A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program

Juan Pablo Vielma

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

ACO Student Seminar, Georgia Institute of Technology – Atlanta, Georgia
What is the Split Closure

- **Split Cuts:**
 - Valid Inequalities “equivalent” to Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
 - Special case of Balas’s Disjunctive Cuts.

- **Closure:**
 - Obtained by adding all cuts in a class.
 - Class could have infinite number of cuts, so closures are not immediately polyhedrons.
 - Example: Chvátal Closure (Is a polyhedron).
What is the Split Closure

- **Split Cuts:**
 - Valid Inequalities “equivalent” to Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
 - Special case of Balas’s Disjunctive Cuts.

- **Closure:**
 - Obtained by adding all cuts in a class.
 - Class could have infinite number of cuts, so closures are not immediately polyhedrons.
 - Example: Chvátal Closure (Is a polyhedron).
History and Motivation

- **History:**
 - Split Cuts were introduced by [Cook, et. al. 1990].
 - Split Closure is a polyhedron
 [Cook, et. al. 1990, Andersen, et. al. 2005].
 Non-constructive proofs.
 - The Split Closure has recently been studied by

- **Motivation of Constructive Characterization:**
 - Algorithm to generate Split Closure? (Naive).
 - Helps understand Split Cuts better.
 - For fixed dimension. Is the number of inequalities defining
 the Split Closure polynomial in the size of the input? (Open
 even for two inequalities in \mathbb{R}^2).
History and Motivation

- **History:**
 - Split Cuts were introduced by [Cook, et. al. 1990].
 - Split Closure is a polyhedron
 - [Cook, et. al. 1990, Andersen, et. al. 2005].
 - Non-constructive proofs.
 - The Split Closure has recently been studied by

- **Motivation of Constructive Characterization:**
 - Algorithm to generate Split Closure? (Naive).
 - Helps understand Split Cuts better.
 - For fixed dimension. Is the number of inequalities defining the Split Closure polynomial in the size of the input? (Open even for two inequalities in \mathbb{R}^2).
6. Valid Inequalities for Mixed-Integer Sets

Figure 6.2

Proposition 6.3. Given the two valid inequalities (6.3) for T, it follows that (6.4) is also valid for T.
Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall \ i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall \ j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall \ i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall \ j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P \), LP Relaxation
 \(P(B) := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall \ i \in B \} \) for \(B \in \mathcal{B} := \{ B \subseteq M : |B| = n, \ \{a_i\}_{i \in B} \ l.i. \} \)
- Basic or Conic Relaxation
 \(\{ x \in P(B) : x_j \in \mathbb{Z} \quad \forall \ j \in N_I \} \) is a relaxation of \(P_I \).
- \(x(B) \) unique solution to \(a_i^T x = b_i \quad \forall \ i \in B \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{x \in \mathbb{R}^n : a_i^T x \leq b_i \ \forall \ i \in M\} \)
- \(P_I := \{x \in P : x_j \in \mathbb{Z} \ \forall \ j \in N_I\} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P, \) LP Relaxation
- \(P(B) := \{x \in \mathbb{R}^n : a_i^T x \leq b_i \ \forall \ i \in B\} \) for \(B \in \mathcal{B} := \{B \subseteq M : |B| = n, \ \{a_i\}_{i \in B} \ l.i.\} \)
- Basic or Conic Relaxation
- \(\{x \in P(B) : x_j \in \mathbb{Z} \ \forall \ j \in N_I\} \) is a relaxation of \(P_I. \)
- \(x(B) \) unique solution to \(a_i^T x = b_i \ \forall \ i \in B \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall \ i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall \ j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P \), LP Relaxation
- \(P(B) := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall \ i \in B \} \) for \(B \in \mathcal{B} := \{ B \subseteq M : |B| = n, \ \{a_i\}_{i \in B} \text{ l.i.} \} \)

Basic or Conic Relaxation

- \(\{ x \in P(B) : x_j \in \mathbb{Z} \quad \forall \ j \in N_I \} \) is a relaxation of \(P_I \).
- \(x(B) \) unique solution to \(a_i^T x = b_i \quad \forall \ i \in B \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P \), LP Relaxation
- \(P(B) := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in B \} \) for \(B \in \mathcal{B} := \{ B \subseteq M : |B| = n, \ \{ a_i \}_{i \in B} \text{ l.i.} \} \)

