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Abstract 

Prior research on competitive strategy in the presence of increasing returns suggests that early 
entrants can achieve sustained competitive advantage by pursuing Get Big Fast (GBF) strategies: 
rapidly expanding capacity and cutting prices to gain market share advantage and exploit 
positive feedbacks faster than their rivals. Yet a growing literature in dynamics and behavioral 
economics, and the experience of firms during the 2000 crash, raise questions about the GBF 
prescription.  Prior studies generally presume rational actors, perfect foresight and equilibrium.  
Here we consider the robustness of the GBF strategy in a dynamic model with boundedly 
rational agents.  Agents are endowed with high local rationality but imperfect understanding of 
the feedback structure of the market; they use intendedly rational heuristics to forecast demand, 
acquire capacity, and set prices.  These heuristics are grounded in empirical study and 
experimental test.  Using a simulation of the duopoly case we show GBF strategies become 
suboptimal when market dynamics are rapid relative to capacity adjustment.  Under a range of 
plausible assumptions, forecasting errors lead to excess capacity, overwhelming the cost 
advantage conferred by increasing returns.  We explore the sensitivity of the results to 
assumptions about agent rationality and the feedback complexity of the market.  The results 
highlight the risks of incorporating traditional neoclassical simplifications in strategic 
prescriptions and demonstrate how disequilibrium behavior and bounded rationality can be 
incorporated into strategic analysis to form a dynamic, behavioral game theory amenable to 
rigorous analysis. 
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1. Introduction 

 It has become widely accepted that the core behavioral, institutional, and equilibrium 

assumptions of neoclassical economics are inconsistent with empirical observation (for example, 

Camerer, Loewenstein and Rabin 2004, Gilovich, Griffin and Kahneman 2002, Kahneman and 

Tversky 2000, Colander, Holt, and Rosser 2004).  Though the tools of neoclassical theory have 

provided deep insight into a wide variety of strategic problems (for example, Besanko et al. 

2003), a long standing tradition suggests that holding fast to the traditional simplifying 

assumptions of neoclassical theory may be dangerous in formulating normative policies, 

particularly settings with high dynamic complexity, in which managers are unlikely to be able to 

make optimal decisions (Nelson and Winter 1982, Dosi 1997, Gavetti and Levinthal 2000).  

Nevertheless, scholars have only begun to sketch out how alternative assumptions and tools 

might yield superior and robust implications for managerial action.  

 Here we focus on the case of increasing returns, and the commonly associated 

recommendation to “get big fast” (GBF) as a particularly compelling example of the risks of 

assuming that the classical assumptions of neoclassical theory are “good enough” to provide a 

basis for action.  Research in strategy and economics has long identified increasing returns, or 

positive feedback effects, as a potentially potent source of competitive advantage.  These 

positive feedbacks include learning by doing, scale economies, network effects, information 

contagion, and the accumulation of complementary assets.  A large and fruitful literature 

suggests that in the presence of such positive feedbacks, firms should pursue an aggressive 

strategy in which they seek to grow faster than their rivals (e.g., Shapiro and Varian 1999, 

Fudenberg and Tirole 2000).  Typical tactics include pricing below the short-run profit-

maximizing level, rapidly expanding capacity, advertising heavily, and forming alliances to build 

positional advantage and deter entry (Spence 1981, Fudenberg and Tirole 1983, Tirole 1990).   

 Intuitively, such aggressive strategies are superior because they increase both industry 

demand and the aggressive firm’s share of that demand, boosting cumulative volume, reducing 

future costs (or raising future demand) and building the firm’s positional advantage until it 
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dominates the market.  Aggressive strategies appear to have led to durable advantage in 

industries with strong learning curves such as synthetic fibers, chemicals and disposable diapers 

(Shaw and Shaw 1984; Lieberman 1984, Ghemawat 1984, Porter 1984), and in markets with 

network externalities and complementary assets, such as VCRs and personal computers.  The 

logic of increasing returns, and these high profile successes, have led to the broad diffusion of 

the GBF strategy in business education, the popular business literature, management texts, and 

public policy debates (Shapiro and Varian 1999, Spector 2000, Saloner et al. 2001, Krugman, 

1990).  For example, in 1996 the Wall Street Journal noted the popularity of “the notion of 

increasing returns, which says that early dominance leads to near monopolies as customers 

become locked in and reluctant to switch to competitors.  Now, dozens of companies are chasing 

market share” (Hill, Hardy, and Clark 1996).   

 The collapse of the technology bubble in 2000 has, of course, thrown Get Big Fast 

strategies into disrepute.  As a typical example, consider fiber optic equipment maker JDS 

Uniphase (Figure 1).  Throughout the boom of the late 1990s Uniphase aggressively expanded 

capacity, both internally and through acquisition.  While sales nearly quadrupled in one year, 

Uniphase struggled to build capacity, and production (indicated by the cost of goods sold) lagged 

significantly behind.  The collapse of demand caught Uniphase by surprise.  Lags in reducing 

capacity and production meant costs could not drop as fast as sales:  Uniphase operated with a 

negative gross margin for most of the next year, saw its stock collapse, laid off more than 15,000 

employees (more than half), and posted losses of roughly $60 billion between 2001 and 2003.  

Similar dynamics plagued dozens of other firms that aggressively pursued GBF strategies. 

 Clearly these firms missed something.  The question is, what?  One possibility is that 

firms in these industries overestimated the strength of the positive feedbacks they hoped to 

exploit, or ignored important caveats to the GBF strategy discussed in the literature.  Lieberman 

and Montgomery (1998), for example, point out that a blanket prescription to move first can be 

dangerous given the subtleties of many industries.   

 Here we explore an alternative hypothesis.  We argue that the majority of existing models 
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addressing competitive strategy generally and increasing returns specifically rely on the 

traditional neoclassical assumptions of equilibrium and rationality.  Equilibrium entails not only 

that agents adopt consistent strategies, but that firms and markets are in physical equilibrium, 

with key system states such as capacity, employment, and so forth constant at optimal levels (or 

in a steady state).  Indeed, in many game theoretic models, including repeated games, there are 

no physical states and resource adjustment processes at all (e.g., the prisoner’s dilemma)—the 

only change between periods arises from changes in agent beliefs and choices.  Such models 

implicitly presume that a firm’s capacity can be adjusted instantaneously to equilibrium levels, 

or, if there are adjustment lags, that firms have perfect foresight such that they can forecast 

requirements far enough in advance to bring capacity on line just as it is needed.   

