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HIV evolves with extraordinary rapidity. However, its evolution is
constrained by its fitness landscape and the associated pattern of
epistatic interactions between mutations. Computational models of
HIV that exploit these constraints to anticipate its evolutionary re-
sponse to new environments could aid in searching for therapies that
provide improved protection against resistance. Here we infer a sta-
tistical model describing patterns of mutations in HIV protease se-
quence data obtained prior to widespread clinical use of protease
inhibitors. Guided by a simple model of evolutionary dynamics, we
use the inferred statistical model to identify sets of mutations likely
to be able to co-occur with low fitness costs, which we hypothesize
to be likely sites of drug resistance mutations. The resulting pre-
dictions of the sites of HIV protease resistance mutations perform
significantly better than chance, despite the exclusion of resistance
data from the model. Successful predictions in the absence of la-
beled resistance data suggest that our approach may be applied to
help design new therapies that are less prone to failure even where
resistance data is not yet available, as well as indicating progress in
the development of a model predicting features of HIV evolution at
the single residue level.

statistical mechanics | HIV | drug resistance | machine learning

Abbreviations: HIV, human immunodeficiency virus

Under selective pressure from sub-optimal anti-retroviral
treatment regimens, evolved drug resistance leading to

HIV virological failure has been observed to occur within
weeks of treatment initiation [1]. While modern combination
therapies have greatly reduced the rate of evolution of drug
resistance, resistant strains are found in greater than 14% of
newly infected HIV patients in the United States [2, 3]. The
rapid evolution of resistance is an instance of the overall ob-
servation that HIV evolution is remarkably fast, with studies
indicating that in the absence of treatment a single patient’s
HIV infection will explore every possible point mutation many
times daily [4, 5, 6]. However, empirical studies of viral se-
quence data indicate that HIV evolution is structured and
exhibits reproducible patterns [1, 7].

The existence of significant correlations in the evolution of
HIV suggests that sequence data can be used to infer pre-
dictive models of HIV evolution. Previous researchers have
used a variety of approaches to attempt to predict HIV fitness
and aspects of its evolution using viral sequence data on its
own [7, 8], and also sequences labeled according to phenotypic
properties such as drug resistance and replicative capacity [9].
Other researchers have addressed the related problem of effec-
tively predicting the sites of resistance mutations by detecting
sites under positive selection during treatment [10], supervised
learning [11], and structural modelling [11, 12]. Despite the
success of these latter approaches in predicting resistance sites,
each requires treatment or structural data, limiting their use-
fulness in contexts (such as the design or introduction of a new
combination therapy) where such data are not available.

In the present work, we use sequence data obtained prior
to the widespread clinical use of protease inhibitors, combined
with mathematical modeling, to predict sets of sites in HIV
protease where coordinated mutations are unlikely to signif-
icantly impair viral fitness. We predict that such sites are
more likely to be sites of clinically relevant drug resistance
mutations because mutations that confer drug resistance but
destroy or severely impair viral replication are unlikely to be
selected. Excluding data obtained after the clinical use of
anti-retroviral drugs allows us to explore how the natural evo-
lution of HIV predicts its evolution under drug pressure. Our
successful prediction of major drug resistance sites (defined
in [13]) using natural evolution data suggests that the tech-
niques of this paper can be applied to predict aspects of HIV
evolution in response to new treatment regimens and vaccine
candidates. Such predictions will enhance clinical outcomes
by improving treatment rollout and vaccine design. As an il-
lustration, we consider pairs of protease inhibitors that can
be used in successive treatments that are predicted to inhibit
the evolution of resistance to both drugs. We emphasize that
the purpose of the present work is both to develop a clinically
useful technique for anticipating HIV evolution, and also to
advance scientific understanding of viral evolution by creating
a model of HIV evolution that is mechanistically interpretable
and predictive at the single residue level.