Basic or Conic Relaxation

- \(\{ x \in P(B) : x_j \in \mathbb{Z} \quad \forall j \in N_I \} \) is a relaxation of \(P_I \).
- \(x(B) \) unique solution to \(a_i^T x = b_i \quad \forall i \in B \)
Split Cuts are Constructed from Valid Split Disjunctions

For $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ divide \mathbb{R}^n into:

- $F^l := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}$
- $F^g := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}$
Split Cuts are Constructed from Valid Split Disjunctions

For \((\pi, \pi_0) \in \mathbb{Z}^{n+1}\) divide \(\mathbb{R}^n\) into:

- \(F^l := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}\)
- \(F^g := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}\)

Use this to divide \(P\) into:

- \(P^l := \{x \in P : \pi^T x \leq \pi_0\}\)
- \(P^g := \{x \in P : \pi^T x \geq \pi_0 + 1\}\)
Split Cuts are Constructed from Valid Split Disjunctions

For \((\pi, \pi_0) \in \mathbb{Z}^{n+1}\) divide \(\mathbb{R}^n\) into:

- \(F^l := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}\)
- \(F^g := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}\)

Use this to divide \(P\) into:

- \(P^l := \{x \in P : \pi^T x \leq \pi_0\}\)
- \(P^g := \{x \in P : \pi^T x \geq \pi_0 + 1\}\)

A split cut for \(D(\pi, \pi_0)\) and \(P\) is an inequality valid for:

- \(P^l \cup P^g\)
- \(\text{conv}(P^l_{(\pi, \pi_0)} \cup P^g_{(\pi, \pi_0)})\)
Split Cuts are Constructed from Valid Split Disjunctions

For \((\pi, \pi_0) \in \mathbb{Z}^{n+1}\) divide \(\mathbb{R}^n\) into:

- \(F^l := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}\)
- \(F^g := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}\)

Use this to divide \(P\) into:

- \(P^l := \{x \in P : \pi^T x \leq \pi_0\}\)
- \(P^g := \{x \in P : \pi^T x \geq \pi_0 + 1\}\)

A split cut for \(D(\pi, \pi_0)\) and \(P\) is an inequality valid for:

- \(P^l \cup P^g\)
- \(\text{conv}(P^l_{(\pi, \pi_0)} \cup P^g_{(\pi, \pi_0)})\)
Valid Splits don’t Cut Integer Feasible Points

For fixed N_I we are interested in (π, π_0) such that, for any P:

- $P_I \subseteq F^l \cup F^g \subseteq \mathbb{R}^n$
Valid Splits don’t Cut Integer Feasible Points

For fixed N_I we are interested in (π, π_0) such that, for any P:

- $P_I \subseteq F^l \cup F^g \subseteq \mathbb{R}^n$

so we study

$$\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I\}$$
The Split Closure is the *Polyhedron* Formed by All Split Cuts

The *split closure* [Cook, et. al. 1990] of P_I is

$$SC := \bigcap_{(\pi, \pi_0) \in \Pi(N_I)} \text{conv}(P^l(\pi, \pi_0) \cup P^g(\pi, \pi_0)).$$

Theorem

[Cook, et. al. 1990] *SC is a polyhedron*
For basis $B \in \mathcal{B}$ let

- $P(B)^l := \{ x \in P(B) : \pi^T x \leq \pi_0 \}$
- $P(B)^g := \{ x \in P(B) : \pi^T x \geq \pi_0 + 1 \}$

and

$$ SC(B) := \bigcap_{(\pi,\pi_0) \in \Pi(N_I)} \text{conv}(P(B)^l_{(\pi,\pi_0)} \cup P(B)^g_{(\pi,\pi_0)}). $$
Sufficient to Study Split Cuts for Basic Relaxations

For basis $B \in \mathcal{B}$ let

- $P(B)^l := \{x \in P(B) : \pi^T x \leq \pi_0\}$
- $P(B)^g := \{x \in P(B) : \pi^T x \geq \pi_0 + 1\}$

and

$$SC(B) := \bigcap_{(\pi,\pi_0) \in \Pi(N_I)} \text{conv}(P(B)^l_{(\pi,\pi_0)} \cup P(B)^g_{(\pi,\pi_0)}).$$

