A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program

Juan Pablo Vielma

School of Industrial and Systems Engineering
Georgia Institute of Technology

19th International Symposium on Mathematical Programming, 2006
Outline

1. Introduction
2. Characterization
3. Lattices
4. Polyhedrality
History and Motivation

History:
- Split Cuts were introduced by [Cook, et. al. 1990]. Special case of Balas’s Disjunctive Cuts. “Equivalent” Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
- The Split Closure is obtained by applying all split cuts.
- Split Closure is a polyhedron [Cook, et. al. 1990, Andersen, et. al. 2005].
- Non-constructive proofs.
- The Split Closure has recently been studied by [Balas and Saxena, 2005] and by [Dash et. al. 2005].

Motivation of Constructive Characterization:
- Algorithm to generate Split Closure? (Naive).
- Helps understand Split Cuts better.
History and Motivation

- **History:**
 - Split Cuts were introduced by [Cook, et. al. 1990]. Special case of Balas’s Disjunctive Cuts. “Equivalent” Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
 - The Split Closure is obtained by applying all split cuts.
 - Split Closure is a polyhedron [Cook, et. al. 1990, Andersen, et. al. 2005]. Non-constructive proofs.
 - The Split Closure has recently been studied by [Balas and Saxena, 2005] and by [Dash et. al. 2005].

- **Motivation of Constructive Characterization:**
 - Algorithm to generate Split Closure? (Naive).
 - Helps understand Split Cuts better.
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- $P := \{x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M\}$

- $P_I := \{x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I\}$ for $N_I \subseteq \{1, \ldots, n\}$
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M\} \)
- \(P_I := \{x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I\} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P, \) LP Relaxation
 - \(P(B) := \{x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in B\} \) for \(B \in \mathcal{B} := \{B \subseteq M : |B| = n, \ \{a_i\}_{i \in B} \text{ l.i.}\} \)
 - Basic or Conic Relaxation
 - \(x(B) \) unique solution to \(a_i^T x = b_i \quad \forall i \in B \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P \), LP Relaxation
- \(P(B) := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in B \} \) for \(B \in \mathcal{B} := \{ B \subseteq M : |B| = n, \ \{a_i\}_{i \in B} \ l.i. \} \)

Basic or Conic Relaxation

- \(x(B) \) unique solution to \(a_i^T x = b_i \quad \forall i \in B \)
Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- \(P := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in M \} \)
- \(P_I := \{ x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I \} \) for \(N_I \subseteq \{1, \ldots, n\} \)

Relaxations:

- \(P, \) LP Relaxation
- \(P(B) := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \quad \forall i \in B \} \) for \(B \in \mathcal{B} := \{ B \subseteq M : |B| = n, \{a_i\}_{i \in B} \text{ l.i.} \} \)
 - Basic or Conic Relaxation
- \(x(B) \) unique solution to \(a_i^T x = b_i \quad \forall i \in B \)
Split Cuts are Constructed from Valid Split Disjunctions

For $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ let:

- $F_{D(\pi,\pi_0)}^l := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}$
- $F_{D(\pi,\pi_0)}^g := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}$
- $F_{D(\pi,\pi_0)} := F_{D(\pi,\pi_0)}^l \cup F_{D(\pi,\pi_0)}^g$
Split Cuts are Constructed from Valid Split Disjunctions

For \((\pi, \pi_0) \in \mathbb{Z}^{n+1}\) let:

- \(F^l_D(\pi, \pi_0) := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}\)
- \(F^g_D(\pi, \pi_0) := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}\)
- \(F_D(\pi, \pi_0) := F^l_D(\pi, \pi_0) \cup F^g_D(\pi, \pi_0)\)

A split cut for \(D(\pi, \pi_0)\) and \(P\) is an inequality valid for:

- \(P \cap F_D(\pi, \pi_0)\)
- \(\text{conv}(P \cap F_D(\pi, \pi_0))\)
Split Cuts are Constructed from Valid Split Disjunctions

For \((\pi, \pi_0) \in \mathbb{Z}^{n+1}\) let:

- \(F^l_D(\pi, \pi_0) := \{x \in \mathbb{R}^n : \pi^T x \leq \pi_0\}\)
- \(F^g_D(\pi, \pi_0) := \{x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1\}\)
- \(F_D(\pi, \pi_0) := F^l_D(\pi, \pi_0) \cup F^g_D(\pi, \pi_0)\)