 In practice, of course, neither assumption holds:  it takes time to acquire and decrease 

capacity, human resources, distribution channels, and other resources, and forecasting remains 

difficult and error-prone (Armstrong 2001, Makridakis et al. 1993).  However, the presumption 

in the literature is that resource adjustment is sufficiently fast, and managers sufficiently well-

informed and rational, that the neoclassical assumptions are reasonable approximations and that 

therefore there is no need to consider disequilibrium dynamics or behavioral decision processes.  

The example of Uniphase shows that disequilibrium dynamics can play a major role.  Most of 

their losses arose from their inability to adjust capacity fast enough to match the rapid rise and 

even faster collapse of orders.  Lags in resource adjustment require firms to forecast demand and 

initiate capacity changes far in advance.  If firms were well informed and could forecast 

accurately, capacity would match orders well (at least on average).  Alternatively, even if 

forecasting ability were poor, capacity could match demand well if it could be adjusted rapidly 

and at low cost.  The problem arises from the combination of adjustment rigidities and poor 

forecasting, the interaction of disequilibrium dynamics with boundedly rational decision-making. 

 We develop a dynamic model to show that relaxing the assumptions of instantaneous 

market clearing and perfect foresight leads, in a variety of plausible circumstances, to 

competitive dynamics significantly different from those predicted by much of the existing 
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literature.  Drawing on a behavioral framework in which firms face lags in adjusting capacity and 

use boundedly rational decision heuristics to set prices and forecast demand, we show that when 

the dynamics of the market are sufficiently slow, delays in information acquisition, decision 

making, and system response are sufficiently short, and the cognitive demands on the firm’s 

managers are sufficiently low, our model yields predictions observationally indistinguishable 

from those of equilibrium models.   

 However in more complex and dynamic environments the aggressive strategies 

prescribed in the game theory literature may lead to disaster.  Boundedly rational managers are 

not able to anticipate the saturation of the market in time to reduce capacity.  As long as the 

industry is growing, all is well, but when sales peak and fall, firms find themselves with excess 

capacity. The more aggressive the firm’s strategy, the more pronounced the overcapacity and the 

resulting losses.  The failure of the aggressive strategy when the market dynamics are rapid is not 

due to the failure of the learning curve to confer cost advantage on the aggressive firm.  Rather, 

the failure of the aggressive strategy is due to the interaction of capacity adjustment lags with the 

firm’s boundedly rational forecasting heuristic.  

 In arguing for the explicit modeling of disequilibrium dynamics and bounded rationality 

we do not suggest that the traditional explanations for poor performance by GBF strategies are 

invalid.  Equilibrium models of rational agents explain many important phenomena.  For 

example, firms facing strong increasing returns have an incentive to price low and expand 

aggressively, but when multiple players simultaneously do so the result may be a price war that 

destroys profitability for all.  Rather, we argue for the development of disequilibrium behavioral 

models for several reasons.  First, systems, including the economy, are seldom if ever in physical 

equilibrium, where system states are unchanging or in a steady state (Beinhocker 2006):  orders, 

production and shipments are rarely equal, causing ongoing unintended inventory and backlog 

accumulations, changes in delivery lead times, and product allocations; capacity, investment, and 

hiring change dramatically over the course of business cycles and product lifecycles; product 

functionality, costs, and other attributes evolve through R&D, process improvement, and other 
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investments, and so on.  Second, a large body of evidence shows that human behavior, in both 

the laboratory and field, departs systematically and significantly from the predictions of rational 

models (for surveys, see Camerer, Lowenstein and Rabin 2004, Gilovich, Griffin and Kahneman 

2002, and Kahneman and Tversky 2000).  The bounds on rationality are particularly acute in 

complex dynamic systems, and slow learning that might cause behavior to evolve towards 

rational outcomes (Sterman 1994 provides a summary).  Equilibrium models of rational agents 

provide an approximation to the behavior of real people in real markets, one that may work well 

if the dynamics are slow or the situation simple.  Determining what constitutes “slow” and 

“simple” in models of competitive strategy requires the development of dynamic behavioral 

models that relax the core assumptions of equilibrium and rationality.  

 It’s also worth pointing out what we do not assume.  We do not assume that people are 

naïve automata, making myopic decisions without regard to strategic considerations.  Our agents 

monitor market conditions.  They monitor the plans and actions of their competitors, and adjust 

their behavior accordingly.  However, their rationality is bounded:  In the tradition of Simon 

(1982), Cyert and March (1963/1992), and Nelson and Winter (1982), the agents in the model 

make decisions using routines and heuristics because the complexity of the environment exceeds 

their ability to optimize even with respect to the limited information available to them.  

 The paper begins with a brief review of the relevant literature. Section 3 presents the 

model.  For simplicity, we do not attempt to capture all sources of increasing returns, but focus 

on the learning curve, a source of positive feedback prevalent in many industries and well 

explored in the literature.  Section 4 presents our results and explores their sensitivity to 

assumptions.  We conclude with a discussion of implications and avenues for further research.  

Substantively, the results provide a rigorous account of a phenomenon—the widespread failure 

of the “get big fast” strategy”—largely unexplained by the existing literature.  We also argue that 

the results have broader methodological implications. We suggest that in cases of high dynamic 

complexity, a reliance on the standard assumptions underlying much modern strategy research is 

not inconsequential—and that the use of analytical techniques that permit a wider (and more 
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realistic) set of assumptions may be of significant utility to the field.  

2. Strategy Under Learning Curves and Increasing Returns 

 Spence (1979, 1981) was one of the first to rigorously examine the effects of increasing 

returns on competitive strategy, specifically the effect of competitive asymmetries on investment 

decisions in markets with learning effects. He showed that learning creates asymmetric 

advantage and thus an incentive to preempt rivals, particularly if firms can appropriate all the 

benefits of learning. His work has been been the basis for a lively literature exploring a range of 

extensions (e.g., Kalish 1983, Tirole 1990, Majd and Pindyck 1989 and Ghemawat and Spence 

1985), which clarified the conditions under which aggressive strategies are likely to succeed. 

 Moving beyond the learning curve, research exploring industries in which strong network 

effects play an important role has also identified increasing returns as a central source of 

competitive advantage (Katz and Shapiro 1994, Shapiro and Varian 1999, Fudenberg and Tirole 

2000, Parker and van Alstyne 2005).  Arthur (1989, 1994) shows how positive feedbacks can 

lead to lock-in and path dependence.  Sutton (1991) shows that increasing returns flowing from 

economies of scope in advertising can lead a few firms to dominate an industry, and has also 

suggested that under some circumstances learning in R&D can have similar effects (Sutton, 

1998).  Jovanovic (1982) and Klepper (1996) both build models in which dominant firms emerge 

as heterogeneous costs across firms are amplified by positive feedbacks. 

