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TABLE II. Mean values of T} for C!* as derived from four
groups of mounts.

Group Sample Description Ty
I 3.359%, Cu not repurified (mean result from
5 mounts) 5000 yrs.
11 3.359%, Cu repurified (mean result from 6
mounts) 5100 yrs.
11 3.239, Cu repurified (mean result from 6
mounts) 5200 yrs.
v 3.359%, Cu repurified, mounted by technique
Hendricks (mean result from 4
mounts) 5100 yrs

carbon by flaming and flushing with CO,-free
oxygen. The C“O, was eluted with 1 N HC],
reprecipitated as the BaC0;, and washed, dried,
mounted, and counted in the standard fashion.
The specific activity of the 3.35 percent sample
remained unchanged, while that of the 3.23
percent sample increased into essential agree-
ment. The results of the groups of samples,
variously treated, are given in Table II in terms
of the deduced half-life of C.
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For the twenty-one individual mounts, the
highest value for T'; was 5500 years, and the
lowest 4700 years. We conclude that the half-life
of C* is 51004200 years; the indicated error is
the probable error of the mean as obtained from
the two analyzed samples, and includes the
uncertainties in the solid angle and back-scatter
determinations. This value is lower by 200 years
than a preliminary value reported previously by
the authors.!8
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The influence of retardation on the energy of interaction
between two neutral atoms is investigated by means of
quantum electrodynamics. As a preliminary step, Part I
contains a discussion of the interaction between a neutral
atom and a perfectly conducting plane, and it is found
that the influence of retardation leads to a reduction of
the interaction energy by a correction factor which de-
creases monotonically with increasing distance R. This
factor is equal to unity for R small compared with the
wave-lengths corresponding to the atomic frequencies,
and is proportional to R! for distances large compared

PART I. GENERAL FEATURES OF THE PROBLEM
1. Introduction

HE problem treated in this paper, though
apparently a somewhat academic exercise

in quantum electrodynamics, arose directly from
the work of Verwey and Overbeek! on the
1E. J. W. Verwey, J. T. G. Overbeek, and K. van Nes,

Theory of the Stability of Lyophobic Colloids (Elsevier
Publishing Company, Inc., Amsterdam, in press); E. J. W.

with these wave-lengths. In the latter case the total
interaction energy is given by —3kca/8wR4, where « is
the static polarizability of the atom. Although the problem
of the interaction of two atoms discussed in Part II is
much more difficult to handle mathematically, the results
are very similar. Again the influence of retardation can
be described by a monotonically decreasing correction
factor which is equal to unity for small distances and
proportional to R™! for large distances. In the latter case
the energy of interaction is found to be —23kcajaz/4wR7.

stability of colloidal systems. Starting from work
of Hamaker, Verwey and Overbeek have in
recent years developed a theory in which the
attraction between colloidal particles is exclu-
sively ascribed to London-van der Waals forces,
the repulsion being accounted for by the inter-
action of electric double layers. In applying this
Verwey and J. T. G. Overbeek, Trans. Faraday Soc.

(In press); E. J. W. Verwey, J. Phys. and Colloid Chem.
51, 631 (1947).
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theory to suspensions of comparatively large
particles, they found a discrepancy between
their theory and the experimental results which
could be removed only by assuming that at large
distances the attractive force between two atoms
decreases more rapidly than R~7. Overbeek then
pointed out that on the basis of the picture
customarily used for visualizing London forces,
an influence of retardation on the interaction is
to be expected as soon as the distance between
the particles becomes comparable to the wave-
length corresponding to the atomic frequencies.
Although this argument is suggestive, we have
not succeeded in deriving an expression for the
influence of retardation based on such a simple
model, and we doubt very much whether a result
can be obtained in that way. In this paper
hardly any reference will be made to Overbeek’s
original considerations. Also, the application to
the problems of colloid chemistry will not be
touched upon but will be left for a future
publication. We want, however, to emphasize
our indebtedness to Overbeek’s suggestion.

So far, problems of retardation have only
occasionally been treated by means of quantum
electrodynamics. There is, of course, the work of
Mgller? and its justification by Bethe and Fermi.?
Also in the work of Breit* on the interaction of
the electrons in the He atom, retardation is taken
into account. In these cases, however, we have
to deal with the influence of retardation on
expressions containing the square of the elec-
tronic charge, which means that we can restrict
ourselves to studying the interaction between
electrons and the radiation field to a second
approximation. In our case, which concerns the
interaction between two neutral atoms, the
approximation has to be pushed to the fourth
order, as the usual expression for the London
energy contains the fourth power of the electronic
charge. We found, however, that what seemed
to us the most essential features of the final
result are already clearly revealed by a problem
which can be treated by means of quite simple
mathematics, involving only second-order per-
turbation theory, i.e., the interaction of a neutral

2 C. Mgller, Zeits. f. Physik 70, 786 (1931).

3 H. Bethe und E. Fermi, Zeits. f. Physik 77, 296 (1932).

4 G. Breit, Phys. Rev. 34, 353 (1929); Phys. Rev. 36,
383 (1930); Phys. Rev. 39, 616 (1932).
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atom with a perfectly conducting wall. According
to classical ideas the energy should always be
given by the interaction of the atomic dipole
with its image, and retardation effects are to be
expected when its distance from the wall becomes
large. The result of a direct calculation by means
of quantum electrodynamics, which will be given
in Section 12, is not in disagreement with this
notion. Yet the final result is rather unexpected.
For short distances we find the usual value for
the London energy between a neutral atom and
a conducting wall, which is proportional to R3.
With increasing R, however, the usual value
must be multiplied by a monotonically decreasing
factor, and for large values of R the London
energy is found to be proportional to R~* rather
than to R—3. It is remarkable that the asymptotic
expression for large R contains Planck’s constant
and, in addition, the static polarizability of the
atom as the only quantity characterizing the
specific properties of the atom.

