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We recalculate the first analytic correction beyond proximity force approximation for a sphere in front

of a plane for a scalar field and for the electromagnetic field. We use the method of Bordag and Nikolaev

[J. Phys. A 41, 164002 (2008)]. We confirm their result for Dirichlet boundary conditions whereas we find

a different one for Robin, Neumann and conductor boundary conditions. The difference can be traced back

to a sign error. As a result, the corrections depend on the Robin parameter. Agreement is found with a very

recent method of derivative expansion.
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I. INTRODUCTION

The proximity force approximation (PFA) is one of the
basic methods for calculation of Casimir and van derWaals
forces between nonplanar surfaces. Although it appeared
more than 70 years ago, corrections beyond PFA, which
gives the leading order only, were not known. Only with
the new method of the Casimir force calculation, based on
the multiple scattering formalism in conjunction with
Krein’s formula [1] or on a path integral quantization
with a partial wave expansion [2], it became possible to
calculate corrections beyond PFA. Using an asymptotic
expansion, analytic corrections were calculated, first for a
cylinder in front of a plane [3], later for a sphere in front of
a plane [4,5]. At the same time, numerical approximations
to these corrections were obtained [6].

The method, used in [1,2], results in a representation of
the vacuum energy for a sphere in front of a plane (see
Fig. 1),

E ¼ 1

2�

Z 1

0
d�Tr lnð1�MÞ; (1)

where � is the imaginary frequency andM is composed of
the scattering T-matrix of the sphere (see below). In (1),
the trace is over orbital momenta, l ¼ 0; 1; . . . and
m ¼ �l; . . . ; l. In case the ratio

" ¼ d

R
(2)

of the separation to the radius of the sphere is not small, the
sums and the integral in (1) converge rapidly allowing for

an easy numerical evaluation of the vacuum energy and of
the Casimir force. On the contrary, if " becomes small, i.e.
for close separation, higher orders of the orbital momenta
need to be accounted for. As a consequence, the numerical
evaluation could be done down to "� 0:1 only.
The analytic method [3–5] makes an asymptotic expan-

sion of (1) for " ! 0. This involves a substitution of the
sums by integrals, a change of variables and an asymptotic
expansion of M (involving Bessel functions and Clebsch-
Gordan coefficients).
For a cylinder in front of a plane, this method was

verified independently in [7] (and generalized to finite
temperature). Regrettably, for a sphere in front of a plane,
for Neumann boundary conditions and for the electromag-
netic case, the results of [4,5] could not be confirmed. In
fact, a sign error was found and it is the aim of the present
paper, to point to the place where it occurred and to give the
correct results following from this method.
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FIG. 1 (color online). The configuration of a sphere in front of
a plane.
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In the following two sections the corrections beyond
PFA are recalculated for the scalar field and for the elec-
tromagnetic field. The last section contains the conclusions
together with a comparison with further methods.

Throughout the paper we use units with ℏ ¼ c ¼ 1.

II. SCALAR FIELD

Following [5], let the radius of the sphere be R, and the
distance from the center of the sphere to the plane be L.
Then the distance between the sphere and the plane is
L� R, which we denote by d (see Fig. 1).

For a scalar field ’, the Casimir interaction energy is
given by [2,4,5]:

EXY ¼ 1

2�

Z 1

0
d�Tr lnð1� ð�1ÞxNYð�ÞÞ: (3)

Here we follow the notations in [5]. The first index denotes
the boundary conditions on the plane. For Dirichlet bound-
ary conditions, X ¼ D and x ¼ 0. For Neumann boundary
conditions, X ¼ N and x ¼ 1. The second index denotes
the boundary conditions on the sphere.Y ¼ D, N and R for
Dirichlet, Neumann and general Robin boundary condi-
tions, respectively. The trace Tr is the orbital momentum
sum,

Tr ¼ X1
m¼�1

X1
l¼jmj

;

and the matrix NY is given by

NY
l;l0 ð�Þ ¼

ffiffiffiffiffiffiffiffiffi
�

4�L

r Xlþl0

l00¼jl�l0j
Kl00þ1=2ð2�LÞHl00

ll0d
Y
l ð�RÞ: (4)