Theorem

[Andersen, et. al. 2005] $SC = \bigcap_{B \in \mathcal{B}} SC(B)$

Theorem

[Andersen, et. al. 2005] $SC(B)$ is a polyhedron for all $B \in \mathcal{B}$. Hence SC is a polyhedron.
Farkas’s Lemma Can be Used to Characterize Split Cuts

Let $P = P(B) = \{ x \in \mathbb{R}^n : Bx \leq b \}$, for $B \in \mathbb{Q}^{n \times n}$, rank$(B) = n$
Farkas’s Lemma Can be Used to Characterize Split Cuts

- Let $P = P(B) = \{x \in \mathbb{R}^n : Bx \leq b\}$, for $B \in \mathbb{Q}^{n \times n}$, $\text{rank}(B) = n$

- For $(\pi, \pi_0) \in \Pi(N_I)$ such that $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
 - $P^l := \{x \in P : \pi^T x \leq \pi_0\}$
 - $P^g := \{x \in P : \pi^T x \geq \pi_0 + 1\}$
Farkas’s Lemma Can be Used to Characterize Split Cuts

Let $P = P(B) = \{x \in \mathbb{R}^n : Bx \leq b\}$, for $B \in \mathbb{Q}^{n \times n}$, $\text{rank}(B) = n$

For $(\pi, \pi_0) \in \Pi(N_I)$ such that $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let

- $P^l := \{x \in P : \pi^T x \leq \pi_0\}$
- $P^g := \{x \in P : \pi^T x \geq \pi_0 + 1\}$

Split cut $\delta^T x \leq \delta_0$ is valid for P^l and P^g:

- F.L. for P^l: $\exists (\mu^l_0, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
 - $\delta = B^T \mu^l + \mu^l_0 \pi$
 - $\delta_0 b^T \mu^l + \mu^l_0 \pi_0$

- F.L. for P^g: $\exists (\mu^g_0, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
 - $\delta = B^T \mu^g - \mu^g_0 \pi$
 - $\delta_0 b^T \mu^g - \mu^g_0 (\pi_0 + 1)$
Farkas’s Lemma Can be Used to Characterize Split Cuts

- Let \(P = P(B) = \{ x \in \mathbb{R}^n : Bx \leq b \} \), for
 \(B \in \mathbb{Q}^{n \times n} \), \(\text{rank}(B) = n \)

- For \((\pi, \pi_0) \in \Pi(N_I) \) such that
 \(\pi^T x(B) \in (\pi_0, \pi_0 + 1) \) let
 - \(P^l := \{ x \in P : \pi^T x \leq \pi_0 \} \)
 - \(P^g := \{ x \in P : \pi^T x \geq \pi_0 + 1 \} \)

- Split cut \(\delta^T x \leq \delta_0 \) is valid for \(P^l \) and \(P^g \):
 - F.L. for \(P^l \): \(\exists (\mu^l_0, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}^n_+ \) s.t.
 - \(\delta = B^T \mu^l + \mu^l_0 \pi \)
 - \(\delta_0 \geq b^T \mu^l + \mu^l_0 \pi_0 \)
 - F.L. for \(P^g \): \(\exists (\mu^g_0, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}^n_+ \) s.t.
 - \(\delta = B^T \mu^g - \mu^g_0 \pi \)
 - \(\delta_0 \geq b^T \mu^g - \mu^g_0 (\pi_0 + 1) \)
Farkas’s Lemma Can be Used to Characterize Split Cuts

Let \(P = P(B) = \{ x \in \mathbb{R}^n : Bx \leq b \} \), for \(B \in \mathbb{Q}^{n \times n} \), \(\text{rank}(B) = n \)

For \((\pi, \pi_0) \in \Pi(N_l) \) such that \(\pi^T x(B) \in (\pi_0, \pi_0 + 1) \) let
\[
\begin{align*}
P^l &:= \{ x \in P : \pi^T x \leq \pi_0 \} \\
P^g &:= \{ x \in P : \pi^T x \geq \pi_0 + 1 \}
\end{align*}
\]