The calculations in Part II, dealing with the
interaction of two neutral atoms, are much more
complicated, but it is of interest to remark that
here also the present-day formulation of quantum
electrodynamics, if properly handled, is able to
give an unambiguous result. For short distances
the usual expression for the London energy, in
this case being proportional to R-%, is valid
again, whereas for large distances the energy of
interaction is proportional to R~7. The asymp-
totic expression contains Planck’s constant and
the product of the polarizabilities of the two
atoms.

2. Interaction of a Neutral Atom with a Perfectly
Conducting Plane

Consider a region of space, defined by 0 <x <L,
0<y<L, 0<z<L, enclosed in a box with per-
fectly conducting walls. The eigenstates of the
electromagnetic field in this box are described
by solutions of Maxwell’s equations satisfying
the boundary condition that the tangential
components of E, the electric field, vanish at the
walls. These solutions are easily found to be

E.(k, \) =e.(k, \) coskix sinkyy sinksz- C,,
E,(k, \) =e¢,(k, \) sinkix coskzy sinksz-C,, (1)
E,(k, \) =e.(k, \) sink;x sink;y cosksz- C.,
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where k is a wave vector with components
ki=n;/L, with n;=0,1, 2, 3-.-, and e is a unit
vector perpendicular to k. To each vector k
belong two vectors e, corresponding to the two
directions of polarization; they are indicated by
the symbol A (A=1, 2). The normalization factor

C. is given by
C.2=16mhc/kL3. (2)

In order to verify that this is the correct
normalization we write for the vector potential
of the electromagnetic field in the box:

A=3% (Ane ' +Ante“9El,N), (3)
kA

and determine the energy e of the field:

1 1
e=— f (E*+ H)do=— f E*dy
8 4r

1 L* 16wk
" 4r 8 b RL3

=3 the(Antdnt+Adndn’). @)
kA

k2 (AntAn+Andnd)

In quantum electrodynamics A4 and A' are
operators satisfying:

And it —A L, A =81, Q)

and the eigenvalues of Al are 0, 1, 2---.
In this way we have obtained the usual formu-
lation of the quantization of the radiation field
in an empty box.

We now consider the operator G of the inter-

action between a neutral atom and the radiation
field :

2

=31 (o.0)+ (©)
7 mc

e
AL,
2mc?

where the summation is over all electrons in the
atom and p; is the operator of the momentum
of an electron. We determine the energy per-
turbation of the lowest level of the system con-
sisting of the atom and the radiation field. Since
A has no diagonal elements, there is no first-order
perturbation proportional to e. Therefore we
use second-order perturbation theory for the
terms with e in G and first-order perturbation
theory for the terms with e2. In the course of
the following calculation we shall determine the
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perturbation energies for the case in which the
atom is situated at a very large distance from
the walls of the box and for the case in which it
is at a short distance from one of the walls. In
both cases the result is given by a divergent
series over the excited states of the atom, each
term of which is a convergent sum over the
excited states of the radiation field. The differ-
ence between the perturbation energies in both
cases can be found without ambiguity and is
finite; this difference will be interpreted as the
energy of interaction between the atom and the
wall so far as it is due to the interaction of the
atom with the radiation field.

The second-order perturbation energy of the
lowest level due to an operator H is given by

[LIOaI2
AE=-3% .
o E,—E,

Q)

In our system the excited states g are labeled
by the index % for the states of the atom and by
the indices &, X for the states of the radiation
field in which one light quantum is present. The
energy difference between the level #, k, A of
our system and the lowest level is given by
he(kn+k) and, therefore, the perturbation energy
is

e? | (Ao; ;Po; ») |?

he(knt-k)

(where p=2_;p;), to which must be added the
first-order perturbation due to terms with 2,
which according to the laws of matrix multipli-
cation can be written as:

A2E=

8)

m2c? n kA

e2
AME=% PRSIV PP X

i 2mc? kN =,z

)

In writing these formulae we have made one
approximation : we have neglected the variation
of the electromagnetic field inside the atom. It
is well known that due to this approximation
the contribution to the second-order perturbation
energy from one excited level of the atom already
becomes infinite since the integral over k does
not converge for |k|— . Instead of taking these
effects into account rigorously we shall introduce
a factor e 7%, which makes the integral con-
vergent, and put y=0 in the final result. In
reality it should be of the order of the radius of
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the atom, but this does not appreciably affect
the results.