Here,

Hl00
ll0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p
ð2l00 þ 1Þ l l0 l00

0 0 0

� �

� l l0 l00
m �m 0

� �
; (5)

involves 3j-symbols and the function dYl ð�RÞ depends on
the boundary conditions on the sphere. For Dirichlet
boundary conditions, i.e., ’jr¼R ¼ 0, it is given by

dDl ð�RÞ ¼
Ilþ1=2ð�RÞ
Klþ1=2ð�RÞ ;

whereas for general Robin boundary conditions with pa-
rameter �, i.e., r@r’þ �’jr¼R ¼ 0, it is given by

dRl ð�RÞ ¼
uIlþ1=2ð�RÞ þ �RI0lþ1=2ð�RÞ
uKlþ1=2ð�RÞ þ �RK0

lþ1=2ð�RÞ
:

The parameter u is related to the Robin parameter � by
u ¼ �� 1=2. � ¼ 0 or equivalently, u ¼ �1=2, corre-
sponds to the Neumann boundary conditions. In these

formulas, I�ðzÞ and K�ðzÞ are the modified Bessel
functions.
The asymptotic expansion for the Casimir energy when

" ¼ d=R � 1 can be computed in the same way as ex-
plained in [4,5]. First make a substitution � � �=R and
expand the logarithm in (3) to obtain

EXY ¼ � 1

2�R

X1
s¼0

ð�1Þxðsþ1Þ

sþ 1

�
Z 1

0
d�

X1
m¼�1

X1
l¼jmj

�Ys
j¼1

X1
lj¼jmj

��Ys
i¼0

NY
li;liþ1

�
: (6)

The main contribution to the energy comes from l� l1 �
. . .� ls. Replacing li; i ¼ 1; . . . ; s by lþ ~li, one can re-
write (6) as

EXY ¼ � 1

2�R

X1
s¼0

ð�1Þxðsþ1Þ

sþ 1

�
Z 1

0
d�

X1
l¼0

Xl
m¼�l

�Ys
j¼1

X1
~lj¼jmj�l

��Ys
i¼0

NY
lþ~li;lþ~liþ1

�
;

(7)

with the understanding that ~l0 ¼ ~lsþ1 ¼ 0. Using the
Debye asymptotic expansions for the modified Bessel
functions, one can show that the leading contribution

comes from l� "�1, ~li � "�ð1=2Þ, m� "�ð1=2Þ and ��
"�1. This motivates to replace the summations by corre-
sponding integrations, dropping only exponentially small
contributions, and to make the substitutions,

� ¼ t

"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
; l ¼ t�

"
;

m ¼
ffiffiffiffiffi
t�

"

r
�; ~li ¼

ffiffiffiffiffi
4t

"

s
ni ði ¼ 1; . . . ; sÞ:

(8)

One then obtains the following expression for the Casimir
energy,

EXY ¼ � R

4�d2
X1
s¼0

ð�1Þxðsþ1Þ

sþ 1

Z 1

0
dtt

Z 1

0

d�
ffiffiffi
�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

�
Z ffiffiffiffiffiffiffiffiffiffi

ðt�="Þ
p

�
ffiffiffiffiffiffiffiffiffiffi
ðt�="Þ

p d�ffiffiffiffi
�

p
�Ys
j¼1

Z 1

n0

dnjffiffiffiffi
�

p
�
ZY; (9)

where

n0 ¼ � �

2

ffiffiffi
t

"

r
þ 1

2
j�j ffiffiffi

�
p

;

and

Z Y ¼ Ys
i¼0

� ffiffiffiffiffiffiffiffi
4�t

"

s
NY

lþ~li;lþ~liþ1

�
: (10)

For the first two leading terms of the Casimir energy, one
can set " ! 0þ directly in the integration limits for � and
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nj, and expand Z up to terms of order ". For the term Hl00
ll0

defined by (5), it is nonzero only if lþ l0 þ l00 is even.
Using the substitution

l00 ¼ lþ l0 � 2�;

the summation over l00 in (4) becomes the summation over
� from � ¼ 0 to � ¼ minfl; l0g. Since l; l0 � "�1, the upper

limit for the �-summation can be replaced by 1. For the
3j-symbols, the small " asymptotic expansion has been
derived in [4]. For the modified Bessel functions, the small
" asymptotic expansion can be obtained using the Debye
asymptotic expansions. In the case the sphere is imposed
with Dirichlet boundary conditions, i.e., Y ¼ D, the small
" asymptotic expansion is given by