A split cut for \(D(\pi, \pi_0)\) and \(P\) is an inequality valid for:

- \(P \cap F_D(\pi, \pi_0)\)
- \(\text{conv}(P \cap F_D(\pi, \pi_0))\)
Split Cuts are Constructed from Valid Split Disjunctions

For \((\pi, \pi_0) \in \mathbb{Z}^{n+1}\) let:

- \(F^l_{D(\pi, \pi_0)} := \{ x \in \mathbb{R}^n : \pi^T x \leq \pi_0 \}\)
- \(F^g_{D(\pi, \pi_0)} := \{ x \in \mathbb{R}^n : \pi^T x \geq \pi_0 + 1 \}\)
- \(F_{D(\pi, \pi_0)} := F^l_{D(\pi, \pi_0)} \cup F^g_{D(\pi, \pi_0)}\)

A split cut for \(D(\pi, \pi_0)\) and \(P\) is an inequality valid for:

- \(P \cap F_{D(\pi, \pi_0)}\)
- \(\text{conv}(P \cap F_{D(\pi, \pi_0)})\)
Valid Split Disjunctions don’t Cut Integer Feasible Points

For fixed N_I we are interested in $D(\pi, \pi_0)$ such that, for any P:

- $P_I \subseteq F_D(\pi, \pi_0) \subsetneq \mathbb{R}^n$
Valid Split Disjunctions don’t Cut Integer Feasible Points

For fixed N_I we are interested in $D(\pi, \pi_0)$ such that, for any P:

- $P_I \subseteq F_{D(\pi, \pi_0)} \not\subseteq \mathbb{R}^n$

so we study

$$\Pi(N_I) := \{ (\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I \}$$
The Split Closure is the *Polyhedron* Formed by All Split Cuts

The *split closure* [Cook, et. al. 1990] of P_I is

$$SC := \bigcap_{(\pi, \pi_0) \in \Pi(N_I)} \text{conv}(P \cap F_D(\pi, \pi_0)).$$

Theorem

[Cook, et. al. 1990] SC is a polyhedron
Sufficient to Study Split Cuts for Basic Relaxations

For $B \in \mathcal{B}$ let

$$SC(B) := \bigcap_{(\pi, \pi_0) \in \Pi(N_f)} \text{conv}(P(B) \cap F_D(\pi, \pi_0)).$$
Sufficient to Study Split Cuts for Basic Relaxations

For $B \in \mathcal{B}$ let

$$SC(B) := \bigcap_{(\pi,\pi_0) \in \Pi(N_f)} \text{conv} \left(P(B) \cap F_D(\pi,\pi_0) \right).$$

Theorem

[Andersen, et. al. 2005] $SC = \bigcap_{B \in \mathcal{B}} SC(B)$

Theorem

[Andersen, et. al. 2005] $SC(B)$ is a polyhedron for all $B \in \mathcal{B}$. Hence SC is a polyhedron.

- Let $P = P(B) = \{x \in \mathbb{R}^n : Bx \leq b\}$, for $B \in \mathbb{Q}^{n \times n}$, $\text{rank}(B) = n$
Proposition

[Andersen, et. al. 2005, Balas and Perregaard, 2003, Caprara and Letchford, 2003] All non-dominated valid inequalities for $\text{conv}(P \cap F_D(\pi, \pi_0))$ are of the form $\delta^T x \leq \delta_0$ where

\[
\delta = B^T \mu^l + \mu_0^l \pi = B^T \mu^g - \mu_0^g \pi \\
\delta_0 = b^T \mu^l + \mu_0^l \pi_0 = b^T \mu^g - \mu_0^g (\pi_0 + 1)
\]

for $\mu_0^l, \mu_0^g \in \mathbb{R}_+$ and $\mu^l, \mu^g \in \mathbb{R}_+^m$ solutions to

\[
B^T \mu^g - B^T \mu^l = \pi \\
b^T \mu^g - b^T \mu^l = \pi_0 + \mu_0^g
\]

$\mu_0^l + \mu_0^g = 1$, $\mu_0^g \in (0, 1)$, $\mu_i^l \cdot \mu_i^g = 0$
Proposition

\[
\text{conv}(P \cap F_{D(\pi, \pi_0)}) = \{x \in P : \delta^T x \leq \delta_0\}
\]

where \(\delta(\mu)^T x \leq \delta_0(\mu) \) is defined equivalent to

\[
(\mu^-)^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0
\]

for \(\mu \) unique solution (if it exists) to

\[
B^T \mu = \pi \quad \mu \in \mathbb{R}^r
\]

\[
\mu^T b \notin \mathbb{Z} \quad \pi_0 = \lfloor \mu^T b \rfloor
\]

\((y^- = \max\{-y, 0\}, f(y) = y - \lfloor y \rfloor\) and operations over vectors are componentwise\)
What Multipliers Induce Valid Split Disjunctions?