In order to obtain a simple expression for
AE=A;E+A,E, we make use of the sum rule

o2
)
W zz: 2mc?
e? 3(Do; n"Pn; o'+ Do; a¥Pn; o)
-y W P Do) g
m2c? n hick,

and the relation epg;»= —imckago;n, where g is
the operator of the total dipole moment. We
find for the total perturbation energy

kk,
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In order to simplify the problem we assume the
zero state of the atom to be a state with angular
momentum J =0, which means that matrix ele-
ments of p exist only between this state and the
threefold degenerate states with J=1. The three
wave functions belonging to a state with J=1
may be chosen without loss of generality in such
a way that they have the same transformation
properties under a rotation as x, ¥, and z. Then
all cross products of the type go;n*qo;n? vanish
and (11) can be written as:

n

1
A7E=— A ; z|2 ;nz 2’
ho on bk, e A0

(12)

where # denotes the states with J=1. Substi-
tuting (3) and (1) in (12) we have

AE=— A ; i n :2 11
ke n%)\ k-l-—kn[( o o ) ( )
AE—I_" - H |2 2( 0s?k 2ky 2k
(a H ﬂz z 1 i i
Is ”§)‘ . o e.2(k )\) COS*“R1X SIN“R2Y SIN*R33

+ | go; »¥|%,%(k, N) sinkix cos?ksy sin?ksz+ | go; of|2.2(K, N) sin®kyx sin?kzy cos?ksz}.

(13)

In order to carry out the summation over X we use the relation

ek, ) =1—k2/k2

(14)

We assume that the box is very large and therefore the summation over all values of k can be
replaced by an integral. Since the integrand is an even function of k;, the summation is equal to
L3/8x* times a threefold integral from — « to + © over ki, k; and k3. At the same time we introduce

the convergence factor e~7*. We obtain

2 > ke %
AE=— f f f dbrdiadls T
J J = btk

2

k 2
[ | go; n‘]"’(l ——kl—z) cos?kix sin2kyy sin?ksz

k 2
~+ | qo; ,,”]2(1 ——]52—) sin2kyx cos?ksy sin?ksz+ | go, ,.'I”(l ——-’:32—) sin2kx sin%kqy cos%;,z}. (15)

We assume that the distance of the atom from the walls y=0 and z=0 is very large so that the

value of the integral does not change if we put sin%ksy, cos?ksy, sin?k;z, and cos?k;z equal to 3. When
the distance from the wall x=0 is also very large, the same may be done with sin?kx and cos?kx.
For the difference between the perturbation energies in the case in which the atom is situated at
a distance R from the wall x=0 and in the case in which the atom is at a large distance, we find,
therefore:

1 T Fne™ LS 2
AdE:Z;? ; fffdkﬂikzdkzk_*-k”{ ]qO; n l (1—;;) (2 Cos k]R—l)

ko? k3?
+ lqO; n”lz(l——};;) (2 sinzklR—l)—{— {Qu; nzlz(l—-k—;) (2 sinzklR—-l)}. (16)
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Introducing polar coordinates in the k space we obtain:

@ e~k ka"
AE=3] f —dk[
n 0

278 (k+ky) 2kR

e2ikR

+([90: nyl2+ ‘90: nzi?)

2kR

It is interesting to remark that the expression
in { } suggests the existence of an interpretation
of formula (17) on the basis of the correspondence
principle. If multiplied by a factor k3, the first
term in the expression equals the energy of a
complex dipole g%—%¢<t in the retarded electric
field of a dipole g%i*¢t at a distance 2R, and
this second dipole might be interpreted as the
“electrical image’’ of the complex conjugate of the
first dipole, with regard to a perfectly conducting
plane at a distance R from the first dipole. A
similar interpretation can be given to the
second term in { |}, but we have not been
able to find a general consideration, based
on the correspondence idea, by means of which
at least the form of Eq. (17) could be foretold.
In this connection we should like to point out
that in dealing with the behavior of an atom in
an excited state we usually meet with a factor
1/(k—k.,) instead of the factor 1/(k+k,) occur-
ring here, and the result is mainly determined by
the residue at =k, so that one definite fre-
quency is singled out and an interpretation in
terms of oscillators with well-determined fre-
quencies becomes possible.

We now proceed with the calculation of the
energy of interaction between an atom and a
conducting wall by taking into consideration
the electrostatic interaction. The electrostatic
energy between a dipole ¢* at x=R and a
conducting wall at x=0 is

e.*=—(¢%)*/8R>. (18)
For a dipole g or ¢* the energy is:
€.:°=—(q“*)?/16R?. (19)

The first-order perturbation energy of the lowest
level of our system due to the electrostatic
terms is:

ezikk 21: 2
(22 )
2kR 4k*R?

) 1
(15572
2kR 4k*R?