Significance

Anticipating the mutational paths most likely to lead to drug
resistance could help inform drug design and treatment strate-
gies against pathogens such as HIV. Here we combine statisti-
cal analysis of sequence data and a model of viral evolution to
identify sets of mutations likely to have low fitness costs, and
demonstrate that this information can be used to predict sites of
drug resistance mutations in HIV protease. Importantly, these
predictions are based on evolutionary considerations alone, us-
ing sequence data obtained prior to the clinical use of protease
inhibitor drugs. Thus, our approach could be used to anticipate
sites of drug resistance mutations even when detailed resistance
data is not available.
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Our analysis begins by inferring an estimate of the proba-
bility distribution of multiple mutations in the viral protease
protein from large amounts of sequence data. The form of
the probability distribution gives rise to a natural notion of a
“prevalence landscape” analogous to a fitness landscape, that
expresses the relative probabilities of protease sequences. The
form of the prevalence landscape is given by a disordered Ising
model from statistical physics [8, 14]. As in the problem of pre-
dicting protein contact residues, representing the prevalence
landscape as a disordered Ising model has the advantage that
the parameters in the model have a simple interpretation as
the strength of direct interactions between mutations in the
prevalence landscape [15, 16, 17]. However, to make predic-
tions about evolution, it is of greater interest to infer fitness
interactions between mutations than prevalence interactions.

Using the intuitive notion that highly fit strains should be
more prevalent, previous work has shown that the inferred
prevalences of sequences from HIV Gag proteins correlate with
their replicative capacities, another proxy for fitness [8, 18].
However, the prevalence landscape is determined by many
factors other than fitness, including epidemiological dynam-
ics, recombination, and demographic noise, so fitness cannot
be simply equated with prevalence [19, 20, 21].

While a complete understanding of how fitness and fre-
quency are related is elusive, an insight into their relation-
ship can be obtained by studying the relation between fitness
and frequency in Eigen’s model of evolution [22]. This model
assumes an infinite population of viruses, and accounts for mu-
tation and selection, but neglects many of the important ef-
fects described above. However, these simplifications allow for
the relationship between fitness and frequency to be studied
for short proteins or simple fitness landscapes using methods
adopted from statistical physics [23, 24]. This analysis allows
for a more precise interpretation of the fitness implications of
the direct interactions between mutations in the prevalence
landscape, informing the prediction of the sites of resistance
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Fig. 1. The coupling J between a pair of sites where single mutations are dele-

terious increases sharply as the fitness of the double mutant approaches the fitness

of the wild type sequence. Top panel: Coupling J in the prevalence landscape as a

function of Jf from the fitness landscape. The peak occurs at the level crossing,

where −Jf = hf1 + hf2 . Note if −Jf becomes larger than hf1 + hf2 , so that

the double mutant has higher fitness than the wild type sequence (shaded region),

the corresponding coupling −J in the prevalence landscape decreases. Bottom panel:

Log fitness of the wild type strain and the double mutant strain as a function of Jf .

The log fitnesses intersect at the point where −J is maximized. This shows that

large negative inferred values of J in the prevalence landscape are associated with

level crossings in the two site limit.

mutations. We note that while the results of the Eigen model
provide a useful interpretation of the frequency landscape that
motivates the procedure used to generate predictions, the ac-
tual predictions of resistance mutations do not rely on this
interpretation.

Results

Inferring the HIV prevalence landscape. The large size of the
sequence space for HIV protease (näıvely 2099 possible se-
quences for protease, which is 99 amino acids long), and the
comparatively small amount of available sequence data, pre-
clude direct estimation of the probability of sequences with
multiple mutations from their frequencies in the data. Instead
we adopt the procedure of previous work on HIV Gag proteins
[8] to construct a probability distribution consistent with the
observed frequency of mutations at each site and pair of sites,
which can be reliably estimated from existing sequence data.
Protease amino acid sequences are first translated into a bi-
nary form by coding the wild type (consensus) amino acid at
each site as 0, and a mutant as 1. The amino acid identity
at each site i in a sequence is thus coded as a binary variable
si ∈ {0, 1}, and full sequences are represented as vectors of
binary variables s = (s1, s2, .., s99). Representing sequences in
this way disallows predictions about mutations to particular
amino acids, but enables the accurate inference of the preva-
lence landscape by greatly reducing the dimensionality of the
inference problem. Future work on HIV protease will relax the
binary approximation.

We proceed by assuming that the joint distribution of mu-
tations is mostly specified by the moments 〈sisj〉 and finding
the least structured (maximum entropy) distribution consis-
tent with the observed moments (note that because s2i = si,
〈si〉 = 〈s2i 〉 all first moments are included) [25, 8]. The result-
ing probability distribution takes the form

P (s) = Z−1 exp(−E(s))

E(s) =

L∑
i<j

Jijsisj +

L∑
i=1

hisi [1]

where Z is a normalization constant (the partition function),
s is a sequence vector with elements {si}, and {Jij}, {hi}
parametrize the distribution. The parameters {Jij}, {hi} are
chosen such that the distribution P (s) reproduces the observed
moments 〈sisj〉. Inferring the maximum entropy estimate of
the joint distribution of discrete random variables in this man-
ner has also been fruitfully applied to the analysis of neuronal
network states and protein contact prediction [26, 15, 17]. The
description of the algorithm used to infer E(s) is given in the
Supporting Information and in [27, 28]. The assumption that
the distribution is mostly specified by its first two moments
is justified by noting that the inferred probability distribu-
tion in Eq. 1 predicts the observed higher order moments well
(Supporting Information).