 In general, the literature strongly suggests that if learning is appropriable, if price is not 

highly uncertain, and if rivals can be relied on to behave rationally, then firms should pursue an 

aggressive strategy of preemption, higher output and lower prices.  In the remainder of this paper 

we explore how robust this recommendation may be—not to traditional concerns such as the 

appropriability of learning—but to the core assumptions upon which these models rest. 

3.  A Boundedly Rational, Disequilibrium Model 

 To explore the robustness of the learning curve literature to the assumptions of perfect 

foresight and instantaneous market clearing, we develop a disequilibrium, behavioral model of 
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competitive dynamics in the presence of learning.  In contrast to the literature, we assume 

capacity adjusts with a lag, and that firms have only a limited ability to forecast future sales as 

the industry progresses through the lifecycle of growth, peak and saturation.  These assumptions 

are consistent with a long tradition of experimental and empirical evidence (Armstrong 2001, 

Brehmer 1992, Collopy and Armstrong 1992, Diehl and Sterman 1995, Kampmann 1992, Paich 

and Sterman 1993, Parker 1994, Rao 1985, Sterman 1989a, 1989b, 1994).  In models assuming 

instantaneous market clearing and perfect foresight, the market-clearing price can be derived as a 

necessary property of equilibrium, given the capacity decision.  However in disequilibrium 

settings, both price and capacity targets must be determined.  Here we draw on the literature 

cited above and the well-established tradition of bounded rationality (Cyert and March 

1963/1992, Forrester 1961, Simon 1982, Morecroft 1985), and assume that firms set prices with 

intendedly rational decision heuristics. 

 The model is formulated in continuous time as a set of nonlinear differential equations.  

Since no analytic solution is known, we use simulation to explore its dynamics. While the model 

portrays an industry with an arbitrary number of firms, i 

! 

"  {1, ..., n}, we restrict ourselves to n = 

2 in the simulation experiments below. We begin with the dynamics of industry demand.  We 

then describe the physical and institutional structure of the firm, including order fulfillment, 

capacity, and the learning curve.  Finally we discuss the behavioral assumptions governing firm 

strategy, including demand forecasting, capacity acquisition, and pricing.  The online supplement 

provides full documentation and the model itself, with the software needed to run it. 

Industry Demand:  We model the lifecycle of a durable good.  Total industry orders evolve 

according to the standard Bass diffusion model, modified to include both initial and replacement 

purchases (Bass 1969, Mahajan et al. 1990).  The population, POP, is divided into adopters of 

the product, M, and potential adopters, N.  Adoption arises from an autonomous component, 

representing the impact of advertising and other external influences, and from social exposure 

and word of mouth encounters with those who already own the good, 
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 dM/dt = N(α + βM/POP) (1)  

where α captures the strength of external influences such as advertising and β is the strength of 

social exposure and word of mouth arising from encounters with adopters.   

 The number of potential adopters, N, is the difference between the number of people who 

will ever adopt the product, M*, and the number that have adopted the product to date:   

 

! 

N = MAX 0,M
*
"M( ) . (2)  

The equilibrium adoption level, 

! 

M
* , depends on product price.  For simplicity we assume a 

linear demand curve between the constraints 0 ≤

! 

M
*≤ POP.  The MAX function ensures that N 

remains nonnegative if

! 

M
*  falls below M, say, because price rises suddenly.   

 Industry orders consist of initial and replacement purchases.  Each household orders µ 

units when they adopt, so initial purchases are µ(dM/dt).  Households also order replacements as 

their units wear out and are discarded from the installed base.  The fractional discard rate, δ, is 

assumed constant and determines the durability of the product (see the supplement).   

Market Share:  Each firm receives orders Oi equal to a share of the industry order rate.  The 

firm’s order share, 

! 

S
i

O , is determined by a logit choice model where product attractiveness, Ai, 

depends on both price and availability.  Availability does not vary in models where markets clear 

at all times.  In reality product availability varies substantially.  For example, rapid growth often 

causes unintended backlog accumulation, product allocations and long delivery delays, as 

illustrated by the case of Uniphase (Figure 1). Availability is measured by the firm’s average 

delivery delay, given (by Little’s Law) by the ratio of backlog, Bi, to shipments, Qi): 

 

! 

Si
O

= Ai A j
j

"   (3) 

 

! 

Ai = exp "p Pi P
r( )exp "a Bi Qi( ) # r( ) (4)  

where εp and εa are the sensitivities of attractiveness to price and availability, respectively.  Both 

price and delivery delay are normalized by reference values, Pr and τr, respectively, so that the 

sensitivities ε are comparable dimensionless quantities.  Note that because orders and shipments 

need not be equal, market share, defined as each firm’s share of industry shipments, Si = Qi/∑jQj, 
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will in general equal the firm’s order share only in equilibrium. 

The Firm:  Firm profits are revenue, R, less fixed and variable costs, 

! 

C
f and 

! 

C
v , respectively 

(the firm index i is deleted for clarity): 

 

! 

" = R # C
f + Cv( ). (5)  

Fixed costs depend on unit fixed costs, 

! 

U
f , and current capacity, K; variable costs depend on 

unit variable costs, 

! 

U
v, and production, Q.   

 

! 

C
f

=U
f
K ; 

! 

C
v

=U
v
Q (6)  

Both fixed and variable costs per unit fall as cumulative production experience, E, grows, 

according to a standard learning curve: 

 

! 

U
f =U

0

f
E E

0( )
" ; 

! 

U
v =U

0

v
E E

0( )
"  (7)  

 

! 

dE dt =Q (8)  

where 

! 

U
0

f  and 

! 

U
0

vare the initial values of unit fixed and variable costs, respectively, E0 is the 

initial level of production experience and γ is the strength of the learning curve.   

 Production, Q, is the lesser of desired production, Q*, and capacity, K. 1  Desired 

production is given by the backlog of unfilled orders, B, and target delivery delay τ*.  Backlog 

accumulates orders, O, less production: 

 

! 

Q = MIN Q
*
,K( ) (9) 

 

! 

Q
*

= B " *  (10) 

 

! 

dB dt =O"Q (11)  

Capacity cannot be changed instantly, but adjusts to the target level K* with an average lag λ.  