~+complex conjugate]. 17

e

E= _[2((q‘)2)oo+((q”)2+(q’)?)oo]
16R?
_Zn(Zl(Zo: w224 1 qo; 24| go; 7 [2)

= . (20)
16R3

The total interaction energy between the atom
and the wall is

AE=A,E+A,E. (21)

A closer examination of A4E shows that the
integrand in (17) remains finite at =0, but
that both the term within [ ] that is com-
pletely written out and its complex conjugate
have a simple pole. We shall integrate each of
these terms separately from e to « and let e
tend to zero afterwards. We now want to replace
the integration along the real axis by the inte-
gration along path 1 in Fig. 1 for the first
integral and along path 2 for the second. In the
limit e—0, we easily find for the integration on
the semicircle:

6k 2a(2]q0. 27|24 | qo; a* 124+ | qo; n*[%),

which exactly cancels the term A.E in A.E.
Introducing the variable #= —4k for the inte-
gration from e to 20 and u=1k for the integra-
tion from —ie to —z, we find

1 ® kb u?du e 2R
A1E= _ Zf
0 u2+kn2 2R

1 1
X[ZIQo; |( + )
2uR  4u?R:?

1 1
+(1go: o2+ [ go: »*]2 (1+——+ )] 22
(go w2 ao: ) (15—t ) 1. (22)

In the limit of very small distances R, it is
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easily found that the formula reduces to
AE(R—0)
1

= o = Clava P lgo P lgo ), (23)

being equal to the value of the London energy,
derived by the elementary theory which takes in-
to account the electrostatic interaction only. For
very large R (R larger than all \,=27/k,) it is
immediately seen that (22) reduces to

AE(R— )
(1q0; #* 2+ [ go; o2+ | qo; #*[?)
=-3 - , (24)
n 47wk, R*

which can be written in terms of the static
polarizability « of the atom:

fic

87R*

AE(R—o)=— (aztay+a.). (25)

Because we wanted to see more clearly the
role of the x, ¥, and z dipoles individually, we
have not yet used the relation

g0 P=2 g0 " |2= 2 [ qo; n* 2= | qo; n %

where the summation extends over the three
states with J=1, belonging to one degenerate
level, which will be indicated from now by one
symbol #. With the aid of this relation, Eq. (22)
may be written as

© k.u’dy e~R

u*+-ka.? 2R

(26)

2
A1E= _— Z

™ n

2 2
X |go n!2(1+——+ ) 27)
2uR  4u*R?

where each term of the sum over » represents
the contribution of all three states with J=1
belonging to one degenerate level. In Fig. 2 we
have given the result of a numerical calculation
of the factor AE/A.E for the case in which only
one excited level n (with E,=hc/\,) gives a
contribution to the London energy. It is seen
that the value of the factor decreases monotoni-
cally with increasing R. It starts with the value 1
(for R—0), while for large R it is approximately
equal to 3\,/27*R.
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PART II. THE INTERACTION BETWEEN
TWO ATOMS

1. Outline of Method

The energy of interaction between two neutral
atoms will be determined by solving the following
perturbation problem. The unperturbed states
of the system, consisting of two atoms and the
radiation field, will be assumed to be the states
which are completely defined by the indication
of the states of the two atoms and the state of
the radiation field in empty space.

The perturbation operator, which is responsi-
ble for the interaction of the two atoms, contains
the electrostatic interaction Q between the
charged particles of the first atom with those of
the second atom, the interaction G4 between
the first atom and the radiation field, and the
interaction Gg between the second atom and the
radiation field.

With the aid of the perturbation operator
Ga4+Gp+Q we shall determine the energy per-
turbation; we have already remarked in Part I
that the approximation has to be pushed to the
fourth power of the electronic charge e. For this
purpose we shall apply first-, second-, third-, and
fourth-order perturbation theory. By the order
of the perturbation theory we mean the degree
in which the perturbation operator occurs in the
expression for the energy perturbation. It does
not indicate the power of the electronic charge
occurring in this expression, as the perturbation
operator contains terms with e as well as with €2
The total result of the calculation will be
divergent, but, as in Part I, we shall find a finite
value for those terms that depend on the distance
R between the two atoms; this value will be
interpreted again as the total energy of inter-
action between the atoms.

In order to carry out the perturbation pro-
cedure we shall have to examine carefully the
matrix elements occurring in the expression for
the first-, second-, third-, and fourth-order per-
turbation in the energy. The examination does
not give rise to special difficulties and, therefore,
we shall only mention the results. Restricting
outselves to those terms in the energy perturba-
tion which depend on R and which are propor-
tional to em, with m<4, we find that in our
problem there is no first-order perturbation in
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the energy. Further, matrix elements of Q occur
only in the expression for the second-order
perturbation in the energy, namely, as the
products of two matrix elements of Q, and in
the third-order perturbation in the energy,
namely, as the products of one matrix element
of Q, one matrix element of G4, and one matrix
element of Gp. All the other terms in the energy
perturbations do not involve Q.

We have thus to deal with the following terms:

(a) Terms obtained by applying second-order
perturbation theory with the electrostatic inter-
action, which itself is proportional to e?. The
result is proportional to e* and is equal to the
usual expression for the London energy.

