
1 Sequence

1.1 Probability & Information

We are used to dealing with information presented as a sequence of letters. For example,
each word in the English language is composed of m = 26 letters; the text itself includes
also spaces and punctuation marks. Similarly in biology the blueprint for any organism
is the string of bases along DNA, e.g. AGTTCCAG· · · , where at each position there is a
choice of m = 4 possible characters. A portion of this information is then transcribed into
proteins, made of sequences of m = 20 amino acids. Clearly any of these sequences is far
from random and there are constraints and correlations at many scales that conspire to make
them meaningful. Nonetheless, as a means to unravel such constraints, it may be helpful
to start with simple models which assume that sequences are randomly generated according
to simple rules. Comparisons of such models with the actual sequences may then provide
insights that help unravel their meaning.

As a simple example, let us consider a sequence of N characters, each chosen indepen-
dently with probabilities {pα}, with α = 1, 2, · · · , m. (This choice is sometimes referred to as
IID, for identical, independently distributed random variables.) Since the probabilities must
be normalized, we require

m
∑

α=1

pα = 1. (1.1)

The probability of finding a sequence S = {α1, · · · , αN} is then given by the product of
probabilities for its elements, as

p(S|{pα}) =
N
∏

ℓ=1

pαℓ
. (1.2)

How many other sequences S ′ have this exact probability? Clearly as long as the number
of occurrences {Nα} of each character is the same, the probability will be identical, i.e. the
order of the elements does not matter in calculating the probability for this simple model.
The number N of possible permutations of the elements in S is

N =
N !

∏m
α=1Nα!

. (1.3)

This is known as the multinomial coefficient as it occurs in the expression

(p1 + p2 + . . .+ pm)
N =

′
∑

{Nα}

pN1

1 pN2

2 · · · p
Nm

m ×
N !

∏m
α=1Nα!

, (1.4)

where the sum is restricted so that
∑m

α=1Nα = N . Note that because of normalization, both
sides of the above equation are equal 1. The terms within the sum on the right-hand side
are known the multinomial probabilities

p(N1, N2, · · · , Nm) = pN1

1 pN2

2 · · · p
Nm

m ×
N !

∏m

α=1 Nα!
. (1.5)
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With the assumption of independence, the probability of a sequence is determined entirely
by the set {Nα} according to Eq. (1.5). It is easy to check that the most likely set (the mode
{N∗

α}) coincides with the average (mean {〈Nα〉}), and given by

N∗
α = 〈Nα〉 = pαN. (1.6)

Indeed, in the limit of large N , the overwhelming number of sequences generated will have
the above composition. The number of sequences with character counts Nα = pαN is given
by Eq. (1.3). Crudely speaking, this number N helps quantify the “information” contained
within a sequence of length N , as it indicates how many different sequences have the same
composition of characters (and hence the same a priori probability). We expect a good
measure of information content to scale roughly linearly with the message length. (In the
absence of context clues or syntax rules, a message twice as long should carry about twice as
much information.) As a convenient measure, and taking clues from Statistical Mechanics,
we take the logarithm of Eq. (1.3), which gives

logN = logN !−
∑

α

logNα!

≈ N logN −N −
∑

α

(Nα logNα −Nα)

= −N ·
∑

α

(

Nα

N

)

log

(

Nα

N

)

.

(Stirling’s approximation for N ! is used for all Nα ≫ 1.) The above formula is closely related
to the entropy of mixing in thermodynamics, and quite generally for any set of probabilities
{pα}, we can define a mixing entropy

S [{pα}] = −
∑

α

pα log pα. (1.7)

Entropy is typically envisioned as a measure of disorder, and the information content I [{pα}]
(picking up a specific element amongst a jumble of possibilities) is related to −S [{pα}].

Let us illustrate the relations among entropy and information in the context of DNA.
To transmit a sequence, ACTG · · · , along a binary channel we need to encode 2N bits,
as there are (22)N possibilities. However, suppose that from prior analysis of DNA of a
particular organism, we know that a typical sequence of length N has a likely composition
〈NA〉 6= 〈NG〉 6= · · · . Given a priori knowledge of the probabilities pα = Nα/N , the number
of such likely sequences is

N =
N !