We assume K adjusts to K* with a third-order Erlang lag, corresponding well to the distributed 

lags estimated in investment function research (e.g., Jorgenson et al. 1970, Senge 1980, 

Montgomery 1995).    

Firm Strategy:  Under the traditional assumptions of rationality and equilibrium, each firm’s 

                                                
1 For simplicity we assume the firm maintains no inventories and makes all product to order.  Shipments thus equal 
production.  Including inventories and distribution channels would intensify disequilibrium dynamics through the 
well-known “bullwhip effect” (Sterman 1989b); omitting inventories is thus an a fortiori assumption. 
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target capacity and pricing behavior would be given by the solution to the differential game 

defined by the structure of the market presented above.  In reality, however, managers do not 

make decisions by solving dynamic programming problems of such complexity (e.g. Camerer et 

al. 2004, Camerer and Fehr 2006), and business schools do not teach future managers how to 

formulate and solve dynamic programming problems when setting strategy.  Rather, managers 

use intendedly rational heuristics to set prices and acquire capacity, and the game theoretic 

models reach managers in the form of rules of thumb.  In the presence of increasing returns, 

books and consultants prescribe rules such as “By slashing prices below costs, winning the 

biggest share of industry volume, and accelerating its cost erosion, a company [can] get 

permanently ahead of the pack...[and build] an unchallengeable long-term cost advantage” 

(Rothschild 1990, 181; Shapiro and Varian 1999 provide a more careful and nuanced version).  

In this spirit, we model target capacity and price with realistic boundedly rational heuristics, 

heuristics that allow us to capture different strategies for managing the product lifecycle and 

learning curve, including the ‘market share advantage leads to lower costs leads to greater 

market share advantage’ logic derived from the analytic literature.  

Target Capacity and Demand Forecasting:  Due to the capacity acquisition delay, and lacking 

perfect foresight, each firm must forecast future industry demand and then determine what share 

of that demand it seeks to capture.  Firms pursuing GBF strategies will seek the dominant share 

of the market.  Such a firm must acquire capacity sufficient to supply its target share, S*, of the 

industry demand it forecasts, De (adjusted by the normal capacity utilization rate, u*): 

 

! 

K
* = MAX K

min
,S

*
D

e
u
*( ) (12) 

where Kmin is the minimum efficient scale of production. 

 The capacity acquisition delay requires the firm to forecast demand λ years ahead.  Many 

studies show that forecasts are dominated by smoothing and extrapolation of recent trends (e.g., 

Collopy and Armstrong 1992).  We capture such heuristics by assuming firms extrapolate 

demand λ years ahead on the assumption that recent growth will continue.  The expected growth 
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rate in demand, ge, is estimated from reported industry demand, Dr, over a historical horizon, h.   

 

! 

D
e = Dr

exp "ge( )  (13) 

 

! 

g
e = ln Dt

r
Dt"h

r( ) h  (14) 

Forecasters face a strong tradeoff between responsiveness and overreaction.  The longer the 

historic horizon h used to assess growth, the less vulnerable the firm will be to forecast errors 

arising from high-frequency noise in demand, but the greater the lag in responding to new trends.  

Sterman (1987, 2000) provides empirical evidence consistent with such forecasting procedures 

and shows how changes in growth trends led to significant overreaction in various industries.  

Note also that the instantaneous, current industry order rate is not available.  Rather, firms rely 

on consultants, and industry associations to estimate current demand.  It takes time to collect, 

analyze, and report such data, so the reported order rate lags current orders (see the supplement).   

 The firm’s target market share, S*, depends on its strategy.  We consider two strategies, 

‘aggressive’ and ‘conservative’.  In the aggressive strategy, the firm follows the recommendation 

of the increasing returns literature by seeking greater market share than its rivals, lowering prices 

and expanding capacity to do so.  In contrast, the conservative firm seeks accommodation with 

its rivals and sets a modest market share goal.   

 Firms also monitor the plans of their competitors.  The aggressive player seeks to exploit 

increasing returns not only by setting an aggressive market share goal but also by taking 

advantage of timidity, delay or underforecasting on the part of its rivals by opportunistically 

increasing its target when it detects insufficient industry capacity relative to its demand forecast 

(denoted uncontested demand).  The conservative strategy seeks accommodation with its rivals, 

but fears overcapacity and will cede additional share to avoid it.  Thus target share is given by 

 

! 

S
* =

MAX S
min
,S

u( ) if Strategy = Aggressive

MIN S
max
,S

u( ) if Strategy = Conservative

" 
# 
$ 

% $ 
 (15) 

where Smin and Smax are the minimum and maximum acceptable market share levels for the 

aggressive and conservative strategies, respectively, and Su is the share of the market the firm 

expects to be uncontested.  Expected uncontested demand, Du, is the difference between a firm’s 
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forecast of industry demand λ years ahead, when the capacity it orders today will be available, 

and its forecast of the capacity its competitors will have at that time.  The uncontested share of 

the market is expected uncontested demand as a fraction of projected industry demand:   

 

! 

S
u = MAX 0,D

u
D

e( ). (16) 

The MAX function maintains nonnegativity even when there is excess industry capacity.  

Expected uncontested demand is the firm’s forecast of industry demand less the sum of the 

firm’s estimates of expected competitor capacity, Ke, adjusted by normal capacity utilization, u*: 

 

! 

D
u

= D
e " u* K j

e

j# i
$   (17) 

In the base case we assume firms can accurately assess each competitors’ target capacity, 

including capacity plans not yet publicly announced and capacity under construction, with only a 

short delay required for the firm to carry out the required competitive intelligence (see the 

supplement).  Assuming capacity plans are known favors the GBF strategy by limiting 

overbuilding due to failure to account for the competitors’ supply line of capacity on order or 

under construction (Sterman 1989a, 1989b, 2000). 

Pricing:  Due to administrative and decision making lags, price, P, adjusts to a target level, P*, 

with an adjustment time τp:  

 

! 

dP dt = P
*
" P( ) # p  (18) 

Firms do not have the ability to determine the optimal price and instead must search for an 

appropriate price level.  We assume firms use the anchoring and adjustment heuristic to estimate 

target prices.  The current price forms the anchor, which is then adjusted in response to unit 

costs, the demand/supply balance, and market share.  The price discovery process constitutes a 

hill-climbing heuristic in which the firm searches for better prices in the neighborhood of the 

current price, using price relative to unit costs, demand/supply balance, and market share relative 

to its target to assess the gradient (Sterman 2000).  For simplicity we assume the target price is a 

multiplicatively separable function of the various adjustment factors, and that each adjustment is 

linear in the input variables.  Finally, the firm will not price below unit variable cost 

! 