ND
l;l0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�

2�tð1þ �Þ
r

e�2t�ðn�n0Þ2 Z 1

�1
d�ffiffiffiffi
�

p e��2þ2i�
ffiffi
2

p
�þ�2

X1
�¼0

�2�

�!

�
1� �

1þ �

�
�ð1þ ffiffiffi

"
p

fDn;n0 ð�; �Þ þ "gDn;n0 ð�;�Þ þ . . .Þ:

One can then sum over � and compute the Gaussian
integration over �, which give

ND
l;l0 �

ffiffiffiffiffiffiffiffi
"

4�t

r
e�2t�ðn�n0Þ2��2=�

� ð1þ að1=2Þ;Dn;n0
ffiffiffi
"

p þ að1Þ;Dn;n0 "þ . . .Þ: (11)

The functions að1=2Þ;D
n;n0 and að1Þ;D

n;n0 are given in [4].
Substituting (11) into (10), one can expand Z up to order
", which, upon substitution into (10) gives

EXD�� R

4�d2
X1
s¼0

ð�1Þxðsþ1Þ

sþ1

Z 1

0
dtte�2tðsþ1Þ

�
Z 1

0

d�
ffiffiffi
�

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
Z 1

�1
d�ffiffiffiffi
�

p e��2ðsþ1Þ=�
�Ys
j¼1

Z 1

�1
dnjffiffiffiffi
�

p
�
e��1

�
�
1þ

�Xs
i¼0

að1=2Þ;Dni;niþ1

� ffiffiffi
"

p þaD"þ . . .

�
; (12)

where �1 ¼
P

s
i¼0ðni � niþ1Þ2, and

aD ¼ X
0�i<j�s

að1=2Þ;Dni;niþ1
að1=2Þ;Dnj;njþ1

þXs
i¼0

að1Þ;Dni;niþ1
: (13)

The integrations over ni, i ¼ 1; . . . ; s, can be performed in
the same way as explained in [3], with the help of a
machine. The term proportional to

ffiffiffi
"

p
drops out since it

is odd in one of the ni’s. The integrations over �, � and t
are straightforward. In [4], the following result was ob-
tained for the case where Dirichlet conditions are imposed
on the plane and the sphere (XY ¼ DD):

EDD ¼ � R

16�d2
X1
s¼0

1

ðsþ 1Þ4
�
1þ "

3
þ . . .

�

¼ � �3R

1440d2

�
1þ "

3
þ . . .

�
: (14)

Here the known formula

X1
s¼0

1

ðsþ 1Þ4 ¼ �ð4Þ ¼ �4

90

has been used. For the case where the plane is imposed
with Neumann conditions and the sphere is imposed with
Dirichlet conditions (XY ¼ ND), we observe from (12)
that the only difference is that now the summation over s is
alternating in sign. Hence we obtain immediately

END ¼ � R

16�d2
X1
s¼0

ð�1Þsþ1

ðsþ 1Þ4
�
1þ "

3
þ . . .

�

¼ 7�3R

11520d2

�
1þ "

3
þ . . .

�
; (15)

where now the formula

X1
s¼0

ð�1Þsþ1

ðsþ 1Þ4 ¼ � 7

8

�4

90

is used. The results (14) and (15) have been obtained in
[4,5].
Next we consider the case where the sphere is imposed

with general Robin boundary conditions. Following [4], we
observe that the Debye asymptotic expansions give

uI�ð�zÞþ�zI0�ð�zÞ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
I�ð�zÞ

�
u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p þ 1þ v1

� þOð 1
�2Þ

1þ u1
� þOð 1

�2Þ
�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
I�ð�zÞ

�
1þv1�u1

�
þ u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p þO

�
1

�2

��
;