Split cut \(\delta^T x \leq \delta_0 \) is valid for \(P^l \) and \(P^g \):

F.L. for \(P^l \): \(\exists (\mu^l_0, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}_+^n \) s.t.
\[
\begin{align*}
\delta &= B^T \mu^l + \mu_0^l \pi \\
\delta_0 &\geq b^T \mu^l + \mu_0^l \pi_0
\end{align*}
\]

F.L. for \(P^g \): \(\exists (\mu^g_0, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}_+^n \) s.t.
\[
\begin{align*}
\delta &= B^T \mu^g - \mu_0^g \pi \\
\delta_0 &\geq b^T \mu^g - \mu_0^g (\pi_0 + 1)
\end{align*}
\]
Farkas’s Lemma Can be Used to Characterize Split Cuts

- Let $P = P(B) = \{x \in \mathbb{R}^n : Bx \leq b\}$, for $B \in \mathbb{Q}^{n \times n}$, rank$(B) = n$

- For $(\pi, \pi_0) \in \Pi(N_I)$ such that $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
 - $P^l := \{x \in P : \pi^T x \leq \pi_0\}$
 - $P^g := \{x \in P : \pi^T x \geq \pi_0 + 1\}$

- Split cut $\delta^T x \leq \delta_0$ is valid for P^l and P^g:
 - F.L. for P^l: $\exists (\mu^l_0, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
 - $\delta = B^T \mu^l + \mu^l_0 \pi$
 - $\delta_0 = b^T \mu^l + \mu^l_0 \pi_0$
 - F.L. for P^g: $\exists (\mu^g_0, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
 - $\delta = B^T \mu^g - \mu^g_0 \pi$
 - $\delta_0 = b^T \mu^g - \mu^g_0 (\pi_0 + 1)$
Characterization

Lattices

Polyhedrality
[Andersen, et. al. 2005, Balas and Perregaard, 2003, Caprara and Letchford, 2003] All non-dominated valid inequalities for $\text{conv}(P_l^{(\pi,\pi_0)} \cup P_g^{(\pi,\pi_0)})$ are of the form $\delta^T x \leq \delta_0$ where

$$
\delta = B^T \mu^l + \mu^l_0 \pi = B^T \mu^g - \mu^g_0 \pi
$$

$$
\delta_0 = b^T \mu^l + \mu^l_0 \pi_0 = b^T \mu^g - \mu^g_0 (\pi_0 + 1)
$$

for $\mu^l_0, \mu^g_0 \in \mathbb{R}_+$ and $\mu^l, \mu^g \in \mathbb{R}_n^+$ solutions to

$$
B^T \mu^g - B^T \mu^l = \pi
$$

$$
b^T \mu^g - b^T \mu^l = \pi_0 + \mu^g_0
$$

$$
\mu^l_0 + \mu^g_0 = 1, \quad \mu^g_0 \in (0, 1), \quad \mu^l_i \cdot \mu^g_i = 0
$$
\[B^T \mu^g - B^T \mu^l = \pi \]
\[b^T \mu^g - b^T \mu^l = \pi_0 + \mu_0^g \]
\[\mu^l, \mu^g \in \mathbb{R}_+^n, \quad \mu_i^l \cdot \mu_i^g = 0 \]
\[\mu_0^g \in (0, 1), \quad \pi_0 \in \mathbb{Z} \]
\[B^T \mu^g - B^T \mu^l = \pi \]
\[b^T \mu^g - b^T \mu^l = \pi_0 + \mu_0^g \]
\[\mu^l, \mu^g \in \mathbb{R}_+^n, \quad \mu_i^l \cdot \mu_i^g = 0 \]
\[\mu_0^g \in (0, 1), \quad \pi_0 \in \mathbb{Z} \]
\[B^T \mu = \pi \]
\[b^T \mu = \pi_0 + \mu_0^g \]
\[\mu \in \mathbb{R}^n \]
\[\mu_0^g \in (0, 1), \quad \pi_0 \in \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\} \]
\[B^T \mu = \pi \]
\[b^T \mu = \pi_0 + \mu^g_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^g \in (0, 1), \quad \pi_0 \in \mathbb{Z} \]