∏m

α=1Nα!
≪ (22)N ,

or, upon taking the logarithm,

log2N = −N
∑

α

pα log2 pα < 2N.
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We gain a definite amount of knowledge by having advance insight about {pα}. Instead of
having to specify 2 bits per “letter” of DNA, we can get by with a smaller number. The
information gained (in bits) per letter is given by

I({pα}) = 2−
∑

α

pα log2

(

1

pα

)

. (1.8)

If pα = 1/4, then Eq. (1.8) reduces to 0, which is consistent with the expected no gain in
information. On the other hand, if pA = pT = 0 and pC = pG = 1

2
, then

I = 2−
∑

G,C

1

2
log2 2 = 1 bit per base.

1.2 Evolving Probabilities

As organisms reproduce the underlying genetic information is passed on to subsequent gen-
eration. The copying of the genetic content is not perfect, and leads to a diverse and evolving
population of organisms after many generations. The changes are stochastic, and are thus
appropriately described by evolving probability distributions. After motivating such evolv-
ing probabilities in the contexts of DNA and populations, we introduce the mathematical
tools for treating them.

1.2.1 Mutations

Consider the flow of information from DNA, transcribed to messenger RNA, and eventually
translated to an amino acid chain. Suppose we begin with the DNA fragment

ATTCGCATG ,

which when unwound and transcribed to mRNA, appears as the complementary messenger
chain

UAAGCGUAC .

The protein building machinery (ribosome) translates this to a peptide chain consisting of a
leucine, an alanine, and a tyrosine molecule, symbolically,

LeuAlaTyr .

Suppose, however, that a replication mistake causes the DNA strand’s last “letter” to change.
Instead of ATG, the last codon now reads ATC, which is a “stop signal”

LeuAla STOP.

Such a mutation, let’s say in the middle of a protein chain, will stop the translation process.
The mutation is deleterious and the off-spring will not survive. However, as a result of the
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redundancy in the genetic code, there are also mutations that are synonymous, in that they
do not change the amino acid which eventually results. Because these synonymous muta-
tions do not affect the biological viability of the organism, we can find genes whose exact
DNA varies from individual to individual. This has opened up the field of DNA “fingerprint-
ing:” blood can be matched to a particular individual by comparing such single nucleotide
polymorphisms (SNPs). Non-synonymous mutations are not necessarily deleterious and may
also lead to viable off-spring.

1.2.2 Master Equation

Let us consider the evolution of probabilities in the context of the simplified model intro-
duced earlier of N independently distributed sites. We model mutations by assuming that
at subsequent time-steps (generations) each site may change its state (independent of the
other sites), say from α to β with a transition probability πβα. The q × q such elements
form the transition probability matrix ←→π . (Without the assumption that the sites evolve

independently, we would have constructed a much larger (qN × qN) matrix
←→
Π . With the

assumption of independence, this larger matrix is a direct product of transition matrices for

individual sites, i.e.
←→
Π =←→π 1 ⊗

←→π 2 ⊗ · · · ⊗
←→π N .) Using the transition probability matrix,

we can track the evolution of the probabilities as

pα(τ + 1) =

m
∑

β=1

παβpβ(τ), or in matrix form ~p(τ + 1) =←→π ~p(τ) =←→π τ~p(1), (1.9)

where the last identity is obtained by recursion, assuming that the transition probability
matrix remains the same.

Probabilities must be normalized to unity, and thus the transition probabilities are con-
strained by

∑

α

παβ = 1, or πββ = 1−
∑

α6=β

παβ . (1.10)

The last expression formalizes the statement that ithe probability to stay in the same state
is the complement of the probabilities to make a change. Using this result, we can rewrite
Eq. (1.9) as

pα(τ + 1) = pα(τ) +
∑

β 6=α

[παβpβ(τ)− πβαpα(τ)] . (1.11)

In many circumstances of interest the probabilities change slowly and continuously over time,
in which case we introduce a the time interval ∆t between subsequent generations, and write

pα(τ + 1)− pα(τ)

∆t
=
∑

β 6=α

[παβ

∆t
pβ(τ)−

πβα

∆t
pα(τ)

]

. (1.12)

In the limit of small ∆t, [pα(τ + 1)− pα(τ)]/∆t ≈ dpα/dt, while

παβ

∆t
= Rαβ +O(∆t) for α 6= β, (1.13)
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are the off-diagonal elements of the matrix
←→
R of transition probability rates. The diagonal

elements of the matrix describe the depletion rate of a particular state, and by conservation
of probability must satisfy, as in Eq. (1.10),

∑

α

Rαβ = 0, or Rββ = −
∑

α6=β

Rαβ. (1.14)

We thus arrive at
dpα(t)

dt
=
∑

β 6=α

(Rαβpβ(t)− Rβαpα(t)) , (1.15)

which is known as the Master equation.