(b) Terms obtained by applying third-order
perturbation theory, restricting ourselves to the
terms involving Q. We shall carry out the
perturbation procedure in a somewhat uncon-
ventional way by successively applying first-
order perturbation theory for the electrostatic
interaction and second-order perturbation theory
for the interaction with the radiation field: We
calculate to the first order of the perturbation
(which is an approximation proportional to e?)
the wave functions of the two atoms coupled by
electrostatic interaction, and we then proceed to
calculate, in exactly the same way as in the
first part of this paper, the second-order inter-
action energy of this compound system with the
radiation field. Again the result is proportional
to et

(c) Terms obtained by determining the energy
perturbation with the aid of the operator G4+Gp,
the electrostatic interaction now being omitted.
Again we shall solve this perturbation problem
in a somewhat unconventional way: We first
calculate in the usual way the second-order

F1G. 1. Path of integration for the integral in (17).
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interaction energy of the atom 4 with a radiation
field. In this way we obtain also the interaction
between the two atoms if for the vector-potential
we do not use the matrix representations corre-
sponding to the electromagnetic field in empty
space, but the matrices corresponding to a
regular solution for the system, consisting of
atom B and the radiation field. It is obviously
sufficient to know these matrix elements of the
vector potential correctly to the order of approxi-
mation 2. The vector potential satisfies Max-
well's equations also in quantum electrodynamics
and the terms with e? in the vector potential can
be derived, therefore, by means of classical
formulae from the expression for the current
involving first powers of e. This method is often
referred to as Heisenberg’s method.? The re-
sulting energy perturbation is again proportional
to et

It may be remarked that the terms (b) and (c)
can also be calculated by systematically writing
down all the products of matrix elements occur-
ring in the expressions for the second-, third-,
and fourth-order perturbation in the energy.
We have carried out this systematic calculation
and found the result to be in agreement with the
results derived in this paper.

In the following sections we shall first restate
briefly the field theory and verify Heisenberg’s
method for the case of a single atom. This will
also teach us in which way the singularities in
the solution of the perturbation equations are
to be avoided. In a subsequent section (Section 4)
we calculate the terms mentioned under (a)
and (b). The terms under (c) will be determined
in Section 5, and the final result is discussed in
Section 6.

Since the perturbation procedure involves a
number of rather lengthy calculations, we do
not want to go into the details but shall only
mention the most important steps and give the
results.

2. The Radiation Field

We want to carry out the quantization of the
radiation field by means of traveling waves,
from which we demand periodicity in the x, y,

and 2z directions with a period L. Using the

5 W. Heisenberg, Ann. d. Physik (5) 9, 338 (1931).
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notation of Section 12, we write for the vector
potential

A=3% cCek, N)
B

X { Ay re= i@k 4 4, \teiikn ) (28)
where the values of the components of the wave
vector k are restricted to k;=2mn;/L; with
n;=0, =1, £2, ---. For some details of the
calculations of the following sections it is suitable
to assume e(k, \) =e(—k, ). The value of the
normalization factor Cy,
Cv=(27h/wL3)}, (29)
can easily be verified by determining the energy
of the field. In the following work we only need
the matrix element of 4 or AT between the zero
state of the field, ¢(0, 0---), and the state in
which one light quantum is present, ¢(0, 0- - - 15\

)
f¢*(o, 0 )40, 0- 1) =1.  (30)

We shall always assume that L is very large so
that a summation over all values of k can be
replaced by L3/8x% times an integration over all
values of k.

We want to remark that the vector potential
A satisfies divA=0. For the interest of the next
section we now write down the classical expres-
sion for the retarded vector potential satisfying
the same condition and belonging to a periodic
current I=1I, exp(tkct) inside an atom. Neg-
lecting the dimensions of the atom as being
small in comparison with R, it is easy to derive
from Maxwell’s equations that

I [e*E 2 2 2
a2 2y 2
cL R 1kR kR k?R3
(31)

I, [e— R 11 1
Az,y(ret)=_— 1+__'—~ + ’
cL R tkR k*R? k2R?

where for the sake of simplicity, we assumed R
to point in the direction of the positive z axis.
We shall use this formula also in Section 5.
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3. Heisenberg’s Method

The fundamental idea of Heisenberg’s method
is that even when the quantities of the electro-
magnetic field are considered as matrices, they
satisfy Maxwell's equations. When we regard
the elementary charge, e, as the perturbation
parameter in the perturbation problem arising
from the interaction, G, of the charged particles
with the radiation field, it follows that, in order
to determine the matrix elements of a field
quantity to the order of approximation e¢, it is
sufficient to know the matrix elements of the
electric current to the order e¢*~1.* In this section
we shall give an illustration of Heisenberg’s
method by discussing the matrix element of the
vector potential (m;00---|4|0;000---) when
one neutral atom is present in the radiation field.
In the notation of the two states the first number
indicates the level of the atom and the following
numbers denote the number of quanta with
different (k\) in the radiation field. We shall
first give a direct calculation of the matrix
element in first approximation, and afterwards
we shall verify that the result can be obtained
with the aid of Maxwell's equations from the
matrix element of the current in the zero
approximation.

In the following calculation we assume that
the atom is situated at x=y=2=0. The dimen-
sions of the atom are assumed to be very small
in comparison with the distance R at which we
want to know the vector potential. We also
neglect the variation of the electromagnetic field
within the atom. The last approximation gives
rise to divergencies of the type discussed in
Section 12, but they can always be removed by
introducing a factor exp(—v|k|).