We have
\[\Pi(N_I) := \{ (\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I \} \] and
\[
B^T \mu = \pi \\
\mu^T b \notin \mathbb{Z} \\
\pi_0 = \lfloor \mu^T b \rfloor
\]

Let \(B = [B_I B_C] \) for \(B_I \in \mathbb{R}^{n \times |N_I|} \) and \(B_C \in \mathbb{R}^{n \times (n - |N_I|)} \) corresponding to the integer and continuous variables of \(P_I \). Multipliers that induce valid split disjunctions are
\[\mathcal{L}(B) := \{ \mu \in \mathbb{R}^n : B_I^T \mu \in \mathbb{Z}^{N_I}, B_C^T \mu = 0 \} \]
What Multipliers Induce Valid Split Disjunctions?

- We have
 \[\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I\} \]
 and
 \[B^T \mu = \pi \quad \mu \in \mathbb{R}^r \]
 \[\mu^T b \notin \mathbb{Z} \quad \pi_0 = \lfloor \mu^T b \rfloor \]

- Let \(B = [B_IB_C] \) for \(B_I \in \mathbb{R}^{n \times |N_I|} \) and \(B_C \in \mathbb{R}^{n \times (n-|N_I|)} \) corresponding to the integer and continuous variables of \(P_I \). Multipliers that induce valid split disjunctions are
 \[\mathcal{L}(B) := \{\mu \in \mathbb{R}^n : B_I^T \mu \in \mathbb{Z}^{|N_I|}, \quad B_C^T \mu = 0\} \]
Valid Split Disjunctions are Related to Integer Lattices

- For \(\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n \)
 - A lattice is
 \[
 \mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i, \quad k_i \in \mathbb{Z} \} \]

- \(\mathcal{L}(B) \) is a lattice,
 \[
 [\mu^-]^T (Bx-b) + (1-f(\mu^T b)) (\mu^T Bx - [\mu^T b]) \leq 0
 \]
 is valid for \(P_I \) and cuts \(x(B) \).
 [Köppe and Weismantel, 2004].

- Every \(\mu \in \mathcal{L}(B) \) s.t. \(\mu^T b \notin \mathbb{Z} \) induces a valid split disjunction.
 [Bertsimas and Weismantel, 2005].
Valid Split Disjunctions are Related to Integer Lattices

- For \(\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n \) i.e. a lattice is

\[
\mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^{r} k_i v^i \hspace{0.5em} k_i \in \mathbb{Z} \}
\]

- \(\mathcal{L}(B) \) is a lattice,

\[
[\mu^+]^T (Bx - b) + (1 - f(\mu^T b)) (\mu^T Bx - [\mu^T b]) \leq 0
\]

is valid for \(P_I \) and cuts \(x(B) \).
[Köppe and Weismantel, 2004].

- Every \(\mu \in \mathcal{L}(B) \) s.t. \(\mu^T b \notin \mathbb{Z} \) induces a valid split disjunction.
[Bertsimas and Weismantel, 2005].
Valid Split Disjunctions are Related to Integer Lattices

- For \(\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n \) i.i. a lattice is
 \[
 \mathcal{L} := \{\mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i, k_i \in \mathbb{Z}\}
 \]

- \(\mathcal{L}(B) \) is a lattice,
 \[
 [\mu^-]^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - [\mu^T b]) \leq 0
 \]
 is valid for \(P_1 \) and cuts \(x(B) \).
 [Köppe and Weismantel, 2004].

