
them is central to effective systems thinking.

Most people are what philosophers call ‘‘naı̈ve realists’’: they believe what
they see is, that some things are just plain True—and that they know what
they are. Instead, we stress that human perception and knowledge are limited,
that we operate from the basis of mental models, that we can never place
our mental models on a solid foundation of Truth because a model is a
simplification, an abstraction, a selection, because our models are inevitably
incomplete, incorrect—wrong. Many systems thinkers illustrate this with
the famous story of the ancient astronomer who taught that the world is
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supported on the shoulders of a giant. ‘‘But where does the giant stand?’’
asks a student. ‘‘On an immense turtle,’’ the master replies. ‘‘But on what
does the turtle stand’’ persists the student. ‘‘Another turtle.’’ This goes on
a while, until the exasperated master shouts out ‘‘It’s turtles all the way
down!’’

Recognizing the limitations of our knowledge, the ‘‘inevitable a priori’’
assumptions at the root of everything we think we know, is deeply threatening
(Meadows 1980). It’s one thing to point out that someone else’s opinions are
‘just a model’—it’s quite something else to recognize the limitations of our
own beliefs. And how are we to make decisions if all models are wrong? The
concept that it’s turtles all the way down, that there is no ultimate, absolute
foundation for our beliefs, is so deeply counterintuitive, so threatening, that
most people reject it as ‘‘obviously false’’ or become so dizzy with doubt that
they run screaming as fast as they can to someone who claims to offer the Truth.
Much of the misery people inflict on others arises from the arrogant belief that
only we know the True Path, and the resulting intolerance and fear of any
who profess beliefs different than ours. Fundamentalism, whether religious
or secular, whether the unquestioning belief in an all-powerful deity, the
all-powerful state or the all-powerful free market, breeds persecution, hatred
and war.

To help people open up to a new perspective, a new model, and change
deeply entrenched behaviors, we must often first help them see the limitations
of their current beliefs. Doing so is difficult. But even when we succeed, it
is only part of the challenge. Yes, we might solve an important problem if
we can help people see through a new lens, improve their mental models,
and thus make better decisions. But in a deeper sense, we fail our clients
and students when all we do is facilitate the old organizational change
recipe of ‘‘unfreeze, change, refreeze.’’ We may only succeed in replacing
one dogma with another, while strengthening people’s belief that the scales
have now fallen away from their eyes, that now they have the Truth. We
must strive for more: helping people develop the critical thinking skills and
confidence to continually challenge their own models, to uncover their own
biases.

Yet we must recognize the inherent tension between being humble about
the limitations of our knowledge on the one hand, and being able to argue
for our views, respond to criticism, and make decisions on the other.
Developing the capacity to see the world through multiple lenses and to
respect differences cannot become an excuse for indecision, for a retreat to
impotent scholasticism. We have to act. We must make the best decisions we
can despite the inevitable limitations of our knowledge and models, then take
personal responsibility for them. Mastering this tension is an exceptionally
difficult discipline, but one essential for effective systems thinking and
learning.
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Too many ‘‘Why’’ questions?

Every semester I solicit midterm feedback from the students to help me
improve my teaching. A student once commented that Business Dynamics and
the homework assignments in my course were too difficult, writing ‘‘Too many
‘why’ questions.’’ Reading this I knew I had failed that student. It’s by asking
those ‘‘why’’ questions that we come to understand that we are all embedded
in systems, some natural, like the global climate, and some of our own making,
like our schools, businesses, communities, and economies. It’s by asking those
‘why’ questions that we gain insight into how we are both shaped by and
shape the world, where we can act most effectively, where we can make a
difference—and what we are striving for.

When human beings evolved, the challenge was survival in a world
dominated by systems we could barely influence but that determined how
we lived and died. Today the challenges we face are the result of systems we
have created. The hurricane or earthquake do not pose the greatest danger. It is
the unanticipated ‘‘side effects’’ of our own actions, side effects created by our
inability to understand and act in consonance with our long-term goals and
deepest aspirations.

What prevents us from overcoming policy resistance is not a lack of resources,
technical knowledge, or a genuine commitment to change. What thwarts us is
our lack of a meaningful systems thinking capability. That capability requires,
but is much more than, the ability to understand complexity, to understand
stocks and flows, feedback, and time delays. It requires, but is much more
than, the use of formal models and simulations. It requires an unswerving
commitment to the highest standards, the rigorous application of the scientific
method, and the inquiry skills we need to expose our hidden assumptions
and biases. It requires that we listen with respect and empathy to others. It
requires the curiosity to keep asking those ‘‘why’’ questions. It requires the
humility we need to learn and the courage we need to lead, though all our
maps are wrong. That is the real purpose of system dynamics: To create the
future we truly desire—not just in the here and now, but globally and for the
long term. Not just for us, but for our children. Not just for our children, but
for all the children.