\[\mu^l_i = (\mu_i)^- := \max\{-\mu_i, 0\} \]
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor \]
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max \{-\mu_i, 0\}, \quad \mu^g_0 = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor \]

\[Bx(B) = b \]
\[B^T \mu = \pi \]
\[[b^T \mu] = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - [b^T \mu] \]

\[\mu^T B x(B) = \mu^T b \]
\[B^T \mu = \pi \]
\[[b^T \mu] = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - [b^T \mu] \]

\[\mu^T Bx(B) = \mu^T b \]
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor \]

\[\pi^T x(B) = \mu^T b \]
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu^l_i = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu^g_0 = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor \]

\[\pi^T x(B) = \mu^T b \]
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor \]

\[\pi_0 < \pi^T x(B) < \pi_0 + 1 \]
\[
B^T \mu = \pi \\
\lfloor b^T \mu \rfloor = \pi_0 \\
\mu \in \mathbb{R}^n \\
\mu^T b \notin \mathbb{Z}
\]

\[
\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_i^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor
\]

\[
\delta = B^T \mu^l + \mu_0^l \pi \\
\delta_0 = b^T \mu^l + \mu_0^l \pi_0
\]
\(B^T \mu = \pi \)
\[
\lfloor b^T \mu \rfloor = \pi_0
\]
\(\mu \in \mathbb{R}^n \)
\(\mu^T b \notin \mathbb{Z} \)

\(\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu), \quad \mu_0^l = 1 - \mu_0^g \)

\(\delta = B^T \mu^l + \mu_0^l \pi \)
\(\delta_0 = b^T \mu^l + \mu_0^l \pi_0 \)
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu) \]

\[\delta = B^T \mu^l + \mu_0^l \pi \]
\[\delta_0 = b^T \mu^l + \mu_0^l \pi_0 \]
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu^l_i = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu^l_0 = 1 - f(b^T \mu) \]

\[\delta = B^T \mu^l + \mu^l_0 \pi \]
\[\delta_0 = b^T \mu^l + \mu^l_0 \pi_0 \]
\begin{align*}
B^T \mu &= \pi \\
\lfloor b^T \mu \rfloor &= \pi_0 \\
\mu &\in \mathbb{R}^n \\
\mu^T b &\notin \mathbb{Z}
\end{align*}

\begin{align*}
\mu_i^- &= (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu) \\
\delta &= B^T \mu^- + (1 - f(b^T \mu))\pi \\
\delta_0 &= b^T \mu^- + (1 - f(b^T \mu))\pi_0
\end{align*}
\[B^T \mu = \pi \]
\[\lfloor b^T \mu \rfloor = \pi_0 \]
\[\mu \in \mathbb{R}^n \]
\[\mu^T b \notin \mathbb{Z} \]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu) \]

\[\delta = B^T \mu^- + (1 - f(b^T \mu))\pi \]
\[\delta_0 = b^T \mu^- + (1 - f(b^T \mu))\pi_0 \]
\[B^T \mu = \pi\]
\[\lfloor b^T \mu \rfloor = \pi_0\]
\[\mu \in \mathbb{R}^n\]
\[\mu^T b \notin \mathbb{Z}\]

\[\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu)\]

\[\delta = B^T \mu^- + (1 - f(b^T \mu))B^T \mu\]
\[\delta_0 = b^T \mu^- + (1 - f(b^T \mu))\lfloor b^T \mu \rfloor\]
Proposition

$$\text{conv}(P^l_{(\pi, \pi_0)} \cup P^g_{(\pi, \pi_0)}) = \{x \in P : \delta^T x \leq \delta_0\}$$

where $\delta(\mu)^T x \leq \delta_0(\mu)$ is

$$(\mu^-)^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0$$

for μ unique solution (if it exists) to

$$B^T \mu = \pi \quad \mu \in \mathbb{R}^n$$

$$\mu^T b \notin \mathbb{Z} \quad \pi_0 = \lfloor \mu^T b \rfloor$$

$$(y^- = \max\{-y, 0\}, f(y) = y - \lfloor y \rfloor \text{ and operations over vectors are component wise})$$
What Multipliers Induce Valid Split Disjunctions?