For the purpose of the present work, the primary advantage
of inferring the probability distribution Eq. 1 is to distin-
guish direct interactions between mutations from correlations.
While correlations between two sites may be due to interac-
tions with a common intermediate site, accurate estimates of
the parameters {Jij}, {hi} in Eq. 1 capture direct interac-
tions, disentangled from indirect effects mediated through in-
termediate sites [15, 28, 26].

The probability distribution Eq. 1 also allows estimation of
the relative prevalences of different sequences. In line with the
expectation that fitness plays a substantial role in determining

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Fig. 2. Stronger couplings are more likely to link sites of major resistance mutations. The network of interactions between the top r ranked sites, from r = 40 (left) to

r = 10 (right), are plotted with Circos [30]. Only the strongest couplings, those meeting or exceeding the largest coupling for the lowest ranked site, are displayed. Major

resistance sites and interactions linking them are colored, while other sites and links between non-resistance sites are grey.

the frequency of a viral strain, previous work on Gag proteins
shows that the prevalence in Eq. 1 is a reasonable predictor
of fitness [8], even in comparison with regression methods us-
ing supervised learning and labeled data [9]. These results
provide evidence that the prevalence landscape approach cap-
tures meaningful information about HIV fitness. However, as
noted above, it is also the case that the dynamics of muta-
tions, recombination events, and other factors contribute to
frequency, and so Eq. 1 does not translate directly into fitness
and should not be expected to correlate with it perfectly.

The sequences used to infer Eq. 1 were taken from the
Los Alamos HIV database (www.hiv.lanl.gov). As transmitted
drug resistance to protease inhibitors is observed in contempo-
rary HIV populations [29, 3], we excluded all sequences after
1996, or with the phrase “protease inhibitor” in their meta
data. These filters were designed to remove as much evolved
drug resistance from the sequence data as possible so that the
landscape in Eq. 1 reflects the intrinsic fitness of HIV pro-
tease, uninfluenced by drug pressure. We also carried out the
same analysis on all available drug näıve sequences from the
Los Alamos data base with slight changes in our results that
indicate population level selective pressure on HIV protease to
evolve resistance (see Supporting Information).

Extracting compensatory pair predictions from the prevalence
landscape.To relate the prevalence landscape in Eq. 1 to
fitness, we note that prevalence can also be written as the
outcome of evolutionary dynamics in the Eigen model, repre-
sented as an Ising model from statistical physics [23]

exp(−E(sT )) ∝∑
{st}T−1

t=1

exp

[
T−1∑
t=1

K(2st − 1)(2st+1 − 1)− F (st))

]

F (s) =

L∑
i<j

Jfijsisj +

L∑
i=1

hfi si, [2]

where K is related to the per site per generation mutation
rate µ by K = 1

2
log( 1−µ

µ
), and F (s) is minus the log fitness

of sequence s and will be referred to as the fitness landscape.
Here the superscripts t ∈ {1, 2 . . . , T} on the sequence vectors
refer to discrete generations in Eigen’s model of evolution.

The superscript f on the parameters {hfi } and {Jfij} indicates
that the parameters are taken from the fitness landscape in
Eq. 2 (assumed to have the same functional form as Eq. 1),
rather than the prevalence landscape of Eq. 1. The evolu-
tionary dynamics described here applies to evolution within
a population of hosts. Equations describing within host evo-
lution would require accounting for differing immune pressure
between individuals [24], though protease is not comparatively
immunogenic [31].

Ideally, one would like to invert Eq. 2 to solve for the func-
tion F (s) in terms of E(s), because E(s) is inferred directly
from data. Because this is a very high dimensional and dif-
ficult problem, we proceed instead by considering a two site
approximation, where only pairs of sites are coupled. While
network effects influence the inferred couplings between sites,
this simple approximation provides useful conceptual insight.
Furthermore, most of the variance in the on-diagonal terms
〈si〉 is explained by the single site hi in Eq. 1, indicating that
network effects exert a weaker influence on the 〈si〉 (Support-
ing Information).