(16)

uK�ð�zÞþ�zK0
�ð�zÞ

¼��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p
K�ð�zÞ

�
� u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p þ1�v1

� þOð 1
�2Þ

1�u1
� þOð 1

�2Þ
�
;

¼��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p
K�ð�zÞ

�
1�v1�u1

�
� u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p þO

�
1

�2

��
;

(17)

where
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u1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p �
1

8
� 5

24ð1þ z2Þ
�
;

v1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p �
� 3

8
þ 7

24ð1þ z2Þ
�
:

(18)

We remark that in Eq. (16) of [4], which corresponds to
Eq. (17) here, there is a sign error in u which leads to
results different from what we are going to obtain below.
From (16) and (17), we have

uI�ð�zÞ þ �zI0�ð�zÞ
uK�ð�zÞ þ �zK0

�ð�zÞ

¼ � I�ð�zÞ
K�ð�zÞ

ð1þ v1�u1
� þ u

�
ffiffiffiffiffiffiffiffi
1þz2

p þOð 1
�2ÞÞ

ð1� v1�u1
� � u

�
ffiffiffiffiffiffiffiffi
1þz2

p þOð 1
�2ÞÞ

¼ � I�ð�zÞ
K�ð�zÞ

�
1þ 2ðv1 � u1Þ

�
þ 2u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p þO

�
1

�2

��
:

Thus we obtain a dependence on the Robin parameter u
which is missing in [4].

To proceed, we mention that passing from Y ¼ D to
Y ¼ R, one has a relative minus sign in front of NR

l;l0 . The

term að1=2Þni;niþ1
is not changed, i.e., að1=2Þ;Rni;niþ1

¼ að1=2Þ;Dni;niþ1
, and the

term að1Þni;niþ1
is changed by

að1Þ;Rni;niþ1
� að1Þ;Dni;niþ1

¼ ð�2 � 1Þ
t

þ 2u

t
:

Since the change in the sign of Nl;l0 gives rise to a factor

ð�1Þsþ1 to Z, it can be compensated by the change in sign

of the term ð�1Þxðsþ1Þ when one passes from X ¼ D to
X ¼ N. Therefore we obtain from (12) that

ENR�EDD�� R

4�d2
X1
s¼0

1

sþ1

Z 1

0
dtte�2tðsþ1Þ

�
Z 1

0

d�
ffiffiffi
�

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
Z 1

�1
d�ffiffiffiffi
�

p e��2ðsþ1Þ=�

�
�Ys
j¼1

Z 1

�1
dnjffiffiffiffi
�

p
�
e��1

�
"
Xs
i¼0

�ð�2�1Þ
t

þ2u

t

��
:

This integral is easy to compute and we find that

ENR � EDD �� R

16�d2
X1
s¼0

"

ðsþ 1Þ2
2ð6u� 1Þ

3
:

Therefore,

ENR ¼ � R

16�d2
X1
s¼0

�
1

ðsþ 1Þ4
�
1þ "

3

�

þ "

ðsþ 1Þ2
2ð6u� 1Þ

3
þ . . .

�

¼ � �3R

1440d2

�
1þ

�
1

3
þ 10ð6u� 1Þ

�2

�
"þ . . .

�
;

where we have used

X1
s¼0

1

ðsþ 1Þ2 ¼ �ð2Þ ¼ �2

6
:

Similarly, we have

EDR � END �� R

16�d2
X1
s¼0

"ð�1Þsþ1

ðsþ 1Þ2
2ð6u� 1Þ

3
:

This implies that

EDR ¼ � R

16�d2
X1
s¼0

�ð�1Þsþ1

ðsþ 1Þ4
�
1þ "

3

�

þ "ð�1Þsþ1

ðsþ 1Þ2
2ð6u� 1Þ

3
þ . . .

�

¼ 7�3R

11520d2

�
1þ

�
1

3
þ 40ð6u� 1Þ

7�2

�
"þ . . .

