Comparing two formulations for the ARM problem

Marcos Goycoolea1 Alan Murray2 Juan Pablo Vielma1 Andres Weintraub3

1Department of Industrial and Systems Engineering
Georgia Institute of Technology

2Department of Geography
The Ohio State University

3Departamento de Ingenieria Industrial
Universidad de Chile

12th Symposium for Systems Analysis in Forest Resources,
September 2006
Outline

1. Introduction
 - Description of Problem
 - The Area Restriction Model (ARM)

2. Two Integer Programming Approaches for ARM
 - Cell Approach
 - Cluster Approach

3. Comparing the two Approaches
 - Modeling Advantages of the Cluster Approach
 - Computational Advantages of Each Approach
Obtain Harvest Schedule that Maximizes Profit Subject to Clear Cut Limitations and Side Constraints

- Environmental regulations set Maximum Area Constraints:
 - Reasons include wildlife habitat, scenic beauty, etc.
 - Maximum Clear Cut Area: 40+ to 120+ acres.

- Side constraints include:
 - Timber Volume Flow Constraints.
 - Average Ending Age.
ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.
ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.
ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.
ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.
Cell Approach Forbids Infeasible Clusters

- One variable per cell.
- Cover/Path Constraints forbid harvesting (Minimal) Infeasible Clusters. (McDill et al. 2002)
- Strengthening:
 - Crowe et al. 2003 *Clique* Constraints.
 - Gunn and Richards 2005 *Stand Centered* Const.
 - Tóth et al. 2005 *Lifted Cover* Const.
Cell Approach Forbids Infeasible Clusters

- One variable per cell.
- Cover/Path Constraints forbid harvesting (Minimal) Infeasible Clusters. (McDill et al. 2002)

Strengthening:
- Crowe et al. 2003 *Clique* Constraints.
- Gunn and Richards 2005 *Stand Centered Const.*
- Tóth et al. 2005 *Lifted Cover Const.*
One variable per cell.

Cover/Path Constraints forbid harvesting (Minimal) Infeasible Clusters. (McDill et al. 2002)

Strengthening:
- Crowe et al. 2003 *Clique* Constraints.
- Gunn and Richards 2005 *Stand Centered* Const.
- Tóth et al. 2005 *Lifted Cover* Const.
Cluster Approach Does Explicit Aggregation

- Constraints forbid harvesting adjacent clusters.
- Strengthening:

Constraints forbid harvesting adjacent clusters.

Strengthening:
Introduction

Two Integer Programming Approaches for ARM

Comparing the two Approaches

Cluster Approach Does Explicit Aggregation

- Constraints forbid harvesting adjacent clusters.
- Strengthening:
Cluster Approach Easily Allows for Extra Modeling Requirements

- **Fixed Harvesting Costs:**
 - Modify objective coefficients in cluster approach.
 - Not clear how to do in cell approach.

- **Average area clear-cut constraints:**
 - Implemented as linear constraints in cluster approach.
 - Not clear how to do in cell approach.
Cluster Approach Easily Allows for Extra Modeling Requirements

- Fixed Harvesting Costs:
 - Modify objective coefficients in cluster approach.
 - Not clear how to do in cell approach.

- Average area clear-cut constraints:
 - Implemented as linear constraints in cluster approach.
 - Not clear how to do in cell approach.
Control Over Clusters Creation Allows to Restrict Clear Cut Shapes

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.
Control Over Clusters Creation Allows to Restrict Clear Cut Shapes

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.
Control Over Clusters Creation Allows to Restrict Clear Cut Shapes

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.
Control Over Clusters Creation Allows to Restrict Clear Cut Shapes

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.
Description of Forest Instances

- **Buttercreek**
 - 351 nodes and 662 arcs. Max area 120.
 - Feasible clusters \leq 8 nodes, cliques \leq 4 nodes.

- **El Dorado**
 - 1,363 nodes and 3,609 arcs. Max area 120.
 - Feasible clusters \leq 7 nodes, cliques \leq 4 nodes.

- **Shulkell**
 - 1,039 nodes and 2,065 arcs. Max area 40.
 - Feasible clusters \leq 13 nodes, cliques \leq 4 nodes.

- **Lemon Creek (Partial URM)**
 - 6,624 nodes and 18,048 arcs. Max area 40.
 - Feasible clusters \leq 5 nodes, cliques \leq 4 nodes.