With the use of G as perturbation operator,
we find for the first approximation of the zero
state ¥(0;00---) of our system, consisting of
the atom and the radiation field:

¥'(0;0---)=¢(0;0---)

LG R N,
k.+k

n,k N MmAC

* Note added in proof. This statement may be misleading.
What is meant is, that since the current operator always
contains one factor e explicitly, the matrix element multi-
plying this factor has only to be known to the order e*,
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and for the excited states we are interested in:
¥'(n;00---)=y¢(n; 00 - -)
eCk (e(kv )\)Po; ﬂ)

0:0---1 <., (33
Exmhc  k—kn ( I o
Y(0;0 - 1pn--)=¢(0;0--1pn--+)

C k, M)pa;

G EENPn) 00 e (30)

k.—k

In the last two formulae we have omitted a
number of terms which we shall not need in the
following calculations. The matrix element of
the vector potential A in first approximation is
now easily found with the aid of (32) and (33).

n mhc

eCﬁ
(m;00+-|A]0;0-+-)=3 —e(k, \)(e(K, \)Px; o)
kX mh
gikr e—ikr
x{ _ } (35)
kntk kn—Fk

After a small calculation we find for the z
component of A at the point r, given by x=y=0,
z2=R:

. a(2)
(m;O.-.lA,lO;O...)=_ep i

27wmc
to  dk  (e*R 21 2
“J . il i)
—w km—EliIR kR E2R?

~+complex conjugate ]exp( —v|k|), (36)

()

05

a

0 ‘ !
4 1 2

——R

Fic. 2. Correction factor due to retardation for the
contribution of one excited state to the usual London
energy. (1) For the interaction between a neutral atom
and a metallic wall. R is measured in units 3\,. (2) For
the interaction between two neutral atoms. R is measured
in units A;.
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F1G. 3. Path of integration for the integral in (36).

in which formula we have introduced again the
factor exp(—v|k|).

The integrand is regular at 2=0, but has a
simple pole at k=k,. In order to see in which
way this singularity must be avoided, we remark
that finally we want to obtain a retarded expres-
sion for the vector potential, i.e., an expression
in which the terms with exp(2kR) do not occur.
(The time factor of our matrix element is
exp(tknct), thus retarded expressions will contain
a factor exp(—1knR).) For this purpose we write
kn—1{—Fk instead of k,—Fk in the denominator,
by means of which the singularity is now fixed
at a small distance { below the real axis of the
complex k plane. It will turn out that this
procedure gives the desired retarded expression
in the final result. For the integration from — «
to + « we take the path illustrated in Fig. 3.
We carry out the integration of the terms with
exp(tkR) and exp(—1kR) separately. The inte-
gral of the terms first mentioned can be replaced
by an integral over a closed contour with the
aid of a large semicircle above the real axis, and
since there are no singularities within this con-
tour, the value of the integral is zero. The
integral with the other terms can be replaced by
an integral over a closed contour with the aid of
a large semicircle below the real axis. Within
this contour there are two singularities for the
terms with exp(—<kR), one at k=k,—i¢ and
one at £=0. The residues at these points deter-
mine the value of the integral, which is now
easily found to be

(m;0---]4,]0;0---)=

Bpm-’ o'l‘e—"‘"‘R 2 2
(--+ )- ] (37)
me L R\ ikuR En2R2)  En2R?
With the foregoing calculation we have obtained
the matrix elements of the vector potential in

first approximation. The operation of the current
is given by

e e
1-£=(p. ).
i m c
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and, therefore, epm,o'/m are the corresponding
matrix elements of the current in the zero
approximation. It is seen, by comparing (37)
with (31), that the matrix elements of the vector
potential in first approximation could have been
obtained immediately from the matrix elements
of the current in the zero approximation.

In Section 112 we have explicitly restricted
ourselves to retarded solutions of Maxwell’s
equations. The restriction to retarded solutions
is also implied in the calculation of this section,
namely, by the way in which the singularity at
k=Fkn is avoided. It was found to be adequate to
write k,—1{ instead of k, in the denominator of
(36), and as the complex conjugate of the func-
tion Y(m; 00- - -) occurred in the matrix element
of the vector potential, we have to write k,+%{
instead of %, in the denominator of (33) in order
to stay in the domain of retarded expressions.

In the course of the following sections we
shall also use Eq. (34), and we shall have to
determine in which way singularities arising
form the denominator in (34) must be avoided.
Remarking that the perturbed eigenfunctions
can be obtained from the unperturbed functions
by means of a unitary transformation, we con-
clude that in (34) %k, must be replaced by k,—3(.

4. Perturbation Terms Involving Electrostatic
Interaction

The electrostatic interaction between two
neutral atoms 4 and B is given by

9492 3(q4R)(4sR)
Q - R3 R5 y

(38)

when we neglect higher powers of the ratio
between the atomic dimensions and R. We shall
assume at once that the vector R, pointing

2 (¢"gm™)*+ (qi¥gm¥) 2 +4(qr7gn?)? 4

AE =+
R6 ﬁﬁ(kﬁ-k,,.)