1.2.3 Steady state

Because of the conservation of probability in Eqs. (1.10) and (1.14), the transition probability

matrix ←→π , and by extension the rate matrix
←→
R have a left-eingenvector

←−
v∗ = (1, 1, · · · , 1)

with eigenvalues of unity and zero respectively, i.e.

←−
v∗←→π =

←−
v∗ , and

←−
v∗
←→
R = 0. (1.16)

For each eigenvalue there is both a left eigenvector and a right eigenvector. The matrices
←→π and

←→
R thus must also have a right-eigenvector

−→
p∗ such that

←→π
−→
p∗ =

−→
p∗ , and

←→
R
−→
p∗ = 0. (1.17)

The elements of the vector
−→
p∗ represent the steady state probabilities for the process. These

probabilities no longer change with time. From Eq. (1.11) we observe that the steady state
probabilities satisfy the so-called condition of detailed balance,

παβp
∗
β = πβαp

∗
α. (1.18)

The remaining eigenvalues of any transition matrix have magnitude less than unity; they
determine how an initial vector of probabilities approaches steady state.

As a simple example, let us consider a binary sequence (i.e. m = 2) with independent
states A1 or A2 at each site.1 Let us assume that the state A1 can “mutate” to A2 at a rate
µ2, while state A2 may change to A1 with a rate µ1. The probabilities p1(t) and p2(t) now
evolve in time as

d

dt

(

p1
p2

)

=

(

−µ2 µ1

µ2 −µ1

)(

p1
p2

)

. (1.19)

1Clearly with the assumption of independence we are really treating independent sites, and the insistence
on a sequence may appear frivolous. The advantage of this perspective, however, will become apparent in
the next section.
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The above 2× 2 transition rate matrix has the following two eigenvectors
(

−µ2 µ1

µ2 −µ1

)( µ1

µ1+µ2
µ2

µ1+µ2

)

= 0, and

(

−µ2 µ1

µ2 −µ1

)(

1
−1

)

= −(µ1 + µ2)

(

1
−1

)

.

(1.20)

As anticipated, there is an eigenvector
−→
p∗ with eigenvalue of zero; the elements of this vector

are normalized to add to unity, as required for probabilities. We have not normalized the
second eigenvector, whose eigenvalue −(µ1 + µ2) determines the rate of approach to steady
state.

To make this explicit, let us start with a sequence that is purely A1, i.e. with p1 = 1 and
p2 = 0 at t = 0. The formal solution to the linear differential equation (1.19) is

(

p1(t)
p2(t)

)

= exp

[

t

(

−µ2 µ1

µ2 −µ1

)](

p1(0)
p2(0)

)

. (1.21)

Decomposing the initial state as a sum over the eigenvectors, and noting the action of the
rate matrix on each eigenvector from Eq. (1.20), we find

(

p1
p2

)

= exp

[

t

(

−µ2 µ1

µ2 −µ1

)][( µ1

µ1+µ2
µ2

µ1+µ2

)

+
µ2

µ1 + µ2

(

1
−1

)]

=

(

µ1

µ1+µ2
+ e−(µ1+µ2)t µ2

µ1+µ2
µ2

µ1+µ2
− e−(µ1+µ2)t µ2

µ1+µ2

)

. (1.22)

At long times the probabilities to find state A1 or A2 are in the ratios µ1 to µ2 as dictated
by the steady state eigenvector. The rate at which the probabilities converge to this steady
steady is determined by the eigenvalue −(µ1 + µ2).

1.2.4 Enzymatic reaction

The appeal of the formalism introduced above is that the same concepts and mathematical
formulas apply to a host of different situations. For example consider the reactions

A + E ⇋
a′

b′ B + E , (1.23)

where the enzyme E facilitates the conversion of A to B at a rate a′, and the backward
reaction at rate b′. In a well mixed system, the numbers NA and NB = N −NA of the two
species evolve according to the “mean-field” equation

dNA

dt
= −a′NENA + b′NENB = −aNA + b(N −NA) , (1.24)

where a = NEa
′ and b = NEb

′. In this approximation, the fluctuations are ignored and the
mean numbers of constituents evolve to the steady state with N∗

A/N
∗
B = b/a.