Solving the two site limit of Eq. 2 shows that the {hfi } are
difficult to reliably infer, because the mutation coupling K is
large enough (K ' − log(µ) and µ ' O(10−4)) that very small

hfi lead to large hi in the prevalence landscape (see Supporting
Information). However, large values of Jij in the prevalence
landscape have a simple interpretation in the fitness landscape
as couplings between pairs of sites where mutating both sites
leads to only a small change in fitness compared to wild type
(Fig. 1). In this case the double mutant could become advan-
tageous with only a small increase in the fitness of one of the
mutations, as might occur when drugs are added to the en-
vironment, for example. Mathematically, this occurs as −Jf
approaches hf1 + hf2 . We shall refer to the point in parame-
ter space where the coupling between sites allows the double
mutant strain to have equal fitness to the wild type as a level
crossing.

It is important to note that large values of −J in preva-
lence are, within the limits of the two site approximation,
only related to the actual numerical value of the underlying
Jf through a non-linear transformation that is too sensitive
to be reliably inverted with real data at present, and is not
justified due to the simplicity of the model (see Fig. 1). The
major contribution of the model is to support an interpreta-

Footline Author PNAS Issue Date Volume Issue Number 3
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tion of large values of Jij as associated with pairs of sites that
can co-mutate with low fitness cost. As will be seen below,
this interpretation is useful for understanding the connection
between the inferred prevalence landscape and resistance.

A distinction should also be made between the concept of
level crossings introduced here and the classical notion of intra-
gene epistasis. Epistasis can be defined in this context as
e = −F (1, 1) + F (0, 1) + F (1, 0) = −Jf , or the departure
for two sites from multiplicative combination of the fitness of
mutations [32, 33]. A level crossing is more stringently de-

fined as a place in parameter space where Jf − hf1 − h
f
2 = 0

so that the wild type and the double mutant are equally fit.
With the parameters {Jf , hf1 , h

f
2} tuned near a level crossing,

the fitness of the double mutant is near that of the wild type,
even if the fitness penalty for the associated single mutants is
large. Epistasis is known to affect the evolutionary dynamics
of HIV-1 [9], but the relationship between the level crossings
in this work and previous empirical studies of epistasis in HIV
[34, 35] will require further research to be fully understood.

Predicting the sites of resistance mutations. To go from the
interpretation of large values of−J in the prevalence landscape
as indicators of nearby level crossings to predictions of resis-
tance mutations requires elucidating a relationship between
level crossings and resistance mutations. A rigorous argument
relating resistance mutations to the fitness landscape would
require detailed knowledge of the drug, its binding sites, the
structure of the target protein, and other details. However, the
following heuristic argument suggests a way to proceed with
the limited information we have assumed in the present study.
When the environment HIV is replicating in changes due to
the initiation of drug therapy, HIV must mutate in ways that
alter its sequence in order to abrogate drug binding, while at
the same time preserving protein function. Large couplings
Jij connect sites that are likely to be able to co-mutate with
very limited costs to fitness, even if the associated individ-
ual mutations are costly. Such sets of sites are therefore more
likely to be associated with resistance. Here our assumption is
that resistance cannot be achieved through selectively neutral
mutations at single sites, in which case drug treatment would
likely be ineffective.

To predict the sites of resistance mutations based on the
above considerations, we consider the strongest couplings −Jij
associated with each site i. Using the largest coupling values
we then assign each site a rank r ∈ {1, . . . , 99} from strongest
to weakest. We predict that the sites with the strongest in-
teractions (i.e. the highest ranked sites) are most likely to
be associated with drug resistance. Focusing on the highest
ranked sites, and the strong couplings between them, can be
seen as a process of pruning weaker interactions from the net-
work. Three pruned versions of the network of mutational
interactions in HIV protease are shown in Fig. 2.

The model above can be cast in the form of a standard classi-
fication rule from supervised learning (as is typically obtained
using labeled data) by predicting sites ranked at or above some
threshold rank r to be sites of drug resistance mutations, and
sites of lower rank to be unassociated with resistance. While
this allows standard performance measures for classification to
be applied to the present model, it is important to emphasize
that no labeled data was used to construct the classification
rule.