- We have
 \[\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I\} \] and

 \[B^T \mu = \pi \quad \mu \in \mathbb{R}^r \]

 \[\mu^T b \notin \mathbb{Z} \quad \pi_0 = \lfloor \mu^T b \rfloor \]

- Let \(B = [B_I B_C] \) for \(B_I \in \mathbb{R}^{n \times |N_I|} \) and \(B_C \in \mathbb{R}^{n \times (n-|N_I|)} \) corresponding to the integer and continuous variables of \(P_I \). Multipliers that induce valid split disjunctions are

 \[\mathcal{L}(B) := \{\mu \in \mathbb{R}^n : B_I^T \mu \in \mathbb{Z}^{|N_I|}, \ B_C^T \mu = 0\} \]
What Multipliers Induce Valid Split Disjunctions?

- We have
 \[\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I\} \]
 and
 \[B^T \mu = \pi \quad \mu \in \mathbb{R}^r \]
 \[\mu^T b \notin \mathbb{Z} \quad \pi_0 = \lfloor \mu^T b \rfloor \]

- Let \(B = [B_I B_C] \) for \(B_I \in \mathbb{R}^{n \times |N_I|} \) and \(B_C \in \mathbb{R}^{n \times (n - |N_I|)} \)
corresponding to the integer and continuous variables of \(P_I \). Multipliers that induce valid split disjunctions are
 \[\mathcal{L}(B) := \{\mu \in \mathbb{R}^n : B_I^T \mu \in \mathbb{Z}^{|N_I|}, \quad B_C^T \mu = 0\} \]
Valid Split Disjunctions are Related to Integer Lattices

For \(\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n \) l.i. a lattice is

\[\mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i \quad k_i \in \mathbb{Z} \} \]

\(\mathcal{L}(B) \) is a lattice,

\[[\mu^-]^T (Bx - b) + (1 - f(\mu^T b)) (\mu^T Bx - [\mu^T b]) \leq 0 \]

is valid for \(P_I \) and cuts \(x(B) \).

[Köppe and Weismantel, 2004].

Every \(\mu \in \mathcal{L}(B) \) s.t. \(\mu^T b \notin \mathbb{Z} \) induces a valid split disjunction.

[Bertsimas and Weismantel, 2005].
Valid Split Disjunctions are Related to Integer Lattices

- For \(\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n \) l.i. a lattice is

\[
\mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i, \quad k_i \in \mathbb{Z} \} \]

- \(\mathcal{L}(B) \) is a lattice,

\[
[\mu^-]^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - [\mu^T b]) \leq 0
\]

is valid for \(P_I \) and cuts \(x(B) \).
[Köppe and Weismantel, 2004].

- Every \(\mu \in \mathcal{L}(B) \) s.t. \(\mu^T b \notin \mathbb{Z} \) induces a valid split disjunction.
[Bertsimas and Weismantel, 2005].
Valid Split Disjunctions are Related to Integer Lattices

- For \(\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n \) l.i. a lattice is
 \[
 L := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^{r} k_i v^i \quad k_i \in \mathbb{Z} \}
 \]

- \(L(B) \) is a lattice,
 \[
 \lfloor \mu^T \rfloor (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0
 \]
 is valid for \(P_I \) and cuts \(x(B) \).
 [Köppe and Weismantel, 2004].

- Every \(\mu \in L(B) \) s.t. \(\mu^T b \notin \mathbb{Z} \) induces a valid split disjunction.
 [Bertsimas and Weismantel, 2005].
Proposition

\[SC(B) = \bigcap_{\substack{\mu \in \mathcal{L}(B) \\ \mu^T b \notin \mathbb{Z}}} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}. \]
Proposition

\[SC(B) = \bigcap_{\mu \in \mathcal{L}(B), \mu^T b \notin \mathbb{Z}} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}. \]

Proposition

For \(\mu \in \mathcal{L}(B) \) s.t \(\mu^T b \notin \mathbb{Z} \) split cut

\[
(\mu^-)^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0
\]

dominates

\[
[\mu^-]^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0
\]
Studying $\mathcal{L}(B)$ in Each Orthant Decomposes $SC(B)$ to the Intersection of a *Finite* Number of Sets