It’s demanding work. But it’s also a joy. As Gauss said, ‘‘It is not knowledge,
but the act of learning, not possession but the act of getting there, which grants
the greatest enjoyment.’’14

Notes

1. Actually, Business Dynamics is even longer than it appears. Besides
the text itself, there is a 500-page instructor’s manual, available on-line
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and on paper to anyone who teaches system dynamics. The manual
contains suggested solutions to every one of the more than seventy Chal-
lenges—modeling exercises—in the book, from the frequency response of
delays to policy responses to the HIV/AIDS pandemic.

2. The Asian brown cloud is a thick haze of pollution, three-quarters
anthropogenic in origin, that causes drought in parts of Asia while flooding
others, lowers agricultural productivity by reducing ground-level sunlight,
and causes respiratory illness and death (see http://www.eapap.unep.org/
issues/air/impactstudy/index.cfm).

3. Colin Camerer (personal communication).
4. In coding the responses I considered a response correct if it was within š1

minute of the correct answer, so subjects were not penalized for incorrectly
reading the x-axis values.

5. The Creative Learning Exchange serves as a clearinghouse and source for
system dynamics materials and tools for K-12 grades. See http://www.clex-
change.org.

6. Or, in Tom Lehrer’s (1965) immortal lyric, ‘‘‘Once the rockets are up who
cares where they come down. That’s not my department’ says Wernher
von Braun.’’ This gives an entirely new meaning to the concept of ‘‘silo
thinking.’’

7. A good modeler should consider the possibility that new high-grade
resources may be formed by biological or geological processes. For
resources such as metals and fossil fuels the scientific consensus is
that formation of new resources takes place over geological time scales
and is negligible within the time horizon of concern in policy models.
Good modeling practice also requires considering the fate of the resource
after extraction, possibly including the stocks of resources in use, their
disposal or consumption, waste generation, and, if possible, the potential
for recycling. Note further that while the total stock of, say, petroleum or
Ti in the earth may be enormous (and resources such as Ti, as elements,
are conserved), there is a distribution of grades and extraction costs,
with most of the total stock consisting of low-concentration, deep, or
remote deposits with high extraction costs. Rational extractors develop
and deplete the lowest-cost resources first, while lower-grade deposits in
more costly locales remain uneconomic and unexploited until prices rise
or technology improves. The depletion feedback in Figure 5 captures the
long-run supply curve relating the yield of discovery and extraction effort
to the distribution of the quantity remaining and the level of technology.
That is, the productivity of exploration (measured in, say, tons of Ti
or barrels of oil per $ of exploration effort� D f �R, T� where R is the
stock of resource remaining and T is the state of exploration technology,
with ∂f �R, T�/∂R ½ 0 and ∂f �R, T�/∂T ½ 0. The function depends on the
distribution of resources in the earth, but must satisfy f (0, T� D 0.
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8. The DICE and RICE models are available at http://www.econ.yale.edu/
¾nordhaus/homepage/dicemodels.htm.

9. World population in RICE stabilizes at about 11.3 billion and reaches
almost 95 percent of this final value by 2100. These estimates assume
rapid demographic transition in the developing world and continued low
fertility in developed nations (see file <Rice99 web version.xls> at the site
in note 8).

10. The social discount rate in the RICE model is an exogenous variable
assumed to decline modestly over time. Nevertheless, the welfare of those
alive in 2025 is weighted only 42 percent as much as the welfare of those in
1995. The weight falls to just 15 percent by 2065, when the grandchildren
of today’s undergraduates may themselves be in college. After 2155 the
weight given our descendants is less than 2 percent of the 1995 value
(see file <Rice99 web version.xls> at the site in note 8, row 37 on the
World worksheet).

11. For a good example of testing robustness against deep methodological
assumptions, see Repenning (2000; 2002), in which the dynamics of
process improvement programs are modeled using both a rational actor
game-theoretic framework and a behavioral, disequilibrium framework.
Repenning shows that the impact of job security on employee participation
in improvement programs is robust to assumptions about the degree of
rationality of workers and managers.

12. For one of many examples, see Business Dynamics, Section 2.2, where
system dynamics modeling of the auto leasing market led General Motors
to create new market research instruments to assess how people trade
off new versus high-quality off-lease used vehicles, an area the firm had
previously ignored because under prevailing mental models the used and
new vehicle markets were separate.

13. Sastry (1997) provides one of many examples.
14. As cited in http://www-gap.dcs.st-and.ac.uk/¾history/Quotations/Gauss.

html.
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