U
v.  Thus 
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! 

P
* = MAX U

v
,P 1+" c P

C

P
#1

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) 1+" d Q

*

u
*
K
#1

$ 

% 
& 

' 

( 
) 

$ 

% 
& 

' 

( 
) 1+" s

S
* # S( )( )

* 

+ 
, 
, 

- 

. 
/ 
/ 
, 

  αc
 ≥ 0; αd

 ≥ 0; αs
 ≤ 0.  (19) 

The three adjustment terms capture the firm’s response to unit costs, the adequacy of its capacity 

to meet demand, and market share relative to its target share.  The adjustment parameters α 

determine the sensitivity of price to each of these pressures.  The first term moves target price to 

a base price PC determined by total unit costs and a constant target markup, m*,  

 

! 

P
C = 1+ m*( ) U f +Uv( ) .   (20) 

The firm also responds to the adequacy of its current capacity, measured by the ratio of desired 

production Q* to the rate of output defined by current capacity and normal capacity utilization, 

u*.  When this ratio exceeds unity, the firm has insufficient capacity and increases price; excess 

capacity causes prices to fall.  Finally, the firm prices strategically in support of its capacity goals 

by adjusting prices when there is a gap between its target market share S* and its current share S.  

When the firm desires a greater share than it currently commands, it will lower price; conversely, 

if market share exceeds the target the firm increases price, trading off the excess market share for 

higher profits and signaling rivals its desire to achieve a cooperative equilibrium.  The price 

formulation is consistent with the behavioral model of price in Cyert and March (1963/1992), 

and experimental evidence (Paich and Sterman 1993, Kampmann 1992).  

4.  Results 

 We begin by confirming that under conditions of perfect foresight and market clearing 

the model reproduces the conclusions of the increasing returns literature.  We then explore the 

effectiveness of the GBF strategy as these assumptions are relaxed.  For the base case the model 

is calibrated to capture the dynamics of typical consumer electronics items such as camcorders 

(Table 1).  As (arbitrary) scaling parameters we set the initial price at $1000/unit, and the 

potential size of the market at that price to 60 million households, each seeking µ = 1 unit.  The 

replacement rate is 10%/year.  We assume a 70% learning curve (costs fall 30% for each 

doubling of cumulative production), a typical value.  The ratio of fixed to variable costs is 3:1.  
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The sensitivity of order share to price is high, implying products are only moderately 

differentiated by non-price factors, an a fortiori assumption that favors the effectiveness of the 

GBF strategy.  We assume short delays of only one-quarter year for the reporting of industry 

orders and the estimation of competitor target capacity.  These parameters favor the success of 

the aggressive strategy (we present sensitivity analysis below). 

 We examine the behavior of the market for values of the word of mouth parameter 0.5 

≤ β ≤ 2.5, generating product lifecycle dynamics that span much of the variation in observed 

diffusion rates (Parker 1994, Klepper and Graddy 1990).  For illustration, we define three 

industry demand scenarios:  Fast, Medium, and Slow, defined by β =  2, 1, and 0.5, respectively.  

Figure 2 shows the evolution of industry orders for each case, assuming no capacity constraints 

and that prices follow unit costs down the learning curve.  In all cases a period of rapid growth is 

followed by a peak and decline to the equilibrium, replacement rate of demand.  The stronger the 

word of mouth feedback, the faster the growth, the earlier and higher the peak rate of orders, and 

the larger the decline from peak to equilibrium demand.  Demand in the slow scenario peaks 

after about 20 years, while in the fast scenario, the peak comes at about year 6.   Even faster 

dynamics have been documented, such as black and white televisions, toys and games and other 

consumer electronic items, often with only a few years from boom to bust (Parker 1994).   

 For each of the three market scenarios identified above we test the effectiveness of the 

Aggressive (A) and Conservative (C) strategies.  For ease of comparison, both firms have 

identical parameters and initial conditions, so the playing field is level.  Only the strategy each 

uses for capacity planning and pricing may differ.  Note in particular that the forecasting 

procedure used by each firm is identical, so the two firms have consistent beliefs about industry 

demand and competitor capacity.  In the aggressive strategy, the firm seeks at least 80% of the 

market (the aggressive player will increase its market share goal above 80% if it perceives there 

is additional uncontested demand).  The conservative player is willing to split the market with its 

rival, but will cede if it perceives a 50% share would result in excess capacity. 

 We begin by assuming that capacity can instantly adjust to the level required to provide 
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the target rate of capacity utilization at all times, 

! 

K =Q
*
u
* .  The ‘perfect capacity’ case 

corresponds to the equilibrium assumption that the market always clears, either because capacity 

can be adjusted instantly, or because agents have and perfect foresight so that they can anticipate 

the capacity acquisition lag.  The market always clears, capacity utilization always equals the 

target rate, and delivery delays are always normal.  Prices thus respond only to unit costs and the 

gap between the firm’s target and actual market share, and order share responds only to price.

 Table 2 shows the net present value of cumulative profits for the three market scenarios. 

(We use a discount rate of 4%/year and simulate the model for 40 years.  The results are robust 

to rates from 0 to at least 20%/year.)  In all cases the result is a prisoner’s dilemma.  Though the 

NPV of profit is maximized when both firms play the conservative strategy, [C, C], each firm 

has a strategic incentive to defect to exploit increasing returns and thus the Nash equilibrium is 

for both firms to play the aggressive strategy.   

 The faster the dynamics of the market unfold, the greater industry profits are for any 

strategy combination.  Figure 3 shows payoffs to each strategy combination in the market 

clearing case as the word of mouth parameter β varies.  Stronger word of mouth brings people 

into the market sooner, increasing the NPV of profits and the advantage of the GBF strategy, 

consistent with Kalish (1983).  Also consistent with the literature, the strategic incentive to play 

the aggressive strategy increases with the strength of the learning curve (table 3). 

 These results show the model conforms to the game-theoretic result when we assume 

instantaneous and perfect capacity adjustment.  With an appropriable learning curve it is optimal 

to price below the short-run profit-maximizing level and expand capacity rapidly.  The stronger 

the learning curve, the greater is the incentive to pursue the aggressive strategy.  Likewise, the 

faster the growth of the market, the greater is the advantage of the aggressive strategy. 