However, in a system where the number of particles is small, for example for a variety
of proteins within a cell, the mean number may not be representative, and the entire dis-
tribution is relevant. The probability to find a state with NA = n and NB = N − NA,
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then evolves precisely according to Eq. (1.27) introduced above in the context of mutating
populations. From the equivalence of this equation to the independently evolving binary
states, we know that the final steady steady state solution also describes a chain of binary
elements independently distributed with probabilities p∗A = b/(a + b) and p∗B = a/(a + b).
Hence, the steady state solution to the complicated looking set of equations (1.27) is simply

p∗(n) =

(

N
n

)

bnaN−n

(a + b)N
. (1.25)

In fact, this analogy enables following the full evolution of the probability to this state,
starting let’s say with an initial state that is all A (see Assignment #1).

1.3 Population Genetics

The study of heredity began long before the molecular structure of DNA was understood.
Several thousand years of experience breeding animals and plants led, eventually, to the idea
that hereditary characteristics are passed along from parents to offspring in units, which
are termed genes. While genotype refers to the inherited genetic blueprint of an individual,
phenotype refers to observable traits (such as height or eye color) distinguishing members of
a population.

For theoretical studies, the term locus refers to a basic genetic element that is variable in
a population, for example a single site along DNA, or an amino acid for a protein. Different
states of the locus are called alleles. A particular phenotype may be the outcome of inter-
play amongst several alleles. However, for simplicity we shall typically deal with the most
elementary example of one locus with two possible states, say A1 and A2.

A further complication in relating genotype to phenotype arises since humans, among
other diploid organisms, carry two copies of each gene. (Haploid organisms, such as bac-
teria typically have only one copy.) Thus even in the above simplest case, there are three
possible genotypes: A1A1, A1A2 and A2A2. (A1A1 and A2A2 are homozygotes while A1A2

is heterozygote.) A particular allele can be dominant or recessive; the presence of dominant
allele outweighing the recessive one. For example, suppose that A1 codes for brown eyes,
while the variant A2 leads to blue eyes. Brown eyes turn out to be dominant in humans, so
a person with an A1A2 mix of alleles has brown irises, just like one whose alleles read A1A1.
Only an A2A2 individual develops blue irises.

It is common in genetics to assume a fixed population size N , and inquire about the
evolution of its genetic makeup with time. For example, within a haploid population we may
chart the changes of the allele fraction x1 ≡ N1/N with the number of generations. Such
quantities evolve from an interplay of mutation, reproduction, and selection, as discussed in
the following sections.

1.3.1 Mutation

In a previous example, we considered the case of a binary sequence of length N evolving by
potential mutations on each site. From this perspective the model represents a collection of
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N independent binary loci. In fact, with a simple reinterpretation, the same mathematical
model can represent a single allele in a population of fixed size as follows. Let us assume
that A1 and A2 denote two forms of a particular allele. In each generation any individual is
replaced by an offspring that mostly retains its progenitor’s allele, but may mutate to the
other form at some rate. In this model the total population size is fixed to N , while the
sub-populations N1 and N2 may vary. A particular state of the population is thus described
by N1 = n and N2 = N − n, and since n = 0, 1, · · · , N there are N + 1 possible states. At a
particular time, the system may be in any one of these states with probability p(n, t), and
we would like to follow the evolution of these probabilities.

After an individual replication event (A1 to A1 at rate −µ2, A1 to A2 at rate µ2, A2 to
A1 at rate µ1, or A2 to A2 at rate −µ1), the number N either stays the same, or changes
by unity. Thus the transition rate matrix only has non-zero terms along or adjoining to the
diagonal. For example

Rn,n+1 = µ2(n + 1), and Rn,n−1 = µ1(N − n+ 1), (1.26)

where the former indicates that a population of n+ 1 A1s can decrease by one if any one of
them mutates to A2, while the population a population with n−1 A1s increases by one if any
of A2s mutates to A1. The diagonal terms are obtained from the normalization condition in
Eq. (1.14) resulting in the Master equation

dp(n, t)

dt
= µ2(n+ 1)p(n+ 1) + µ1(N − n+ 1)p(n− 1)− µ2np(n)− µ1(N − n)p(n) , (1.27)

for 0 < n < N , and with boundary terms

dp(0, t)

dt
= µ2p(1)− µ1Np(0), and

dp(N, t)

dt
= µ1p(N − 1)− µ2Np(N) . (1.28)

1.3.2 Reproduction

The dynamics of a population depends upon births of new individuals, with possibly novel
mutations. To maintain a constant population size this must be accompanied by death of
members of previous generations. Even without mutations (µ1 = µ2 = 0 in the previous
example), reproduction by birth/death introduces stochasticity in the dynamics (say of the
proportion x1 of allele A1). To emphasize the role of reproduction, in this section we shall
ignore the role of mutations, assuming a preexisting diversity of alleles in the population.