For $\sigma \in \{0, 1\}^n$ let

$$\mathcal{L}(B, \sigma) := \{ \mu \in \mathcal{L}(B) : (-1)^{\sigma_i} \mu_i \geq 0, \ \forall i \in \{1, \ldots, n\} \}$$

so that

$$SC(B) = \bigcap_{\sigma \in \{0, 1\}^n} SC(B, \sigma)$$

where

$$SC(B, \sigma) = \bigcap_{\mu \in \mathcal{L}(B, \sigma) \ \mu^T b \notin \mathbb{Z}} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}$$
Studying $\mathcal{L}(B, \sigma)$ Allows Detecting Dominated Cuts

Lemma

Let $\sigma \in \{0, 1\}^n$ and let $\mu \in \mathcal{L}(B, \sigma)$ with $\mu = \alpha + \beta$ for $\alpha, \beta \in \mathcal{L}(B, \sigma)$ such that $\beta^T b \in \mathbb{Z}$. Then $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ in $P(B)$.

Proof.

Uses the fact that for α, β in the same orthant $|\alpha_i + \beta_i| = |\alpha_i| + |\beta_i|$ for all $i \in \{1, \ldots, n\}$ and the following alternative characterization of split cuts

$$|\bar{\mu}|^T (\bar{B}x - \bar{b}) + (1 - 2f(\bar{\mu}^T \bar{b}))(\bar{\mu}^T \bar{B}x - \lfloor \bar{\mu}^T \bar{b} \rfloor) + f(\bar{\mu}^T \bar{b}) \leq 0$$
A Finite Integral Generating Set (FIGS) of $\mathcal{L}(B, \sigma)$ Induces a Finite Subset of $\mathcal{L}(B, \sigma)$

- Let $\{v^i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a (FIGS), i.e. a finite set such that

 $$\mathcal{L}(B, \sigma) = \{\mu \in \mathbb{R}^r : \mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i \quad k_i \in \mathbb{Z}_+\}$$

- We want $\mu^T b \not\in \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

 $$m_i = \min\{m \in \mathbb{Z}_+ \setminus \{0\} : m b^T v^i \in \mathbb{Z}\}$$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

 $$\mathcal{L}^0(B, \sigma) := \{\mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i-1\}\}$$
A Finite Integral Generating Set (FIGS) of $\mathcal{L}(B, \sigma)$ Induces a Finite Subset of $\mathcal{L}(B, \sigma)$

- Let $\{v^i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a (FIGS), i.e. a finite set such that

$$\mathcal{L}(B, \sigma) = \{ \mu \in \mathbb{R}^r : \mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i \quad k_i \in \mathbb{Z}_+ \}$$

- We want $\mu^T b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

$$m_i = \min\{ m \in \mathbb{Z}_+ \setminus \{0\} : m b^T v^i \in \mathbb{Z} \}$$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

$$\mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, \ r_i \in \{0, \ldots, m_i-1\} \}$$
Proving the Polyhedrality of $SC(B, \sigma)$ Yields the Polyhedrality of SC

Theorem

$SC(B, \sigma)$ the polyhedron given by

$$SC(B, \sigma) = \bigcap_{\mu \in \mathcal{L}^0(B, \sigma)} \{x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu)\}$$

Corollary

$SC(B)$ is a polyhedron for all $B \in \mathcal{B}$. SC is a polyhedron.
Goal: For $\mu \in \mathcal{L}(B, \sigma)$, $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ for some $\alpha \in \mathcal{L}^0(B, \sigma)$.

How:
- For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu = \alpha + \beta$ for α, β such that:
 - $\alpha \in \mathcal{L}^0(B, \sigma), \beta \in \mathcal{L}(B, \sigma)$
 - $\beta^T b \in \mathbb{Z}$
- Use Lemma.
Proof Idea.

- **Goal:** For $\mu \in \mathcal{L}(B, \sigma)$, $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ for some $\alpha \in \mathcal{L}^0(B, \sigma)$.

- **How:**
 - For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu = \alpha + \beta$ for α, β such that:
 - $\alpha \in \mathcal{L}^0(B, \sigma)$, $\beta \in \mathcal{L}(B, \sigma)$
 - $\beta^T b \in \mathbb{Z}$
 - Use Lemma.
Proof of Theorem.