- Every \(\mu \in \mathcal{L}(B) \) s.t. \(\mu^T b \notin \mathbb{Z} \) induces a valid split disjunction.
 [Bertsimas and Weismantel, 2005].
Proposition

\[SC(B) = \bigcap_{\mu \in \mathcal{L}(B) \atop \mu^T b \notin \mathbb{Z}} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}. \]
Proposition

\[SC(B) = \bigcap_{\mu \in \mathcal{L}(B), \mu^T b \notin \mathbb{Z}} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}. \]

Proposition

For \(\mu \in \mathcal{L}(B) \) s.t \(\mu^T b \notin \mathbb{Z} \) split cut

\[(\mu^-)^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0 \]

dominates

\[[\mu^-]^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \leq 0 \]
Studying $\mathcal{L}(B)$ in Each Orthant Decomposes $SC(B)$ to the Intersection of a *Finite* Number of Sets

For $\sigma \in \{0, 1\}^n$ let

$$\mathcal{L}(B, \sigma) := \{ \mu \in \mathcal{L}(B) : (-1)^{\sigma_i} \mu_i \geq 0, \quad \forall i \in \{1, \ldots, n\} \}$$

so that

$$SC(B) = \bigcap_{\sigma \in \{0, 1\}^n} SC(B, \sigma)$$

where

$$SC(B, \sigma) = \bigcap_{\mu \in \mathcal{L}(B, \sigma)} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}$$
Studying $\mathcal{L}(B, \sigma)$ Allows Detecting Dominated Cuts

Lemma

Let $\sigma \in \{0, 1\}^n$ and let $\mu \in \mathcal{L}(B, \sigma)$ with $\mu = \alpha + \beta$ for $\alpha, \beta \in \mathcal{L}(B, \sigma)$ such that $\beta^T b \in \mathbb{Z}$. Then $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ in $P(B)$.

Proof.

Uses the fact that for α, β in the same orthant

$|\alpha + \beta| = |\alpha| + |\beta|$.
A Finite Integral Generating Set (FIGS) of $\mathcal{L}(B, \sigma)$ Induces a Finite Subset of $\mathcal{L}(B, \sigma)$

- Let $\{v^i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a (FIGS), i.e. a finite set such that

 \[\mathcal{L}(B, \sigma) = \{ \mu \in \mathbb{R}^r : \mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i, \; k_i \in \mathbb{Z}_+ \} \]

- We want $\mu^T b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

 \[m_i = \min\{m \in \mathbb{Z}_+ \setminus \{0\} : mb^T v^i \in \mathbb{Z} \} \]

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

\[\mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, \; r_i \in \{0, \ldots, m_i-1\} \} \]
A Finite Integral Generating Set (FIGS) of $\mathcal{L}(B, \sigma)$ Induces a Finite Subset of $\mathcal{L}(B, \sigma)$

- Let $\{v^i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a FIGS, i.e. a finite set such that

$$\mathcal{L}(B, \sigma) = \{\mu \in \mathbb{R}^r : \mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i, \ k_i \in \mathbb{Z}_+\}$$

- We want $\mu^T b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

$$m_i = \min\{m \in \mathbb{Z}_+ \setminus \{0\} : m b^T v^i \in \mathbb{Z}\}$$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

$$\mathcal{L}^0(B, \sigma) := \{\mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, \ r_i \in \{0, \ldots, m_i-1\}\}$$
Proving the Polyhedrality of $SC(B, \sigma)$ Yields the Polyhedrality of SC

Theorem

$SC(B, \sigma)$ the polyhedron given by

$$SC(B, \sigma) = \bigcap_{\mu \in \mathcal{L}^0(B, \sigma)} \{ x \in P(B) : \delta(\mu)^T x \leq \delta_0(\mu) \}$$

Corollary

$SC(B)$ is a polyhedron for all $B \in \mathcal{B}$. SC is a polyhedron.
Proof Idea.

Goal: For \(\mu \in \mathcal{L}(B, \sigma) \), \(\delta(\mu)^T x \leq \delta_0(\mu) \) is dominated by \(\delta(\alpha)^T x \leq \delta_0(\alpha) \) for some \(\alpha \in \mathcal{L}^0(B, \sigma) \).

How:
- For \(\mu \in \mathcal{L}(B, \sigma) \) show that \(\mu = \alpha + \beta \) for \(\alpha, \beta \) such that:
 - \(\alpha \in \mathcal{L}^0(B, \sigma) \), \(\beta \in \mathcal{L}(B, \sigma) \)
 - \(\beta^T b \in \mathbb{Z} \)
- Use Lemma.
Proof Idea.

Goal: For $\mu \in \mathcal{L}(B, \sigma)$, $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ for some $\alpha \in \mathcal{L}^0(B, \sigma)$.