Hardy-Weinberg equilibrium: Within diploid organisms, sex and mating present addi-
tional complications, which we shall ignore by adapting a gene-centered perspective. To see
why this may be justified in at least some limit, consider a very large population (N →∞)
where diploid organisms mate randomly with no preference for phenotypic or geographic
considerations. The initial population is characterized by the proportions x11, x12, and x22

of the genotypes A1A1, A1A2 and A2A2, with x11 + x12 + x22 = 1. The composition of the
next generation is obtained by considering all possible matings and their outcomes. For
example, a pairing of two homozygotes A1A1 individuals occurs with probability x2

11, and
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leads to A1A1 offspring. However, a mating of A1A1 with A1A2, with probability x11x12 may
lead to either an A1A1 offspring, or an A1A2 offspring. Assuming no selective advantage for
either such offspring, each happens with probability of 1/2. Similarly, the pairing of two
heterozygotes A1A2 may result in A1A1, A1A2 and A2A2 with probabilities of 1/4, 1/2, and
1/4, respectively. Including all 9 (3× 3) pairing, we arrive at

x′
11 = x2

11 + 2 ·
x11x12

2
+

x2
12

4
,

x′
12 = 2x11x22 + 2 ·

x11x12

2
+ 2 ·

x22x12

2
+

x2
12

2
,

x′
22 = x2

22 + 2 ·
x22x12

2
+

x2
12

4
.

(1.29)

(Note that pairings of distinct genotypes involve an additional factor of two, from the de-
generacy in their order of selection.) It is easy to check that the above results are completely
equivalent to x′

1 = x1 and x′
2 = x2, where x1 = x11 + x12/2 and x2 = x22 + x12/2 = 1 − x1

are the the proportions of alleles A1 and A2 in the diploid population. (For example, the
first equation above can be recast as x′

11 = x
′2
1 = x2

1.) Thus, within one generation the
alleles are mixed by random reproduction such that the proportion of the three possible
genotypes merely reflects the proportion of the allele in the entire population. This so-called
Hardy-Weinberg equilibrium justifies the gene-centered perspective as a theoretical limit. In
fact, within a population of finite size N the frequency x1 will change stochastically due to
random reproduction events as discussed next.

Fisher-Wright (binomial) process: Consider a population with two forms of an allele, say
A1 and A2 corresponding to blue or brown eye colors. The probability for a spontaneous
mutation to occur that changes the allele for eye color is extremely small, and effectively
µ1 = µ2 = 0 in Eq. (1.27). Yet the proportions of the two alleles in the population does
change from generation to generation. One reason is that some individuals do not reproduce
and leave no descendants, while others reproduce many times and have multiple descendants.
This is itself a stochastic process and the major source of rapid changes in allele proportions.
In principle this effect also leads to variations in population size. In practice, and to simplify
computations, it is typically assumed that the size of the population is fixed.

Continuing with the gene-centered perspective, consider the following, so called Fisher-
Wright process starting from the 2N alleles in a diploid population of size N . In the model of
binomial selection, the process or reproduction from one generation to the next is assumed to
be as follows: One allele is random selected, an exact copy is made for the next generation,
while the original allele is returned to the original pool. This process is repeated 2N times
to produce the next generation. Let us assume that in the initial population of 2N alleles,
N1 = n = 2Nx1 are A1, and the remaining 2N − n are A2. The population at the next
generation may have m individuals with allele A1, with (transition) probability

Πmn =
( n

2N

)m (

1−
n

2N

)2N−m
(

2N
m

)

. (1.30)
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The process leading to such probability is like reaching into a bag with n balls of blue color
and 2N − m balls of brown color, recording the color of the selected ball and throwing it
back to the bag. After repeating such selection N times, the probability that the blue color
is recorded m times is given by the above binomial distribution. (The probability of getting
a blue ball in each trial is simply n/2N , and 1− n/2N for brown.) On average, the number
of alleles does not change, since 〈m〉 = n from the binomial distribution (i.e. 〈x′

1〉 = x1

consistent with Hardy-Weinberg equilibrium). However, there is now a range of possible
values of m; clearly the stochasticity arises since some balls can be picked up multiple times
(multiple descendants), while some balls are never picked (no offspring). The mathematical
consequences of Eq. (1.30) will be explored later on.