Let \(\{v^i\}_{i \in V(\sigma)} \) be a FIGS for \(\mathcal{L}(B, \sigma) \) and let \(\{k_i\}_{i \in V(\sigma)} \subseteq \mathbb{Z}_+ \) be such that

\[
\mu = \sum_{i \in V(\sigma)} k_i v^i.
\]
Proof of Theorem.

Let \(\{v^i\}_{i \in \mathcal{V}(\sigma)} \) be a FIGS for \(\mathcal{L}(B, \sigma) \) and let \(\{k_i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathbb{Z}_+ \) be such that

\[
\mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i.
\]

For each \(i \in \mathcal{V}(\sigma) \) we have

\[
k_i = n_i m_i + r_i
\]

for some \(n_i, r_i \in \mathbb{Z}_+ \), \(0 \leq r_i < m_i \). Let

\[
\alpha = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i \quad \text{and} \quad \beta = \sum_{i \in \mathcal{V}(\sigma)} n_i m_i v^i
\]

We have \(\alpha \in \mathcal{L}^0(B, \sigma) \) and, as \(m_i \) is such that \(m_i b^T v^i \in \mathbb{Z} \) we have \(b^T \beta \in \mathbb{Z} \). \(\square \)
The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:

- Not practical for anything but toy problems.
- There is redundancy in the enumeration for SC and $SC(B)$.
- There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $\mathcal{L}^0(B, \sigma)$ to

$$
\mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i - 1\} \}
$$

and $\{r_i\}_{i \in \mathcal{V}(\sigma)}$ are relatively prime

[Dash et. al. 2008] also give a constructive characterization with similar properties.
Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of \(SC(B, \sigma) \), \(SC(B) \) and \(SC \):
 - Not practical for anything but toy problems.
 - There is redundancy in the enumeration for \(SC \) and \(SC(B) \).
 - There is also redundancy in the enumeration of \(SC(B, \sigma) \). In fact we can reduce \(\mathcal{L}^0(B, \sigma) \) to

 \[
 \mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v_i, \ r_i \in \{0, \ldots, m_i-1\} \}
 \]
 and \(\{r_i\}_{i \in \mathcal{V}(\sigma)} \) are relatively prime

- [Dash et. al. 2008] also give a constructive characterization with similar properties.
Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:
 - Not practical for anything but toy problems.
 - There is redundancy in the enumeration for SC and $SC(B)$.
 - There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $L^0(B, \sigma)$ to

\[
L^0(B, \sigma) := \{ \mu \in L(B, \sigma) : \mu = \sum_{i\in V(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i - 1\} \}
\]

and $\{r_i\}_{i\in V(\sigma)}$ are relatively prime

- [Dash et. al. 2008] also give a constructive characterization with similar properties.
Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma), SC(B)$ and SC:
 - Not practical for anything but toy problems.
 - There is redundancy in the enumeration for SC and $SC(B)$.
 - There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $L_0(B, \sigma)$ to

 $$L_0(B, \sigma) := \{\mu \in L(B, \sigma) : \mu = \sum_{i \in V(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i - 1\} \text{ and } \{r_i\}_{i \in V(\sigma)} \text{ are relatively prime}\}$$

- [Dash et. al. 2008] also give a constructive characterization with similar properties.
Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:
 - Not practical for anything buy toy problems.
 - There is redundancy in the enumeration for SC and $SC(B)$.
 - There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $\mathcal{L}^0(B, \sigma)$ to

 $$\mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i-1\} \}
 \text{ and } \{r_i\}_{i \in \mathcal{V}(\sigma)} \text{ are relatively prime} \}

- [Dash et. al. 2008] also give a constructive characterization with similar properties.

J. P. Vielma

E. Balas and A. Saxena

K. Andersen, G. Cornuejols, Y. Li
E. Balas, M. Perregaard
A precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 0 1 programming.

A. Caprara, A.N. Letchford
On the separation of split cuts and related inequalities.

W. Cook, R. Kannan, A. Schrijver.
Chvátal closures for mixed integer programming problems.

S. Dash, O. Günlük, A. Lodi
MIR closures of polyhedral sets.
M. Köppe, R. Weismantel
Cutting planes from a mixed integer Farkas lemma.
Operations Research Letters 32:207–211. 2004