�
;

where the formula

X1
s¼0

ð�1Þsþ1

ðsþ 1Þ2 ¼ � 1

2

�2

6

has been applied.
The results in this section can be summarized as

EDD

EDD
PFA

¼ 1þ "

3
þ . . . ;

END

END
PFA

¼ 1þ "

3
þ . . . ;

EDR

EDR
PFA

¼ 1þ
�
1

3
þ 80ð3�� 2Þ

7�2

�
"þ . . . ;

ENR

ENR
PFA

¼ 1þ
�
1

3
þ 20ð3�� 2Þ

�2

�
"þ . . . :

(19)

Here, EXY
PFA is the leading term which coincides with the

proximity force approximation,

EDD
PFA ¼ ENR

PFA ¼ � �3R

1440d2
;

END
PFA ¼ EDR

PFA ¼ 7�3R

11520d2
:

Setting� equal to zero, which corresponds to the Neumann
case, we find that

EDN

EDN
PFA

¼ 1þ
�
1

3
� 160

7�2

�
"þ . . . ’ 1� 1:98"þ . . . ;

ENN

ENN
PFA

¼ 1þ
�
1

3
� 40

�2

�
"þ . . . ’ 1� 3:72"þ . . . : (20)

We mention that the corrections involving Neumann
boundary conditions on the sphere are still quite large.
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III. THE ELECTROMAGNETIC FIELD

For the electromagnetic field, if the sphere and the plane
are both perfectly conducting, the Casimir energy is given
by [5,8]

EEM ¼ 1

2�

Z 1

0
d�Tr lnð1�Nð�ÞÞ:

The trace Tr is

Tr ¼ X1
m¼�1

X1
l¼maxf1;jmjg

tr;

where the trace tr on the right-hand side is the trace over
2� 2-matrices—the components of N given by

N l;l0 ¼
ffiffiffiffiffiffiffiffiffi
�

4�L

r Xlþl0

l00¼jl�l0j
Kl00þ1=2ð2�LÞHl00

ll0
�l00

l;l0
~�l;l0

~�l;l0 �l00
l;l0

 !

� dTEl ð�RÞ 0
0 �dTMl ð�RÞ

� �
;

with

�l00
l;l0 ¼

1

2

l00ðl00 þ 1Þ � lðlþ 1Þ � l0ðl0 þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þl0ðl0 þ 1Þp ;

~�l;l0 ¼ 2m�Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þl0ðl0 þ 1Þp

and

dTEl ð�RÞ ¼ Ilþ1=2ð�RÞ
Klþ1=2ð�RÞ ;

dTMl ð�RÞ ¼
1
2 Ilþ1=2ð�RÞ þ �RI0lþ1=2ð�RÞ
1
2Klþ1=2ð�RÞ þ �RK0

lþ1=2ð�RÞ
:

Notice that dTEl and dTMl correspond, respectively, to dDl
and dRl with u ¼ 1=2 in the scalar case.

Proceeding as in the previous section, we find that the
Casimir energy can be written in the same form as (9), with
Z now given by

Z ¼ tr
Ys
i¼0

� ffiffiffiffiffiffiffiffi
4�t

"

s
Nlþ~li;lþ~liþ1

�
: (21)

To expand Z up to terms of order ", we only need, in

addition to the scalar case, to expand the diagonal term�l00
l;l0

up to terms of order ", and the off-diagonal term ~�l;l0 up to

terms of order
ffiffiffi
"

p
. Using the substitutions (8), we have

�l00
l;l0 ¼ 1þ 	n;n0 ð�Þ"þ . . . ; 	n;n0 ð�Þ :¼ � 1

t�
� 4�

t�
;

~�l;l0 ¼ ~	n;n0
ffiffiffi
"

p þ . . . ; ~	n;n0 :¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
ffiffi
t

p
�3=2

:

Comparing to the scalar case, it is easy to see that the
asymptotic expansion for Nl;l0 is given by

Nl;l0 �
ffiffiffiffiffiffiffiffi
"

4�t

r
e�2t�ðn�n0Þ2��2=�

�
8<
: 1 0

0 1

 !
þ ffiffiffi

"
p að1=2Þ;TE

n;n0
~	n;n0

~	n;n0 að1=2Þ;TM
n;n0

0
@

1
A

þ "
að1Þ;TE
n;n0 þ 	̂n;n0 �

� að1Þ;TM
n;n0 þ 	̂n;n0

0
@

1
Aþ . . .

9=
;

where

aðiÞ;TE
n;n0 ¼ aðiÞ;D

n;n0 ; aðiÞ;TM
n;n0 ¼ aðiÞ;R

n;n0 ju¼1=2

for i ¼ 1=2 or 1; and

	̂n;n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�

1þ �

s
e�

2=�
Z 1

�1
d�ffiffiffiffi
�

p e��2þ2i�
ffiffi
2

p
�þ�2

� X1
�¼0

�2�

�!