1.3.3 Selection

We assumed so far that the two alleles are completely equivalent, corresponding to neutral
evolution. It is likely that one allele is better in the sense of conferring a selective advantage
to the individual carrying it. The selective advantage of a genotype is parameterized through
an associated fitness that quantifies its number of likely progeny (relative to other genotypes).
In our diploid binary allele example, we may associate fitness values of f11, f12 and f22 to
the three genotypes A1A1, A1A2 and A2A2, respectively. Indicating the proportion of allele
A1 in the population by x ≡ x1 = n/2N , the average fitness is given by

f(x) = x2f11 + 2x(1− x)f12 + (1− x)2f22 . (1.31)

The expected numbers of off-spring for the three genotypes are thus f11/f , f12/f and f22/f ,
respectively.

After one generation, the frequency x on average changes to

〈x′〉 =
f11

f
x2 +

1

2

f12

f
· 2x(1− x) . (1.32)

The expected change in the proportion of the allele is thus given by

∆x ≡ 〈x′〉 − x =
1

f

[

f11x
2 + f12x(1− x)− fx

]

=
1

f

[

f11x
2 + f12x(1− x)− f11x

3 − 2f12x
2(1− x)− f22x(1 − x)2

]

=
1

f

[

f11x
2(1− x) + f12x(1− x)(1− 2x)− f22x(1 − x)2

]

=
x(1− x)

f

[

1

2

df(x)

dx

]

=
x(1− x)

2

d ln f

dx
. (1.33)

The above result, known as Wright’s equation implies that allele frequencies always change
so as to maximize the average fitness function f(x). A corresponding result holds for a
multi-loci situation with a corresponding fitness landscape f(x1, x2, · · · , xn).
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For ease of computations, in the following sections we shall write the selective advantage
for allele A1 ias

∆x =
x(1− x)

2
s , (1.34)

typically ignoring any x dependence of s.

1.4 Continuum Limit

1.4.1 Forward Kolmogorov equation

Let us now consider a more general case where the states are still ordered along a line, such
as in the previous examples with population size n = 0, 1, 2 · · · , N . The general form of the
Master equation is

dpn
dt

= +
∑

m6=n

Rnmpm −
∑

m6=n

Rmnpn . (1.35)

In many relevant circumstances the number of states is large, and the probability varies
smoothly from one site to the next. In such cases it is reasonable to replace the discrete
index n with a continuous variable x, the probabilities pn(t) with a probability density
p(x, t), and the rates Rmn with a rate function R(x′, x). The rate function R depends on
two variables x and x′, denoting respectively the start and end positions for a transition
along the line. We have the option of redefining the two arguments of this function, and it
is useful to reparameterize it as R(x′ − x, x) indicating the rate at which, starting from the
position x, a transition is made to a position ∆x = x′−x away. As in the case of mutations,
there is usually a preference for changes that are local, i.e. the rates decay rapidly when the
separation x′ − x becomes large.

These transformations and relabelings,

n→ x, pn(t)→ p(x, t), Rmn → R(x′ − x, x) , (1.36)

enable us to transform Eq. (1.35) to the continuous integral equation

∂

∂t
p(x, t) = +

∫ ∗

dx′R(x− x′, x′)p(x′, t)−

∫ ∗

dx′R(x′ − x, x)p(x, t) . (1.37)

Some care is necessary in replacing the sums with integrals, as the summations in in Eq. (1.35)
exclude the term with m = n, To treat this restriction in the continuum limit, we focus on
an interval y around any point x, and consider the change in probability due to incoming
flux from x− y and the outgoing flux to x+ y, thus arriving at

∂

∂t
p(x, t) =

∫

dy [R(y, x− y)p(x− y)−R(y, x)p(x)] . (1.38)

Note that the contribution for y = 0 is now clearly zero. The flux difference for small y
is now estimating by a Taylor expansion of the first term in the square bracket, but only
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with respect to the location of the incoming flux, treating the argument pertaining to the
separation of the two points as fixed, i.e.

R(y, x− y)p(x− y) = R(y, x)p(x)− y
∂

∂x
(R(y, x)p(x)) +

y2

2

∂2

∂x2
(R(y, x)p(x)) + · · · . (1.39)

While formally correct, the above expansion is useful only in cases where typical values of y
are small (i.e. only almost local transitions occur). Keeping terms up to the second order,
Eq. (1.38) can be rewritten as

∂

∂t
p(x, t) = −

∫

dy y
∂

∂x
(R(y, x)p(x)) +

1

2

∫

dy y2
∂2

∂x2
(R(y, x)p(x)). (1.40)

The integrals over y can be taken inside the derivatives with respect to x,

∂

∂t
p(x, t) = −

∂

∂x

[

p(x)