How:
- For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu = \alpha + \beta$ for α, β such that:
 - $\alpha \in \mathcal{L}^0(B, \sigma)$, $\beta \in \mathcal{L}(B, \sigma)$
 - $\beta^T b \in \mathbb{Z}$
- Use Lemma.
Proof of Theorem.

Let \(\{v^i\}_{i \in \mathcal{V}(\sigma)} \) be a FIGS for \(\mathcal{L}(B, \sigma) \) and let \(\{k_i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathbb{Z}_+ \) be such that

\[
\mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i.
\]
Proof of Theorem.

Let \(\{v^i\}_{i \in \mathcal{V}(\sigma)} \) be a FIGS for \(\mathcal{L}(B, \sigma) \) and let \(\{k_i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathbb{Z}_+ \) be such that

\[
\mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i.
\]

For each \(i \in \mathcal{V}(\sigma) \) we have

\[
k_i = n_i m_i + r_i
\]

for some \(n_i, r_i \in \mathbb{Z}_+, 0 \leq r_i < m_i \). Let

\[
\alpha = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i \quad \text{and} \quad \beta = \sum_{i \in \mathcal{V}(\sigma)} n_i m_i v^i
\]

We have \(\alpha \in \mathcal{L}^0(B, \sigma) \) and, as \(m_i \) is such that \(m_i b^T v^i \in \mathbb{Z} \) we have \(b^T \beta \in \mathbb{Z} \).
Final Remarks

The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:
- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for SC and $SC(B)$.
- There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $\mathcal{L}^0(B, \sigma)$ to

$$\mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i-1\} \text{ and } \{r_i\}_{i \in \mathcal{V}(\sigma)} \text{ are relatively prime} \}$$

[Dash et. al. 2005] also give a constructive characterization with similar properties.
Final Remarks

The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:

- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for SC and $SC(B)$.
- There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $L^0(B, \sigma)$ to

$$L^0(B, \sigma) := \{ \mu \in L(B, \sigma) : \mu = \sum_{i \in V(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i-1\} \}$$

and $\{r_i\}_{i \in V(\sigma)}$ are relatively prime

[Dash et. al. 2005] also give a constructive characterization with similar properties.
Final Remarks

The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:
- Not practical for anything but toy problems.
- There is redundancy in the enumeration for SC and $SC(B)$.
- There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $\mathcal{L}^0(B, \sigma)$ to

$$\mathcal{L}^0(B, \sigma) := \{ \mu \in \mathcal{L}(B, \sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i - 1\} \}$$

and $\{r_i\}_{i \in \mathcal{V}(\sigma)}$ are relatively prime

[Dash et. al. 2005] also give a constructive characterization with similar properties.
Final Remarks

The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:

- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for SC and $SC(B)$.
- There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $L^0(B, \sigma)$ to

$$L^0(B, \sigma) := \{ \mu \in L(B, \sigma) : \mu = \sum_{i \in V(\sigma)} r_i v^i, \; r_i \in \{0, \ldots, m_i - 1\} \}$$

and $\{r_i\}_{i \in V(\sigma)}$ are relatively prime

[Dash et. al. 2005] also give a constructive characterization with similar properties.
Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $SC(B, \sigma)$, $SC(B)$ and SC:
 - Not practical for anything but toy problems.
 - There is redundancy in the enumeration for SC and $SC(B)$.
 - There is also redundancy in the enumeration of $SC(B, \sigma)$. In fact we can reduce $L^0(B, \sigma)$ to

$$L^0(B, \sigma) := \{ \mu \in L(B, \sigma) : \mu = \sum_{i \in V(\sigma)} r_i v^i, r_i \in \{0, \ldots, m_i - 1\} \text{ and } \{r_i\}_{i \in V(\sigma)} \text{ are relatively prime} \}$$

- [Dash et. al. 2005] also give a constructive characterization with similar properties.

K. Andersen, G. Cornuejols, Y. Li
Split Closure and Intersection Cuts.

E. Balas, M. Perregaard
A precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 0 1 programming.

A. Caprara, A.N. Letchford
On the separation of split cuts and related inequalities.
W. Cook, R. Kannan, A. Schrijver.
Chvátal closures for mixed integer programming problems.

S. Dash, O. Günlük, A. Lodi
On the MIR closure of polyhedra.

M. Köppe, R. Weismantel
Cutting planes from a mixed integer Farkas lemma.
Operations Research Letters 32:207–211. 2004