To test the model’s performance, we take the set of resis-
tance sites to be those classified as sites of major resistance
mutations by the Stanford HIV drug resistance database (sites
30, 32, 33, 46, 47, 48, 50, 54, 76, 82, 84, 88, and 90) [13]. The
suitable statistics for evaluating a classifier’s performance are

dependent on the algorithm chosen and on the problem to
be solved [36]. For the method described here, we note that
not every resistance mutation is necessarily associated with a
nearby level crossing, and also that it is not necessary that
large couplings should be associated with presently identified
resistance (although it is likely that targeting such sites would
lead to unusually rapid evolution of resistance). However, as
higher ranked sites are selected, the proportion of sites that are
associated with resistance should increase. To measure this, a
suitable statistic is the positive prediction value (PPV), which
is defined as

P (true = resistance|predicted = resistance). [3]

Similarly the negative prediction value (NPV) is defined as

P (true = non-resistance|predicted = non-resistance). [4]

These are shown in Fig. 3 compared to random benchmarks,
and demonstrate that the performance of the classification rule
is substantially better than chance as higher ranked sites are
selected. Further understanding of the performance can be
had by investigating standard measures of classification per-
formance, including the true positive rate (TPR),

P (predicted = resistance|true = resistance), [5]

and false positive rate (FPR),

P (predicted = resistance|true = non-resistance), [6]

Fig. 3. Top-ranked sites, based on the maximum strength of their couplings, are

far more likely to be sites of major drug resistance mutations than would be expected

by chance. The top panel shows the positive prediction value (PPV) and negative pre-

diction value (NPV) for the classifier defined in the text compared to the benchmark

of random guessing, as a function of rank. Collections of the highest ranked sites are

clearly associated with improved PPV. The bottom panel shows the false positive rate

(FPR) and the true positive rate (TPR) as functions of rank. TPR > FPR indicates

performance better than chance.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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as a function of rank. The results in Fig. 3 confirm that the
true positive rate is larger than the false positive rate, indi-
cating performance better than chance. Beyond these perfor-
mance measures, we note that the fraction of the strongest
interactions which link at least one major drug resistance site
is extremely high, as can be seen in Fig. 2 (further details in
Supporting Information).

To examine these results using classical statistical signif-
icance testing, we used the hyper-geometric distribution to
compute p-values for the null model of randomly selecting the
number of sites at or above each rank threshold and obtaining
at least as many resistance mutations as found using the rank-
ing classifier. For the results above, the predictions have p-
values< 0.05 for essentially all rank thresholds from r = 3−50,
which comports with the argument that strongly coupled sites
are more likely to be the sites of resistance mutations and sup-
ports the significance of the predictions of resistance among
higher ranked sites. The lack of significance for the highest
ranked pair is a consequence of the very small number of sites.
Details of the significance testing are in the Supporting Infor-
mation. We also tested related classification rules constructed
using direct information [15] and correlation matrices, with no
improvement in performance (see Supporting Information).

In contrast to standard supervised learning where complex
models can lead to over fitting and poor generalization [37],
the results above cannot be due to over fitting. This is because
the model is fully blind to the sites of resistance mutations,
and therefore cannot fit to them at all. The exclusion of over
fitting as an explanation for these results increases confidence
that the techniques above can be fruitfully applied where no
labeled data is available. Future work will examine other pro-
teins that rapidly evolve resistance to drugs, as well as sec-
ondary resistance mutations in HIV protease to increase the
sample size and better assess the performance of the approach
developed above.

Protease Inhibitor pair therapies. As virological failure occurs
in patients undergoing treatment with protease inhibitors, new
protease inhibitor drugs are administered [2]. To further assess
the validity of our predictions, we used the model to infer pairs
of protease inhibitors that are optimized to protect patients
from evolving overlapping resistance.

To protect against resistance, a pair of drugs should have as
many non-overlapping resistance mutations as possible. Ad-
ditionally, we would like to identify pairs of drugs whose as-
sociated resistance mutations are difficult to make simultane-
ously due to fitness constraints. In the same way that large
positive values of −J indicate sites that can readily mutate
together, negative values of −J indicate sites where double
mutations are suppressed. Thus, the interactions between
the resistance mutations that are not common to both drugs
should be as negative as possible. We found three combi-
nations (atazanivir-indinavir, atazanavir-fosamprenavir, and
darunavir-nelfanavir) that are optimal for both of these cri-
teria in the Pareto sense: improvement in one criterion ne-
cessitates a reduction in the other criterion. Two of these,
along with both near-optimal pairs (atazanavir-darunavir and
atazanavir-lopinavir), incorporate atazanavir, consistent with
clinical knowledge that the resistance profile of atazanavir ap-
pears distinct from other protease inhibitors [38].