(
∫

dy yR(y, x)

)]

+
1

2

∂2

∂x2

[

p(x)

(
∫

dy y2R(y, x)

)]

, (1.41)

after which we obtain

∂p(x, t)

∂t
= −

∂

∂x
[v(x) p(x, t)] +

∂2

∂x2
[D(x)p(x, t)] . (1.42)

We have introduced

v(x) ≡

∫

dy yR(y, x) =
〈∆(x)〉

∆t
, (1.43)

and

D(x) ≡
1

2

∫

dy y2R(y, x) =
1

2

〈∆(x)2〉

∆t
. (1.44)

Equation (1.42) is a prototypical description of drift and diffusion which appears in many
contexts. The drift term v(x) expresses the rate (velocity) with which transitions change
(on average) the position from x. Given the probabilistic nature of the process, there are
variations in the rate of change of position captured by the position dependent diffusion
coefficient D(x). The drift–diffusion equation is known as the forward Kolmogorov equation
in the context of populations. As a description of random walks it appeared earlier in physics
literature as the Fokker–Planck equation.

1.4.2 Population dynamics

Mutation: In the context of population dynamics, the relevant variable is the allele frequency
x = n/2N , such that in the continuum limit x is limited to the interval [0, 1]. The rates in
Eq. (1.26) change n by ±1, and hence

v(x) =
〈∆n〉

2N
=

Rn+1,n × (+1) +Rn−1,n × (−1)

2N
=

1

2N
[µ1(N − n)− µ2n] = µ1(1−x)−µ2x ,

(1.45)
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while

D(x) =
〈∆n2〉

2(2N)2
=

Rn+1,n +Rn−1,n

8N2
=

1

8N2
[µ1(N − n) + µ2n] =

µ1(1− x) + µ2x

8N
. (1.46)

Reproduction: The process of binomial reproduction in the absence of mutation and se-
lection, was introduced before and leads to Eq. (1.30) for the probability Rmn to obtain the
random variable m, given an initial value of n. It is easy to deduce from standard properties
of the binomial distribution that

〈m〉 = 2N ×
n

2N
= n , i.e 〈(m− n)〉 = 0 , (1.47)

while
〈

m2
〉

c
=
〈

(m− n)2
〉

= 2N ×
n

2N

(

1−
n

2N

)

. (1.48)

We can construct a continuum evolution equation by setting x = n/N ∈ [0, 1], and replacing
p(n, t+1)− p(n, t) ≈ dp(x)/dt, where t is measured in number of generations. Clearly, from
Eq. (1.47), there is no drift

v(x) = 〈(m− n)〉 = 0 , (1.49)

while the diffusion coefficient is given by

Ddiploid(x) =
1

4N
x(1− x) . (1.50)

(For Haploids we merely need to replace 2N with N in the above equations.)
Chemical analog & Selection: Through the reactions in Eq. (1.23), we introduced a chemi-

cal mixture that mimicks a mutating population. Consider a system where a reaction between
molecules A and B can lead to two outcomes:2

A+ B ⇀c A+ A or A + B ⇁d B + B , (1.51)

at rates c and d. In a “mean-field” approximation the number of A molecules changes as

dNA

dt
= (c− d)NANB = (c− d)NA(N −NA) . (1.52)

Equation (1.52) predicts steady states N∗
A = 0 for c < d, N∗

A = N for c > d, while any com-
position is permitted for the symmetric case of c = d. As we shall demonstrate, fluctuations
modify the latter conclusion.

As before, let us denote NA = n, NB = N − NA, and follow the change in composition
after a single reaction. The number of A species may change by ±1 with rates

Rn,n+1 = d(n+ 1)(N − n− 1), and Rn,n−1 = c(n− 1)(N − n+ 1) , (1.53)

2These reactions mimic an important element of the mating process which stochastically modifies the
proportion of alleles in a fixed–size population: The offspring from mating a heterozygote (a diploid organ-
ism with different alleles A1 and A2) with a homozygote (say with two copies of allele A1) may be either
heterozygote (A1A2) or homozygote (A1A1).
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where the product is over the number of possible pairs of A-B particles that can participate
in the reaction. The diagonal terms are again obtained from the normalization condition in
Eq. (1.14) resulting in the Master equation

dp(n, t)

dt
= d(n+1)(N−n−1)p(n+1)+c(n−1)(N−n+1)p(n−1)−dn(N−n)p(n)−cn(N−n)p(n) ,

(1.54)
for 0 < n < N , and with boundary terms

dp(0, t)

dt
= d(N − 1)p(1), and

dp(N, t)

dt
= c(N − 1)p(N − 1) . (1.55)