 Now consider the realistic case where firms face capacity adjustment lags and must 

therefore forecast industry demand and competitor responses, as specified by the behavioral rules 

above.  Table 2 shows the payoff matrices for the different scenarios; Figure 3 shows how the 

payoffs depend on the speed of product diffusion.  When the market dynamics are sufficiently 
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slow, the firm’s demand forecasts are accurate enough, capacity closely follows desired capacity, 

and the aggressive strategy dominates.  However, for market dynamics faster than those given by 

a critical value of the word of mouth parameter, βCRIT  ≈ 1.3, the conservative strategy dominates, 

contrary to the prescription of the equilibrium models.  Neither firm has any incentive to defect, 

and [C, C] becomes the dominant strategy.   

 To identify why the payoffs change so dramatically when the market clearing and perfect 

foresight assumptions are relaxed, Figure 4 shows the dynamics of the [A, C] case for the fast 

market scenario, while Figure 5 shows the same scenario for the case where capacity adjusts 

instantaneously.  In both, the aggressive firm immediately cuts price to gain market share.  In the 

case with the capacity lag, the aggressive firm also sets target capacity to 80% of its forecast of 

industry demand.  After about one year, the firm responds to the rapid growth in industry 

demand by increasing target capacity.  Due to the delay in perceiving industry orders and in 

capacity acquisition, actual capacity lags behind orders, and both firms quickly reach full 

utilization.  Capacity remains inadequate until year about 1.5.  During this time, excess backlogs 

accumulate and customers are forced to wait longer than normal for delivery.  The capacity 

crunch causes both firms to boost prices above normal levels, though the aggressive firm 

continues to price below the conservative firm.  Such transient shortages and price bubbles are 

often observed during the growth phases of successful products, for example radios, black and 

white television, and color televisions (Dino 1985), and more recently, DRAM, iPods, and 

Harley-Davidson motorcycles.   

 Demand continues to grow rapidly, though at a declining fractional rate.  As these data 

are reported, both firms gradually lower their demand forecasts.  However, due to the adjustment 

lags, capacity begins to overshoot the required level, and utilization falls below normal.  As 

industry orders peak and decline, shortly before year 6, both firms find themselves with 

significant excess capacity.  The aggressive firm suffers the most, since it expands capacity faster 

to increase its market share.  As boom becomes bust, the aggressive firm finds utilization drops 

below 50%.  The conservative firm also experiences excess capacity, but the magnitude and 
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duration of the problem is substantially less since the conservative player has been steadily 

giving up market share during the growth phase.  The pattern of capacity overshoot is 

widespread in maturing industries, and was frequently observed in Paich and Sterman’s (1993) 

experimental product lifecycle task, even when subjects had experience with the dynamics.  Both 

firms experience excess capacity as the market unexpectedly saturates, causing large losses.  The 

aggressive firm, however, loses far more than its conservative rival.   

 The failure of the aggressive strategy when the market dynamics are rapid is not due to 

the failure of increasing returns to confer cost advantage on the aggressive firm.  As in the 

perfect capacity case, the aggressive strategy achieves its intended goal:  low prices and rapid 

expansion quickly give the aggressor a cost advantage, which steadily widens as the industry 

moves through its lifecycle.  Indeed, at the end of the simulation, the aggressive firm has unit 

costs only 42% as great as its rival, a larger advantage than it enjoyed in the perfect capacity 

case.  The failure of the aggressive strategy arises from the interaction of the disequilibrium 

dynamics of the market and the boundedly rational heuristics the firms’ managers use to forecast 

demand, plan capacity, and set prices.   

 When capacity adjusts perfectly the aggressive strategy always dominates the 

conservative strategy and faster market evolution increases the advantage of the aggressive 

strategy (figure 3a).  In contrast, when firms face a capacity adjustment lag, the costs of excess 

capacity induced by forecast error increase with the speed of the product lifecycle.  Eventually, 

the costs of excess capacity overwhelm the cost advantage of the learning curve, and the 

aggressive strategy becomes inferior (Figure 3b).  As the dynamic complexity of the 

environment grows, or as the capacity acquisition lag increases, the greater is the likelihood of 

capacity overshoot.   

Sensitivity Analysis:  Before turning to conclusions we explore the sensitivity of results to 

assumptions.  Despite substantial variations in key parameters (table 3), the critical value of the 

word of mouth parameter above which the aggressive strategy becomes inferior remains in the 
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range from 2.0 to less than 0.5, corresponding to sales peaks from five to twenty years after 

product launch, well within the range documented for many real products (Parker 1994).   

 We have made a number of assumptions that reduce the attractiveness of aggressive GBF 

strategies.  First, to the extent capacity can be used to make follow on products the costs of 

capacity overshoot will be mitigated.  Second, we assume there are no economies of scope 

allowing follow-on or related products to share in the benefits of learning.  To the extent learning 

can be passed on to other products, thereby conferring advantage to them, the costs of capacity 

overshoot are offset even if capacity is not fungible with successor products.  Third, we subsume 

returns to scale and other positive feedback processes such as network externalities within the 

learning curve.  Additional positive feedbacks arising from other sources of increasing returns 

favor the aggressor, just as a stronger learning curve increases the advantage of the aggressive 

strategy.  Fourth, we assume there is no growth in the underlying pool of potential customers.  

This too would reduce the severity of the saturation peak.  Fifth, we assume a durable product.  

More frequent repurchases reduce the dynamic complexity of the market and the magnitude of 

the decline from peak to replacement sales rates. 

 A key behavioral assumption is that firms forecast industry demand by extrapolating past 

demand and have no advance knowledge of the market’s saturation point.  Clearly, better 

forecasting would favor the aggressive learning curve strategy, as shown by the results of the 

market clearing case.  The evidence is not encouraging.  In Paich and Sterman’s (1993) product 

lifecycle experiment, subjects consistently failed to forecast the sales peak, leading to excess 

capacity and large losses similar to those simulated here—even after extensive experience with 

the task.  Outside the laboratory, a wide range of new product diffusion models have been 

developed which, in principle, allow forecasting of the sales peak (Parker 1994, Mahajan et al. 

1990, Armstrong 2001).  In practice, diffusion models often miss the turning point, since, as 

Mahajan et al. (1990) write, “by the time sufficient observations have developed for reliable 

estimation, it is too late to use the estimates for forecasting purposes.”  Rao (1985) examined the 

ability of ten popular models to predict sales of typical durable goods.  Mean absolute forecast 
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errors averaged more than 40% across all models and products.  The extrapolative models 

generally outperformed the diffusion models.  Collopy et al. (1994) also found extrapolation 

outperformed diffusion models in predicting spending on information technology. 