- 3, 5 and 12 period instances with volume and ending age constraints. Solved with CPLEX 9 for 10,000 seconds. 0.01\% GAP considered Optimal.
Sizes of Formulations

- Maximum # of cells in a feasible cluster is the key:
 - Can grow if cells become smaller.
 - Can grow if Maximum Area grows.
- For fixed maximum # of cells in a feasible cluster both formulations grow polynomially.
- If maximum # of cells in a feasible cluster is not fixed both formulations can grow exponentially.
- Cell Approach: Size driven by Constraints = Path/Cover.
- Cluster Approach: Size driven by Variables = Feasible Clusters.
- Experiment: Plot Path/Cover and Feasible Clusters v/s Maximum Area.
Sizes of Formulations

- Maximum # of cells in a feasible cluster is the key:
 - Can grow if cells become smaller.
 - Can grow if Maximum Area grows.
- For fixed maximum # of cells in a feasible cluster both formulations grow polynomially.
- If maximum # of cells in a feasible cluster is not fixed both formulations can grow exponentially.
- Cell Approach: Size driven by Constraints = Path/Cover.
- Cluster Approach: Size driven by Variables = Feasible Clusters.
- Experiment: Plot Path/Cover and Feasible Clusters v/s Maximum Area.
Sizes of Formulations

- Maximum # of cells in a feasible cluster is the key:
 - Can grow if cells become smaller.
 - Can grow if Maximum Area grows.

- For fixed maximum # of cells in a feasible cluster both formulations grow polynomially.

- If maximum # of cells in a feasible cluster is not fixed both formulations can grow exponentially.

- Cell Approach: Size driven by Constraints = Path/Cover.

- Cluster Approach: Size driven by Variables = Feasible Clusters.

- Experiment: Plot Path/Cover and Feasible Clusters v/s Maximum Area.
Sizes of Formulations are Comparable

El Dorado

Maximal Cliques
Feasible Clusters
Cover Constraints (Path)

of elements in family vs. Maximum clear-cut area [acres]
Sizes of Formulations are Comparable

Shulkell

Maximal Cliques
Feasible Clusters
Cover Constraints (Path)
Sizes of Formulations are Comparable

![Graph showing the comparison of maximal cliques, feasible clusters, and cover constraints (Path) for Lemon Creek.](image)

- **Maximal Cliques** (red line)
- **Feasible Clusters** (green dotted line)
- **Cover Constraints (Path)** (blue dotted line)

The graph illustrates the relationship between the maximum clear-cut area in acres and the number of elements in the family for different formulations. The sizes of the formulations are comparable across the different approaches.
Solving the ARM Model

- Feasible solutions are easy to find:
 - CPLEX heuristic usually finds optimum (Some problems with Cluster and Vol. Constraints).
 - Many custom heuristics are available.

- Problem is proving optimality:
 - Tight LP relaxation is very important.
Problem is pure combinatorial.

Cluster formulation is far superior:
- LP relaxation is very tight.
- Solve times much better that Cell approach.
Theorem: LP of Cluster Formulation is Stronger than LP of Cell Formulation with Cover Constraints
Tight LP relaxation for Cluster Formulation Translates Into Fast Solve Times

![Bar chart showing solve times for different clusters](image-url)
Multi-Period with Side Constraints

- Side Constraints can be more important than area constraints.

- Both formulations perform similarly:
 - LP relaxations are similar.
 - Solve times are similar.
Multi-Period w. Side Constraints: Cluster LP Relaxation Still Tighter, but Difference is Smaller

LP relaxation theorem still holds.
Multi-Period w. Side Constraints: Similar LP Gaps Translates into Similar Solve Times.
Improvement in Objective When Removing Area Constraints (El Dorado)

![Bar chart showing improvement in objective when removing area constraints.](chart.png)
Improvement in Objective When Removing Area Constraints (El Dorado)
Side constraints can be more important than area constraints:
- Effect usually stronger for many periods.
- Area constraints are still needed.
- Cluster approach particularly sensitive to hard side constraints.

Green-up > 1 can make Area Constraints crucial again.
- Particularly important for many periods.
- INFORMS 2006.
Conclusions

- Advantages of the Cluster Approach:
 - Models problems which cell approach can not.
 - Better at area constraints aspect of the problem.

- Advantages of the Cell Approach.
 - Much less sensitive to hard side constraints.

- Other aspects of Cell Approach:
 - Strengthening can help.
 - Branch-and-cut implementation (Tóth et al. 2005).

- New Formulation: Constantino, Borges and Martins.

- More real forest instances needed. (FMOS)
Conclusions

- Advantages of the Cluster Approach:
 - Models problems which cell approach can not.
 - Better at area constraints aspect of the problem.

- Advantages of the Cell Approach.
 - Much less sensitive to hard side constraints.

- Other aspects of Cell Approach:
 - Strengthening can help.
 - Branch-and-cut implementation (Tóth et al. 2005).

- New Formulation: Constantino, Borges and Martins.

- More real forest instances needed. (FMOS)