1
X1 (g17gn)*+ vm”e-"ﬂ(1+—+
{((qzq )2+ (gigm¥)?) T

In the course of the calculations the two terms
in (40) were obtained by means of the same
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from atom B to atom A4, is in the direction of
the positive z axis and that atom B is situated
at x=y=2=0. Further, we shall assume, as in
Section 12, that each of the two atoms has a
state with J=0 as zero state. The second-order
perturbation energy is now easily found to be

AE=

1 (¢:1°gn®) 2+ (q17g?) *+4(q17gn?)*
tic(kr+Fm) '

‘R6 Lm

In this notation the indices / and m denote the
states with J=1 of the atoms 4 and B, respec-
tively; ¢:* is the matrix element of the total
dipole moment between the zero state of atom 4
and the state ! of this atom. The matrix ele-
ments are assumed to be real, which can be done
without loss of generality. It is obvious that
the symbols 4 and B can be omitted in
this notation without giving rise to confusion.
As in Section 12, we do not yet use relation
(26). The expression (39), being the usual
London energy between two neutral atoms,
gives the terms mentioned under (a) in Section
II1.

The calculation of the terms mentioned under
(b) proceeds along the lines indicated in the
outline of method. In the calculation we restrict
ourselves to the terms which give a contribution
proportional to the fourth power, or to a smaller
power, of the electronic charge to the final result.
The result will be divergent, but we determine
the difference between the energy perturbation
in the case of a distance R between the two
atoms and the case of a very large distance; this
difference will be finite.

The calculations are rather elaborate but do
not give rise to special difficulties. Taking into
consideration that for the zero states of the
atoms =0, we find finally:

(39)

f“’ kiknutdu
wheR tm Jy  (R24u?) (kpn?+u?)

1 1 1
—t ) } (40)
uR u®R?

procedure of complex integration as was applied
to Eq. (17) in Section 12.

) +4 (qlzgmz) 2g—uR
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5. The Terms Not Involving the Electrostatic
Interaction

So far we have carried out our perturbation
procedures in an entirely symmetrical way with
respect to the atoms A and B. In this section
it is our aim to determine the terms mentioned
under (c) in the outline of method. We have to
solve a perturbation problem in which G4+Gpg
=@ is the perturbation operator:

e e?
G=Z{ ——(pisAa)+ AA2}
ia mc 2mc?
e e?
+Z{ ——(pisAB)+ ABz}- (41)
gl  mc 2mc?

Now we have to take recourse to an unsym-
metrical attack on the situation. The reason is
the following. We have already remarked several
times that, in consequence of the form of the
operator of the interaction between the charged
particles and the radiation field, there is no
first-order perturbation between an atom and
the electromagnetic field that is proportional to
e. The terms in G that are proportional to ¢ only
give rise to a second-order perturbation, while
the terms with e? are responsible for the first-
order perturbation. As we are interested only
in terms with e* in the final expression for the
energy perturbation, we now have the oppor-
tunity to solve our perturbation problem in two
steps. First, we calculate the vector potential to
the order of approximation e in the system
consisting of atom B+radiation field, and then
proceed to determine the first- and second-order
perturbation energy of the atom A in this
perturbed electromagnetic field. This procedure
is necessarily unsymmetric in the atoms 4 and B,
but in the final stage of the calculation the
asymmetry vanishes, as must be the case for
any consistent treatment of our problem.

We label the states of the system (B-+radia-
tion field) with the index N. The energy per-
turbation of the atom A in the electromagnetic
field of this system is now given by

8E=L xS g ) Pl e @2)
—ﬁcl.NkN-l-klaw.z 0N 190; 7 |" )

Here we have at once combined the first-order
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and the second-order perturbation in the same
way as was done in Section I2. The index [
denotes the states with /=1 of the atom A4.

We want to know |Ao.~%|% to the order of
approximation e?. There are two possibilities:
either the matrix element Ay, o' vanishes in
zeroth approximation, i.e., terms not containing
the factor e do not occur in the matrix element,
or the matrix element does not vanish in zeroth
approximation. In the first case, we only need
to know the matrix element to the order of
approximation e. Matrix elements of this type
that do not vanish in this approximation, are
found only if the state N is one of the states
with wave functions ¢/(m;0, 0---). This state-
ment immediately follows from Heisenberg's
method, discussed in Section 3. In that section
the matrix element (m;00|4:/0;00---) has
already been calculated, so that we can at once
write down the contribution to (42) from this
special series of states N:

Z kmakl
" HCR? iom BBy

1 2
(- ortiom)
E.2R? B, iR
tkmR :
+[e /1+ v 1 )
E.2R2\ ' E.R kniR?

+complex conjugate] ' (43)

AE (qlzqmz) z

In order to simplify the formula we have not
written down terms proportional to (g:*g~¥)? and
(¢1*gm®)?. We shall omit these terms in all for-
mulas of this section. In the second case, where
the matrix element of the vector potential con-
tains terms independent of ¢, we must know the
vector potential to the order of approximation e2.
This case is realized only if the state N is of the
type¢/(0;00- - -1, - ). By Heisenberg’s method
it is easily seen that the corresponding matrix
element of the vector potential contains no
terms proportional to e, so that we can write

(0;0--140---]|A4:/0;0---0--)

=An 04 Apn, o @i, (44)
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When we insert these matrix elements in (42),
we shall have to deal only with the cross products:

Ao, nPidr; oPi+Ao; nPidi; o,

the other products being either independent of
R or proportional to a too high power of e.