 On the other hand a number of our assumptions favor the aggressive strategy.  We 

assume learning is perfectly appropriable, increasing the ability of firms to gain sustained cost 

advantage.  Spillovers allow conservative firms to benefit from the cost advantage of larger 

rivals, dissipating the cost advantage of aggressors pay so dearly to acquire (Ghemawat and 

Spence 1985).  We assume market share is quite elastic so that modestly lower prices bring 

significant share advantage, strengthening the positive feedbacks created by the learning curve.  

We also assume that production adjusts instantaneously at constant marginal cost (until capacity 

utilization reaches 100%), and that capacity can be adjusted continuously with an average lag of 

just one year, less than the typical lags estimated in the literature.  There are no capacity 

adjustment costs or exit costs.  A longer capacity lag or realistic adjustment costs would increase 

the magnitude and cost of forecast errors.  We omit balance sheet considerations and thus the 

risk of bankruptcy:  aggressive firms that ultimately do well in the simulation may not survive 

the losses of the transition from boom to bust (Oliva, Giese and Sterman 2001), a common 

phenomenon in the collapse of the dot.com bubble.  The information on which the firm bases its 

decisions is free of noise, measurement error, bias, or other distortion.  We assume firms can 

base their forecasts on industry orders, reported with only a one-quarter year lag, when in most 

industries order data are unavailable and firms must rely on estimates of industry revenues or 

shipments for forecasting, introducing an additional delay and also confounding demand (orders) 

with capacity (which may constrain shipments below the rate of incoming orders during periods 

of rapid demand growth).  Most importantly, we assume that the competitor’s planned capacity 

target is fully known with only a short delay, while in reality the determination of competitor 

plans is difficult and time consuming.  Relaxing any of these assumptions strengthens our results 

and causes the aggressive strategy to be dominated by the conservative strategy at lower rates of 

market growth and for less durable products (see the supplement).   
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5. Discussion and Conclusions 

 The belief that practicing managers are boundedly rational has a long tradition in 

organizational theory, evolutionary economics, and strategy, and has been broadly confirmed by 

work in psychology and behavioral economics.  Yet in general the literature continues to draw on 

traditional neoclassical assumptions, largely under the assumption that they are “good enough” 

to yield insight into many critical strategic problems.  In this paper we have highlighted some 

conditions under which these assumptions are likely to be dangerous, and attempted to illustrate 

how the combination of behavioral assumptions and dynamic modeling techniques may provide 

powerful alternative sources of insight. 

 We focused our analysis on cases of increasing returns.  Prior research shows that under 

traditional assumptions of equilibrium, full information and perfect rationality, the optimal 

strategy for a firm in an environment with increasing returns is to aggressively preempt 

competitors, cutting price and boosting output beyond the static optimum levels.  We have 

shown that this result is not robust to relaxation of these assumptions.  Investing in additional 

capacity and lower prices to benefit from increasing returns is only optimal when the dynamic 

complexity of the market, and hence the risk of capacity overshoot, is low.  In these 

circumstances, fully and boundedly rational decision making converge, just as Newtonian 

physics gives good approximations to relativistic dynamics for small speeds and low masses.  

However, as the dynamic complexity of the market increases, disequilibrium effects and 

systematic decision making errors become more important, and cause the predictions of the 

traditional models to fail.  

 These conclusions are consistent with experimental and empirical evidence.  Our results 

predict that GBF strategies will perform best in industries where demand growth is steady and 

the product has a high repeat purchase rate (lowering the risk of excess capacity caused by 

market saturation), or where capacity can be adjusted rapidly at low cost (lowering the cost of 

forecast error).  Consistent with this observation, aggressive strategies generally led to sustained 

advantage in synthetic fibers, bulk chemicals, and disposable diapers (Shaw and Shaw 1984, 
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Porter 1984, Lieberman 1984, and Ghemawat 1984), with high repurchase rates and reasonably 

steady demand growth, and in certain e-commerce sectors (e.g., Amazon.com) where capacity 

can be adjusted quickly.  Similarly, our results predict poor performance for aggressive strategies 

in industries with rapid demand growth and long-lived products, or long capacity adjustment 

delays where commonly used forecasting heuristics are particularly likely to lead to capacity 

overshoot.  Examples include televisions and VCRs, toys and games, lighting equipment, 

snowmobiles, calculators, tennis equipment, bicycles, chain saws, semiconductors, running 

shoes, and, most obviously, telecommunications during the technology bubble of the 1990s.  

 The results have implications both for practicing managers and for the larger issue of the 

modeling tools most appropriate for the study of strategic behavior.  Most obviously, any 

recommendation to pursue an increasing returns GBF strategy must be treated with caution.  

Current theory suggest firms should assess the strength and appropriability of learning and other 

sources of increasing returns in their industry and recommend aggressive preemption in the 

presence of strong, appropriable learning curves or other positive feedbacks that confer 

cumulative positional advantage.  Our results suggest that firms must also determine whether 

they are vulnerable to capacity overshoot or to systematic underestimation of competitor capacity 

plans, including capacity acquired by new entrants.  A firm electing to pursue a GBF strategy 

must devote significant effort to understanding the dynamics of market demand so that it is not 

caught unprepared by market saturation.  It must clearly and credibly signal its capacity 

intentions in a rapidly growing market so that other players will not unintentionally overbuild.  

To prevent competitor overbuilding, managers may find it optimal to share their forecasts and 

market intelligence with rivals.  Experience and experimental studies suggest that this is both 

hard medicine to take and difficult to carry out successfully.  Alternatively, when the risk of 

capacity overshoot is high, firms should consider conservative strategies even in the presence of 

increasing returns, allowing less sensible rivals to play the aggressive strategy, then buying these 

rivals at distress prices when they fail during the transition from boom to bust.  Jack Tramiel 

followed just such a strategy, purchasing Atari from Warner Communications after the peak in 
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the video game market for $160 million in unsecured debt and no cash, while Warner took a 

$592 million writeoff of Atari assets on top of $532 million in Atari losses.  Similarly, many 

internet and telecom firms have been bought since 2001 at distress prices.  

 On the methodological front, our results suggest that assuming that the equilibrium, 

information and rationality assumptions of game theory and microeconomics are “close enough” 

to provide robust frameworks for action is risky.  More realistic physical, institutional and 

behavioral assumptions can dramatically reverse the neoclassical result and reveal a much more 

complex relation between increasing returns, the dynamics of demand and firm strategy. 

