1 Convex Hull

1.1 The Problem

The convex hull of a set Q of points denoted $CH(Q)$ is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior. See Figure 1 for an example.

![Figure 1: A set of points and its convex hull.](image)

1.2 Graham’s Scan

Sketch of the algorithm:

- Maintain a stack S of candidate points
- Each point in Q is pushed once onto the stack, and wrong points are eventually popped from the stack.
- At the end, stack S contains exactly the vertices of $CH(Q)$ in counterclockwise order.

Pseudocode:

```
Graham-Scan(Q):
1 Let p_0 be the point in Q with the minimum y-coordinate or the leftmost point in case of a tie
2 Let \{p_1, p_2, \ldots, p_m\} be the remaining points in Q, sorted by polar angle in CCW order around p_0 (if more than one point has the same angle, remove all but the one that is farthest from p_0)
3 PUSH(p_0, S)
4 PUSH(p_1, S)
5 PUSH(p_2, S)
6 for i <- 3 to m
7     do while the angle formed by points NEXT-TO-TOP(S), TOP(S), and p_i makes a non-left turn (straight or to the right)
8         do POP(S)
9     PUSH(p_i, S)
10 return S
```
Example of Graham’s Scan:

At the beginning of the for loop, S contains p_0, p_1, and p_2.

When considering p_3, we first pop p_2 (because $\angle p_1 p_2 p_3$ makes a non-left turn) and then push p_3 onto the stack.

1.3 Analysis of Graham’s Scan

1.3.1 Correctness

Theorem 1. If Graham-Scan is run on a set Q of points, where $|Q| \geq 3$, then at termination, the stack S consists of, from bottom to top, exactly the vertices of $CH(Q)$ in counterclockwise order.

Proof. We shall use the following loop invariant to prove this theorem:

The stack S consists of, from bottom to top, exactly the vertices of $CH(Q_{i-1})$ in counterclockwise order, where Q_i is the set of points $\{p_0, p_1, \ldots, p_i\}$.

- **Initialization:** At the beginning of the loop, $i = 3$, and stack S consists of p_0, p_1, and p_2, which is exactly the contents of Q_{i-1}, or Q_2. The convex hull $CH(Q_2)$ is clearly the set of points in S because the convex hull of three points is going to be the triangle formed by the three points.
• **Maintenance:** Assuming that the loop invariant hold for all previous iterations of the loop, we show that on the i-th iteration of the loop, if the loop invariant is true at the beginning of the loop, it is therefore true at the beginning of the next one as well.

Let p_j and p_k be the two points at the top of the stack right before p_i is pushed onto the stack.

Claim 1. After p_i is pushed onto the stack, S consists of $CH(Q_j \cup \{p_i\})$.

Proof. By the loop invariant, we know that S consists of $CH(Q_j)$ right before we push p_i onto the stack. This is because the stack is in the same state as directly after pushing p_j onto the stack. This is because no point is ever pushed more than once onto the stack, and thus no points beneath p_j could have been removed without popping p_j off the stack.

Secondly, because we exited the while loop, we know that $\angle p_k p_j p_i$ is a left turn. Since p_0 is the bottom and leftmost point, we know that $\angle p_j p_i p_0$ is also a left turn. Thus, once we push p_i onto the stack, we get the convex hull of Q_j and the point p_i.

We still need to show that this convex hull is also the convex hull of Q_i, i.e. including the points between p_j and p_i that were popped off in the while loop.

Claim 2. $CH(Q_j \cup \{p_i\}) = CH(Q_i)$.

Proof. Let p_t be a point that was popped off and p_r be the point directly below it in the stack at that time. To have popped p_t, then $\angle p_r p_t p_i$ is a non-left turn. If it was a right turn, that would make the polygon not convex since we are going counterclockwise around the set of points, and p_t is not going to be on the perimeter of the convex hull. If it was not a turn at all (the angle is 180°), then p_t is on the perimeter of the convex hull but is not going to be a vertex of the polygon. In either case, we can remove p_t from consideration and still have the same convex hull, i.e. $CH(Q_i - p_t) = CH(Q_i)$. This is true for all members of the set P_i of all points popped off during the i-th iteration of the loop, so we have $CH(Q_i - P_i) = CH(Q_i)$. Because we are using a stack in which all the points popped off had to be contiguous in the stack and we stopped popping when the top point in the stack was p_j, we have $CH(Q_i - P_i) = CH(Q_j \cup \{p_i\}) = CH(Q_i)$.

• **Termination:** When the loop terminates, $i = m + 1$, so S consists of $CH(Q_m)$ by the loop invariant, which is equivalent to $CH(Q)$. This is because any points that were removed going from Q to Q_m in line 2 were not going to be in $CH(Q)$. (You should be able to see why this is pretty easily; if not, draw a picture.)

1.3.2 **Runtime**

- Line 1: $O(n)$
- Line 2: $O(n \lg n)$ for sorting
- Lines 3-5: $O(1)$
- Lines 6-9, calls to Push: $O(n)$ (each point only gets pushed once)
- Lines 6-9, calls to Pop: $O(n)$ (each point gets popped at most one time)
- Total running time: $O(n \lg n)$
1.4 Lower Bound

We get a lower bound of \(\Omega(n \lg n)\) time by using the solution to a convex hull problem to sort numbers.

1. Given a list of numbers \((x_1, x_2, \ldots, x_n)\), construct the set with the points: \(((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n))\) where \(y_i = x_i^2\). This takes \(O(n)\) time. The parabola is a convex function, which means that if all of our points are on the parabola (which they will be), they must all be part of the convex hull.

2. Find a convex hull on those points. This takes ??? time.

3. Walk along points on the hull and get them in sorted order in \(O(n)\) time.

4. We must have taken \(\Omega(n \lg n)\) to sort in the comparison model, so since everything else only took \(O(n)\) time, finding the convex hull had to take at least \(\Omega(n \lg n)\).