�
1� �

1þ �

�
�
	n;n0 ð�Þ: (22)

The asterisks denote terms contributing to higher orders.
Substituting into (21) and taking the trace, we find that

Z ¼ 2þ ffiffiffi
"

p �Xs
i¼0

½að1=2Þ;TEni;niþ1
þ að1=2Þ;TMni;niþ1

�
�

þ "

�
aTE þ aTM þ 2

Xs
i¼0

	̂ni;niþ1

þ 2
X

0�i<j�s

~	ni;niþ1
~	nj;njþ1

�
þ . . . :

Here aTE ¼ aD (Eq. (13)) and aTM is defined in the similar
way. The term of order

ffiffiffi
"

p
will drop out after integration

with respect to ni. Substituting into (9) and compare to
(12), one finds that the first two leading terms of the
electromagnetic Casimir energy can be written as

EEM¼
�
first two leading

terms of EDD

�
þ
�

first two leading

terms of ENRju¼1=2

�
þ�E;

where
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�E ¼ � R

4�d2
X1
s¼0

1

sþ 1

Z 1

0
dtte�2tðsþ1Þ

�
Z 1

0

d�
ffiffiffi
�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Z 1

�1
d�ffiffiffiffi
�

p e��2ðsþ1Þ=�
�Ys
j¼1

Z 1

�1
dnjffiffiffiffi
�

p
�

� e��1"

�
2
Xs
i¼0

	̂ni;niþ1
þ 2

X
0�i<j�s

~	ni;niþ1
~	nj;njþ1

�
:

(23)

Up to this point, it seems that we have not done anything
much different from the one presented in the paper [5].
The major difference here is that we only keep the terms in

�l00
l;l0 and

~�l;l0 that will contribute terms up to order " forZ.

In the following, we are going to see that this simplifies the
computations.

Using

X1
�¼0

��2�

�!

�
1� �

1þ �

�
� ¼ 1� �

1þ �
�2 exp

�
1� �

1þ �
�2

�
;

it is straightforward to compute 	̂n;n0 given by (22). We find

that

	̂ n;n0 ¼ 2ð1� �2Þ
t�3

�2 � 1

t�2
:

Then

2
Xs
i¼0

	̂ni;niþ1
þ2

X
0�i<j�s

~	ni;niþ1
~	nj;njþ1

¼2ðsþ1Þ
�
2ð1��2Þ

t�3
�2� 1

t�2

�
þsðsþ1Þ

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
ffiffi
t

p
�3=2

�
2

¼4ðsþ1Þ2ð1��2Þ
t�3

�2�2ðsþ1Þ
t�2

: (24)

Substituting into (23) and carrying out the�-integration, it
is seen that the singularity for � ! 0 cancels between both
contributions in the last line in (24). This is equivalent to
the compensation of the logarithms observed in [5] (see
remark after Eq. (135)), however now the remaining con-
tributions come out different. We find that

�E ¼ R

4�d2
X1
s¼0

"

ðsþ 1Þ2 ¼
R

4�d2
�2

6
":

Using the results for EDD and ENRju¼1=2 from the previous

section, we finally obtain the first two leading terms for the
electromagnetic Casimir energy as

EEM ¼ � �3R

1440d2

�
1þ "

3

�
� �3R

1440d2

�
1þ

�
1

3
þ 20

�2

�
"

�

þ R

4�d2
�2

6
"þ . . .

¼ � �3R

720d2

�
1þ

�
1

3
� 20

�2

�
"þ . . .