 When the dynamics of the system are sufficiently slow, the delays in information 

acquisition, decision-making and system response sufficiently short, and the cognitive demands 

on the agents sufficiently low, dynamic behavioral models will yield predictions observationally 

indistinguishable from those of equilibrium models.  However, in cases of high dynamic 

complexity, boundedly rational people can and do behave significantly differently from their 

equilibrium counterparts.  The case of increasing returns in a dynamic market shows that these 

differences can matter greatly and their impact examined rigorously.   

 Though further work is required to explore the relationship between behavior and 

dynamic complexity beyond the two-firm case under increasing returns, we speculate that 

relaxing the assumptions of equilibrium and complete rationality may lead to similar differences 

in a variety of other contexts.  Such cases are likely to include settings in which there are long 

lags between action and effect or in the reporting of information, where there are positive 

feedback processes, and where there are significant nonlinearities.  We suggest the combination 

of game theoretic reasoning with behavioral simulation models can contribute to a behaviorally 

grounded and normatively fruitful theory of disequilibrium dynamics in strategic settings. 
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Table 1.  Key parameters.  The supplement provides full documentation.   
 

POP Total population (households) 100e6 
µ Units purchased per adopter (units/household) 1 
α Propensity for nonadopters to adopt the product autonomously (1/years) 0.001 
β Propensity for nonadopters to adopt the product through word of mouth (1/years) 1 
εd  Elasticity of demand at the reference price and population (dimensionless) −0.2 
δ Fractional discard rate of units from the installed base (1/years) 0.10 
εp  Sensitivity of product attractiveness to price -8 
εa  Sensitivity of product attractiveness to availability -4 
c Ratio of fixed to variable costs (dimensionless) 3 
γ Strength of the learning curve (dimensionless) log2(0.7) 
λ Capacity acquisition delay (years) 1 
u* Target capacity utilization rate (dimensionless) 0.8 
Kmin Minimum efficient scale (units/year) 1e5 
h Historic horizon for estimating trend in demand (years) 1 
τd Time delay for reporting industry order rate (years) 0.25 
τc Time delay for estimating competitor target capacity (years) 0.25 
τp Adjustment time for price (years) 0.25 
αc Weight on costs in determination of target price (dimensionless) 1 
αd Weight on demand/supply balance in determination of target price (dimensionless) 0.5 
αs Weight on market share in determination of target price (dimensionless) -0.10 
M0 Initial number of adopters (households) 0.001M* 
Ei0 Initial cumulative production experience of firm i (units) 10e6 
Pi0  Initial price of firm i ($/unit) 1000 
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Table 2.  Payoffs in three industry evolution scenarios (NPV of cumulative profits, Billion $). 
 

  Perfect Capacity  Capacity Adjustment Lag 
SLOW  Aggressive (A) Conservative (C)  A C 

(β = 0.5) A 3.2, 3.2 5.1, 2.1 A  -7.0,  -7.0  4.8,  0.9 
 C 2.1, 5.1 3.8, 3.8 C  0.9,  4.8  3.5,  3.5 
       

MEDIUM  A C  A C 
(β = 1) A 4.8, 4.8 7.3, 3.2 A  -11.1,  -11.1  5.2,  1.0 

 C 3.2, 7.3 5.7, 5.7 C  1.0,  5.2  4.4,  4.4 
 

FAST 
 
 

 
A 

 
C 

  
A 

 
C 

(β = 2) A 6.5, 6.5 9.4, 4.8 A  -19.7, -19.7  -1.7,  0.2 
 C 4.8, 9.4 7.6, 7.6 C  0.2,  -1.7  1.9,  1.9 
       

 
 
Table 3.  Sensitivity analysis.  The aggressive strategy is inferior for values of β > βCRIT .  The 
smaller the critical value βCRIT, the less robust is the aggressive strategy.  § = the base case value. 
 

 
Parameter βCRIT 

εd:  Industry demand   0.0 1.4 
 Elasticity at -0.2 § 1.3 

 Reference price -1.0 1.1 
 
εp: Sensitivity of Product -4 <0.5 
 Attractiveness -8 § 1.3 
 to Price -12 2.0 
 
δ:  Fractional Product 0.10 § 1.3 
 Discard Rate 0.20 1.6 
  0.50 1.4 

 
c:  Ratio of fixed 3 § 1.3 
 to variable cost 1 1.5 
  1/3 1.9 

 
λ:  Capacity 1.0 § 1.3 
 Adjustment Delay 0.5 1.9 
 
γ: Learning log2(0.8) 1.3 
 Curve log2(0.7) § 1.3 
 Strength log2(0.5) 1.6 
 

Parameter βCRIT 

u* :  Normal 0.6 1.2 
 Capacity 0.8 § 1.3 
 Utilization 1.0 1.6 
 

τd, τc:  Information 0.25, 0.25 § 1.3 
 Reporting Delays 0.0625, 0.0625 1.7 
 
αc: Strength of Cost 1.0 § 1.3 
 Adjustment in Price 0.5 1.2 
 
αd: Strength of 0.50 1.1 
 Demand/Supply 0.25 § 1.3 
 Effect on Price 0.00 1.0 
 
αs: Strength of 0.00 1.3 
 Market Share 0.10 § 1.3 
 Effect on Price 0.20 1.3 
  0.50 1.3 
 

Smin: Minimum 1.00 1.0 
 Market Share Target 0.80 § 1.3 
 for Aggressive Strategy 0.60 0.8 
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Figure 1.  Sales, Cost of Goods Sold and stock price for JDS Uniphase.  
 

0

200

400

600

800

1000

1999 2000 2001 2002 2003 2004 2005

M
il
li
o

n
 $

/Q
u

a
rt

e
r

Net Sales Cost of Sales

  

0

50

100

150

1999 2000 2001 2002 2003 2004 2005

$
/S

h
a

re

Stock Price

 
 
 
 
Figure 2.  Diffusion dynamics for three values of the word of mouth parameter (Slow, Medium, 
Fast:  β = 0.5, 1, 2 respectively), for the perfect capacity case with target market share for both 
firms = 50%.  Left: Industry Orders; Right: Price. 
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Figure 3.  Firm Payoffs as they depend on the speed of the product lifecycle.  (a; left): perfect 
capacity case; the aggressive strategy always dominates; (b; right): capacity acquisition lag; the 
aggressive strategy is inferior for values of β > βCRIT. 
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Figure 4.  Dynamics of the aggressive vs. conservative strategies in the fast market scenario (β = 
2), with the capacity acquisition lag. 
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Figure 5. Aggressive vs. Conservative Strategies in the market clearing case with fast market 
dynamics (β = 2).  Compare to figure 4. 
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