The vector potential in second approximation
is calculated by means of Heisenberg's method
with the aid of the current in first approximation :

I“;oi=f¢'*(();o. celgae)

x{%i—(pm"—;/la‘)}tll’(o;0“')- (45)

Here we use the wave functions given by (32)
and (34), introducing at once the term 7{ in the
denominator of (34). Collecting the terms with
e? in (45) we find

o 2Ck .
Iy, o' =2 [ m; of [2ei(kN)
m m2hc
1 1 62Ck
x( 4 —x ey, (46)
kn—k+il kntk/ i m

and with the aid of (31) we find the matrix
element Ay, 0®?i(4). The matrix element 4 ;%
is simply

A, 0%(A4) =cCre;(RN) e 2E, 47
Applying the sum rule (10) to the last term in
(46), we can now calculate the contribution to
(42) arising from the states ¢/(0;0- - 1x\---).

The calculation leads to a rather complicated
integral over k, and the integrand requires a
careful examination at the points k=0 and k=£%,,
before the integral can be evaluated by means of
complex integration. The way in which the
singularity at k=k, must be avoided is pre-
scribed unambiguously, however, by a term ¢
occurring in a denominator which originates from
the corresponding denominator with the term
i¢ in Eq. (46). Therefore, a straightforward
evaluation of the integral is possible. We find
finally:

AgE =3 (¢1%¢n®)*(B1+ B2+ Bsy), (48)
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L[ 1 kath 1 1
Bi=— + (1— + )]

heRLELRY Bmd B\ EnlR® En'R®

7 1 knky

Ba= — e”‘mR(l L )

%icR* EnR  kn2R2) Emt-Ei

~+complex conjugate,
4 ® kiknu?du
B3=—f
o (kP +u?) (kn?+u?)

whe
e B 1 1
X ( 14+—F )
R uR u?R?
2 ® kikautdu
(ki2+u?) (kn®+u?)

whe 0
e—?uR 1 1 2
X (1 F—-+ ) .
R? uR u’R?

6. Result and Discussion

We have now calculated all the terms that
contribute to the energy of interaction ALE of
two neutral atoms in S states:

A E=AE+AE+ALE+ME.  (49)

Fortunately a number of terms cancel, and the
final result is comparatively simple. It may be
remarked that this result has regained symmetry
with respect to the atoms A and B. Adding at
once the terms proportional to (g:/¢.¥)? and
(¢:°gm®)* we find :

e—2uR

2 ® kzk,,.u“du
aE=-—3 |
whe L.m Jy (k12+u2) (k,,.2+u2) R?

1 1 \2
X1 ((gr*gn®)*+ "m“(1+—+ )
l((qzq )2+ (2*gn¥)?) T

1 1 2
+4(qrgn?)*{ —+ . (50)
uR u®R?

In the limit of a very small distance R, R<K\;
=2n/ki;, R\, it is easily found that the
formula reduces to:

A LE(R—)O)
1 (g7gn®) 2+ (qi¥gm¥) 2 +4(qrgm®)
R6im hC(kl"“km)
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being equal to the value of the London energy
as derived by the elementary theory, which
takes into account the electrostatic interaction
only. For very large R (R larger than all X\; and
M) it is found, after a short calculation, that
(50) reduces to:

1
ALE(R—®)=—
27hc R
13[(¢:%¢m*) 4+ (q:¥g?) * 1+-20(g17gm") (52)
m Biknm '

which can be written in terms of the static
polarizability of the atoms:

2
ALE(R—»)= ——--C— {13(a-(A)a-(B)
87 R7

™
+av(A)°‘u(B)) +20a.(4)e:(B) }.  (53)
So far we have not yet used the relations
ZlgrP=Zlgr =2 |gr|*=gq (54)

Tl = gt |2 =T | gn*| 2= gn?,

where the summation extends over the three
states with J=1 belonging to one degenerate
level, which will be indicated hereafter by one
symbol ! or m, respectively. With the aid of
(54), Eq. (50) can now be written as:

4 © kikmutdu
a:8=-—% [
whc tm oy (R2Hu?) (kn+u?)

3
+ ) (55)
u*R*

(q:gn)*

X

e—2uR ( 2 5 6
l

F—t——
R? uR u*R* u’R3
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where each term of the sum over /, m represents

the contribution from all three states with J=1

belonging to one degenerate level ! together

with all three states belonging to the level m.
Equation (53) may now be written

23kc
47 R’
which is equal to
23 he e?
BB =)=~ - a(d)a(B)
4r e? R
e? a(A)a(B)
~251— ———.  (57)
R RS

In Fig. 2 we have given the result of a numer-
ical calculation of the factor ALE/AE for the
case in which the two atoms are identical and in
which for both atoms only one excited state /
(with E;=hc/N;) gives a contribution to the
London energy. The factor decreases monotoni-
cally with increasing R. It starts with the value 1
(for R—0) while for large R it is approximately
equal to 23\;/67*R.

The very simple form of Eq. (56) and the
analogous formula (25) suggest that it might be
possible to derive these expressions, perhaps
apart from the numerical factors, by more
elementary considerations. This would be de-
sirable since it would also give a more physical
background to our result, a result which in our
opinion is rather remarkable. So far we have
not been able to find such a simple argument.