Biophysical interpretation of large couplings. In order to make
good predictions about HIV evolution and adaptation, fea-
tures of our model should relate to physical and biological
properties of HIV protease. We find that the network of large
interactions does indeed capture important biophysical infor-

mation. As a first example, the third strongest coupling is
between sites 82 and 54. Site 82 is frequently the first resis-
tance mutation site observed after the initiation of protease
inhibitor treatment, and is usually followed by mutation at
site 54 [1].

Some couplings may also be associated with stabilizing mu-
tations, which compensate for loss of fitness due to a desta-
bilizing mutation. A recent biophysical study examined the
melting temperatures of HIV protease with a major resistance
mutation at site 84 [39]. The study showed that on its own,
the major resistance mutation reduced the stability of HIV
protease considerably, as measured by melting temperature.
When the mutation at site 84 is accompanied by one of a set
of three known accessory mutations at sites 10, 63, and 71,
stability is restored, or even enhanced. Couplings between
sites 10 and 84, and sites 63 and 84, are strong, in the top 7%
of all couplings (though weaker than the couplings shown in
Fig. 2, which are within the top 1%). The coupling between
sites 71 and 84 is slightly weaker, but still in the top 13% of all
couplings (Supporting Information). This suggests that links
between destabilizing mutations and those that improve pro-
tein stability may be captured by the network of interactions
inferred from sequence data.

The analysis described here is very closely related to that
used to predict physical contacts in protein structures from
sequence data in widely divergent organisms [16, 15, 17]. In
the contact prediction problem, the strongest couplings {Jij}
(typically assessed using direct information, see Supporting
Information) are taken to indicate contacts. We also observe
some connection between large couplings and contacts: out of
the top 40 couplings, we find 9 are contacts in the protease
dimer, and 6 of these correspond to pairs of sites directly adja-
cent to one another. Approximately 10% of all pairs of sites in
protease are in contact, so contact pairs are enriched among
the strongest couplings, but the correlation is much weaker
than previous results for protein families. However, the ef-
fective capture of links between destabilizing and stabilizing
pairs of mutations discussed above suggests that the model
describes additional structurally and functionally important
relationships between sites other than contacts. One possi-
ble reason for this discrepancy in interpretations versus the
protein contact literature is that the sequences in the present
study are taken only from HIV, rather than from a variety of
evolutionarily diverged organisms as in the contact prediction
cases.

Discussion
We have shown that by analysing sequences of HIV protease
the sites of major resistance mutations can be statistically
identified. While the predictions were only tested against pre-
viously known resistance sites, that the model was completely
blind to resistance data provides confidence that therapeu-
tically useful predictions based on the techniques presented
above may prove accurate.

It is interesting to ask how well the techniques developed
here will generalize. We expect that the answer depends on
the protein studied. It seems possible that some proteins have
fewer sites connected by large couplings, or have lower typical
fitness costs for individual mutations. Drugs targeting such
proteins may not lead to resistance that is predictable using
the methods developed here. One possible example of such
a protein may be HIV reverse transcriptase. For most pro-
tease inhibitors currently in use, resistance typically requires
> 2 mutations on average, but in reverse transcriptase, resis-
tance to most inhibitors evolves with only 1-2 mutations [40].
However, it is also known that there are compensatory inter-

Footline Author PNAS Issue Date Volume Issue Number 5
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actions between resistance mutations in reverse transcriptase
[41], which provides evidence that the present approach will
generalize well. It is possible that analysis of the energy func-
tions of other proteins that are drug targets, including the
strength of the couplings Jij between different sites, can pro-
vide some insight into the emergence of resistance mutations.

It is also worth noting that neither false positive or false
negative resistance mutation predictions necessarily indicate
error in the prevalence landscape, or in the inference from
strong couplings. This is because the association of resistance
mutations with level crossings is simply a heuristic that should
not be expected to apply to all resistance mutations, or to all
level crossings. It is likely that therapeutically targeting sites
associated with inferred level crossings that are not presently
associated with resistance will lead to resistance at those sites.

Our results show that from sequence information alone,
much of the evolutionary response of HIV protease to in-
hibitors can be reproduced. While in the case of protease
inhibitors, the answer was known, the successful retrodictions
indicate that our scientific understanding of HIV evolution is
becoming predictive at the level of individual residue sites. We
anticipate that the methods developed above will contribute
to the development of new treatments, such as integrase in-
hibitors [42], where resistance is not nearly as well character-
ized as in protease.
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