When the number N is large, it is reasonable to take the continuum limit and construct
a Kolmogorov equation for the fraction x = n/N ∈ [0, 1]. The rates in Eq. (1.53) change n
by ±1, and hence

v(x) =
〈∆n〉

N
=

Rn+1,n − Rn−1,n

N
=

1

N
[cn(N − n)− dn(N − n)]

= N(c− d)x(1− x) , (1.56)

while

D(x) =
〈∆n2〉

2N2
=

Rn+1,n +Rn−1,n

2N2
=

1

2N2
[cn(N − n) + dn(N − n)]

=
c+ d

2
x(1− x) . (1.57)

Comparison with Eqs.(1.49) and Eq. (1.50) indicates that the above reaction has the same
behavior as binomial selection provided that c = d = 1/(4N). Indeed the superficial differ-
ence in factor of N between the two cases is because in the latter we followed the reactions
one at a time (at rate c = d), while in the former we computed the transition probabilities
after a whole generation (N steps of reproduction and removal). The selection process char-
acterized by Eq.(1.30) treats the two alleles as completely equivalent. Including, selection
as in Eq. (1.34) leads to a form similar to Eq. (1.51) with c 6= d, related to the selection
parameter s by

c =
1

4N
(1 + s) and d =

1

4N
(1− s) . (1.58)

In the following, we shall employ the nomenclature of population genetics, such that

v(x) =
s

2
x(1− x) , and D(x) =

1

4N
x(1− x) . (1.59)

1.4.3 Steady states

While it is usually hard to solve the Kolmogorov equation as a function of time, it is relatively
easy to find the steady state solution to which the population settles after a long time. Let
us denote the steady-state probability distribution by p∗(x), which by definition must satisfy

∂p∗(x)

∂t
= 0. (1.60)
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Therefore, setting the right-hand side of Eq. (1.42) to zero, we get

−
∂

∂x
[v(x)p∗(x)] +

∂2

∂x2
[D(x)p∗(x)] = 0. (1.61)

The most general solution admits steady states in which there is an overall current and the
integral over x of the last equation leads to a constant flow in probability. It is not clear how
such a circumstance may arise in the context of population genetics, and we shall therefore
focus on circumstances where there is no probability current, such that

−v(x)p∗(x) +
∂

∂x
(D(x)p∗(x)) = 0. (1.62)

We can easily rearrange this equation to

1

D(x)p∗
∂

∂x
(D(x)p∗(x)) =

∂

∂x
ln (D(x)p∗(x)) =

v(x)

D(x)
. (1.63)

This equation can be integrated to

lnD(x)p∗(x) =

∫ x

dx′ v(x
′)

D(x′)
+ constant, (1.64)

such that

p∗(x) ∝
1

D(x)
exp

[
∫ x v(x′)

D(x′)

]

, (1.65)

with the proportionality constant set by boundary conditions.
Let us examine the case of the dynamics of a fixed population, including mutations, and

reproduction with selection. Adding the contributions in Eqs. (1.45), (1.46) and (1.59), we
have

v(x) =
s

2
x(1− x) + µ1(1− x)− µ2x , (1.66)

while

D(x) =
1

4N
x(1− x) +

µ1(1− x) + µ2x

2N
≈

1

4N
x(1− x) . (1.67)

The last approximation of ignoring the contribution from mutations to diffusion is common
to population genetics, and well justified since typically the mutation rates are much less
than unity. It enables a closed form solution to the steady state, as

logD(x)p∗(x) =

∫ x

dx′ v(x
′)

D(x′)

= 4N

∫ x

dx′

[

µ1

x′
−

µ2

1− x′
+

s

2

]

= 4N
[

µ1 ln x+ µ2 ln(1− x) +
s

2
x
]

+ constant,
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resulting in

p∗(x) ∝
1

x(1− x)
× x4Nµ1 × (1− x)4Nµ2 × e2Nsx . (1.68)

In the special case of no selection, s = 0 and (for convenience) µ1 = µ2 = µ, the steady-
state solution (1.68) simplifies to

p∗(x) ∝ [x(1− x)]4Nµ−1 . (1.69)

The shape of the solution is determined by the parameter 4Nµ. If 4Nµ > 1, then the
distribution has a peak at x = 1/2 and diminishes to the sides. On the other hand, if the
population is small and 4Nµ < 1, then p∗(x) has peaks at either extreme—a situation where
genetic drift is dominant.
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