�
’ 1� 1:69"þ . . . : (25)

This result agrees with that obtained recently in [9] using
derivative expansion. As has been observed in [9], the first
two leading terms of the EM Casimir energy for perfect
conductors turns up to be the sum of the first two leading
terms for the DD and the NN scalar Casimir energies.

IV. CONCLUSIONS

The results from the calculation of the first correction
beyond PFA are summarized in Eqs. (19) and (20) for the
scalar field and in (25) for the electromagnetic field. These
formulas substitute the final formulas Eq. (3) in [4] and
Eqs. (43) and (136) in [5]. It can be seen that the resulting
numbers change to some extent and that the logarithmic
contributions disappeared.
Very recently, in [10] and in [9], another method for

obtaining analytic corrections beyond PFA was found. It
consists of an expansion of E, (1), which is perturbative in
the gradients of the height profiles of the interacting sur-
faces. Intuition predicts that neglecting the derivatives, a
resummation of the perturbative expansion in the height
profiles, should reproduce PFA, while the inclusion of
gradients should give the first corrections beyond PFA
[10]. Indeed, in [10], the analytic result for Dirichlet
boundary conditions was obtained confirming the first
line in Eq. (19). All other cases were computed in [9]
and coincide with Eqs. (19), (20), and (25). In [9], a Padé
resummation of the asymptotic large distance expansion,
matched with the first PFA correction, is performed and
yields excellent agreement with the numerical results in [9]
for DD, NN and EM boundary conditions. In addition, fits
to the numerical data in [9], that take into account loga-
rithmic corrections to PFA at second order (in distinction to
[8]), yield results that are consistent with the results given
here for the three types of boundary conditions.

ACKNOWLEDGMENTS

One of the authors (M.B). acknowledges a helpful dis-
cussion with T. Emig. L. P. T. is supported by the Ministry
of Higher Education of Malaysia under the FRGS grant
FRGS/2/2010/SG/UNIM/02/2.

L. P. TEO, M. BORDAG, AND V. NIKOLAEV PHYSICAL REVIEW D 84, 125037 (2011)

125037-6



[1] Aurel Bulgac, Piotr Magierski, and Andreas Wirzba, Phys.
Rev. D 73, 025007 (2006).

[2] T. Emig, R. L. Jaffe, M. Kardar, and A. Scardicchio, Phys.
Rev. Lett. 96, 080403 (2006).

[3] M. Bordag, Phys. Rev. D 73, 125018 (2006).
[4] M. Bordag and V. Nikolaev, J. Phys. A 41, 164002 (2008).
[5] M. Bordag and V. Nikolaev, Phys. Rev. D 81, 065011

(2010).

[6] Holger Gies and Klaus Klingmuller, Phys. Rev. D 74,
045002 (2006).

[7] L. P. Teo, Phys. Rev. D 84, 025022 (2011).
[8] T. Emig, J. Stat. Mech. P04007 (2008).
[9] G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar,

arXiv:1110.1082.
[10] C. D. Fosco, F. C. Lombardo, and F.D. Mazzitelli, Phys.

Rev. D 84, 105031[ (2011).

CORRECTIONS BEYOND THE PROXIMITY FORCE . . . PHYSICAL REVIEW D 84, 125037 (2011)

125037-7

http://dx.doi.org/10.1103/PhysRevD.73.025007
http://dx.doi.org/10.1103/PhysRevD.73.025007
http://dx.doi.org/10.1103/PhysRevLett.96.080403
http://dx.doi.org/10.1103/PhysRevLett.96.080403
http://dx.doi.org/10.1103/PhysRevD.73.125018
http://dx.doi.org/10.1088/1751-8113/41/16/164002
http://dx.doi.org/10.1103/PhysRevD.81.065011
http://dx.doi.org/10.1103/PhysRevD.81.065011
http://dx.doi.org/10.1103/PhysRevD.74.045002
http://dx.doi.org/10.1103/PhysRevD.74.045002
http://dx.doi.org/10.1088/1742-5468/2008/04/P04007
http://arXiv.org/abs/1110.1082
http://dx.doi.org/10.1103/PhysRevD.84.105031
http://dx.doi.org/10.1103/PhysRevD.84.105031

