Plan

- Problem of sequence alignment
 - Algorithm
 - Global Alignment
 - Local Alignment
- Substitution matrices
- Fast database search: BLAST

Sequence Alignment

The Problem: Given:

- $\mathbf{a} = \texttt{MVPAGIW}$
- $\mathbf{b} = \mathtt{MVAGLRW}$

find *the best* alignment:

- $\mathbf{a}^* = \texttt{MVPAGI-W}$
- $\mathbf{b}^* = \texttt{MV-AGLRW}$
- 6 matches
- 5 identities
- 1 substitution (I \leftrightarrow L)
- 2 gaps (P \leftrightarrow and R \leftrightarrow –)

Scoring

S = #identities $+\mu \#$ substitutions $-\delta \#$ gaps

Number of possible alignments

$$\Omega = \binom{M+N}{N} = \frac{(M+N)!}{M!N!}$$
$$\Omega(M = N = 100) \approx 10^{59}$$

BUT: Dynamic programming can find the optimal solution!

(Due to local additivity of the scoring function and the lack of "loops").

Given:

Sequences: $\mathbf{a} = a_1 a_2 \cdots a_n$; $\mathbf{b} = b_1 b_2 \cdots b_m$. Matrix: s(x, y) and gap penalty s(x, -) = s(-, x) = g(x)Find:

$$S(\mathbf{a}, \mathbf{b}) = max \sum_{i=1}^{L} s(a_i^*, b_i^*)$$

Solution:

1. Define
$$S_{ij} = S(a_1a_2 \cdots a_n, b_1b_2 \cdots b_m)$$

and set $S_{00} = 0$,
 $S_{0j} = \sum_{k=1}^{j} s(-, b_k)$, and $S_{i0} = \sum_{k=1}^{i} s(a_k, -)$
2.

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

$$\cdots a_i \cdots a_i \cdots - \cdots b_j$$

Given:

Scoring matrix Sequences: $\mathbf{a} = a_1 a_2 \cdots a_n$; $\mathbf{b} = b_1 b_2 \cdots b_m$. Matrix: s(x, y) and gap penalty s(x, -) = s(-, x) = g(x)Find:

$$S(\mathbf{a}, \mathbf{b}) = max \sum_{i=1}^{L} s(a_i^*, b_i^*)$$

Solution:

1. Define
$$S_{ij} = S(a_1a_2 \cdots a_n, b_1b_2 \cdots b_m)$$

and set $S_{00} = 0$,
 $S_{0j} = \sum_{k=1}^{j} s(-, b_k)$, and $S_{i0} = \sum_{k=1}^{i} s(a_k, -)$
2.

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

$$\cdots a_i \cdots a_i \cdots - \cdots b_j$$

Given:

Scoring
matrix Sequences:
$$\mathbf{a} = a_1 a_2 \cdots a_n$$
; $\mathbf{b} = b_1 b_2 \cdots b_m$.
Matrix: $s(x, y)$ and gap penalty $s(x, -) = s(-, x) =$
 $g(x)$
Find: Gap

$$S(\mathbf{a}, \mathbf{b}) = max \sum_{i=1}^{L} s(a_i^*, b_i^*)$$

Solution:

1. Define
$$S_{ij} = S(a_1a_2 \cdots a_n, b_1b_2 \cdots b_m)$$

and set $S_{00} = 0$,
 $S_{0j} = \sum_{k=1}^{j} s(-, b_k)$, and $S_{i0} = \sum_{k=1}^{i} s(a_k, -)$
2.

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

$$\cdots a_i \cdots a_i \cdots - \cdots b_j$$

Given:

Scoring
matrix Sequences:
$$\mathbf{a} = a_1 a_2 \cdots a_n$$
; $\mathbf{b} = b_1 b_2 \cdots b_m$.
Matrix: $s(x, y)$ and gap penalty $s(x, -) = s(-, x) =$
 $g(x)$
Find: Gap

$$S(\mathbf{a}, \mathbf{b}) = max \sum_{i=1}^{L} s(a_i^*, b_i^*)$$

Solution:
1. Define
$$S_{ij} = S(a_1a_2 \cdots a_n, b_1b_2 \cdots b_m)$$

and set $S_{00} = 0$,
 $S_{0j} = \sum_{k=1}^{j} s(-, b_k)$, and $S_{i0} = \sum_{k=1}^{i} s(a_k, -)$
2.
 $\left(S_{i-1, i-1} + s(a_i, b_i)\right)$,

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

$$\cdots a_i \cdots a_i \cdots - \cdots b_j$$

Given:

Scoring
matrix Sequences:
$$\mathbf{a} = a_1 a_2 \cdots a_n$$
; $\mathbf{b} = b_1 b_2 \cdots b_m$.
Matrix: $s(x, y)$ and gap penalty $s(x, -) = s(-, x) =$
 $g(x)$
Find: Gap

$$S(\mathbf{a}, \mathbf{b}) = max \sum_{i=1}^{L} s(a_i^*, b_i^*)$$

Solution:
1. Define
$$S_{ij} = S(a_1a_2 \cdots a_n, b_1b_2 \cdots b_m)$$

and set $S_{00} = 0$,
 $S_{0j} = \sum_{k=1}^{j} s(-, b_k)$, and $S_{i0} = \sum_{k=1}^{i} s(a_k, -)$
2.
 $S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$ Forward
propagation
Proof:

$$\cdots a_i \cdots a_i \cdots - \cdots b_j$$

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

Score of the optimal alignment ends at (i,j)

that

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

Match/mismatch

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

Match/mismatch Gap in sequence #2

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

Match/mismatch Gap in sequence #2 Gap in sequence #1

_{i_1} A

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ S_{i-1,j} + s(a_i, -), \\ S_{i,j-1} + s(-, b_j) \end{cases}$$

Match/mismatch Gap in sequence #2 Gap in sequence #1

Algorithm

- 1. Build Sij matrix
- 2. Trace it back
- Memory: O(NM)
- Time: O(NM)
- There are EXACT algorithms that take less memory O(N).
- There are APPROXIMATE algorithms that take less time O(kN) or aN+O(pN).

Global Alignment (cont)

Arbitrary form of gap penalty g(k), where k is the length of the gap

Solution:

$$\begin{split} S_{00} &= 0, \; S_{0j} = g(j), \; \text{and} \; S_{i0} = g(i) \\ S_{ij} &= \max \left\{ \begin{array}{l} S_{i-1,j-1} + s(a_i,b_j), \\ \max_{1 \leq k \leq j} \{S_{i-k,j} + g(k)\}, \\ \max_{1 \leq l \leq i} \; \{S_{i,j-l} + g(l)\} \end{array} \right. \end{split}$$

Computation time $O(n^3)$

Boundary conditions

- Global
- Local
- Global-local

Global alignment

and set
$$S_{00} = 0$$
,
 $S_{0j} = \sum_{k=1}^{j} s(-, b_k)$, and $S_{i0} = \sum_{k=1}^{i} s(a_k, -)$

GGATCC . . ---AAT . . Gap penalty at the head

Local Alignment

<u>IDEA</u>: No penalty for gaps at the ends

Local Alignment

Local Alignment Smith-Waterman No penalties for head/tail gaps!

Solution: $S_{00} = S_{0j} = S_{i0} = 0$

$$S_{ij} = \max \begin{cases} 0\\S_{i-1,j-1} + s(a_i, b_j),\\ \max_{1 \le k \le j} \{S_{i-k,j} + g(k)\},\\ \max_{1 \le l \le i} \{S_{i,j-l} + g(l)\} \end{cases}$$

Start trace-back from $\max\{S_{ij}\}$

Global-local Alignment

IDEA: No penalty for gaps at the ends of ONE SEQUENCE

Fitting one sequence into another (Global-

Local Alignment)

No penalties for head/tail gaps for one sequence

Solution:

$$S_{00} = S_{0j} = 0$$
, but $S_{i0} = g(i)$

$$S_{ij} = \max \begin{cases} S_{i-1,j-1} + s(a_i, b_j), \\ \max_{1 \le k \le j} \{S_{i-k,j} + g(k)\}, \\ \max_{1 \le l \le i} \{S_{i,j-l} + g(l)\} \end{cases}$$

Start trace-back from $\max\{S_{nj}\}$

Scoring/substitution matrices

Realistic Scoring

3

Models for sequence evolution (DNA): Each site of the DNA sequence evolves according to a Markov Chain with state space $\{A, C, G, T\}$.

MARKOV CHAIN

Let $X_0, X_1, X_2, X_3, \ldots$ be a Markov chain with state space S, for example $S = \{a, c, g, t\}$.

TRANSITION MATRIX

$$P = \begin{pmatrix} p_{a,a} & p_{a,c} & p_{a,g} & p_{a,t} \\ p_{c,a} & p_{c,c} & p_{c,g} & p_{c,t} \\ p_{g,a} & p_{g,c} & p_{g,g} & p_{g,t} \\ p_{t,a} & p_{t,c} & p_{t,g} & p_{t,t} \end{pmatrix}$$

Here

$$p_{i,j} = \mathbf{P}(X_{n+1} = j | X_n = i)$$

for $n \ge 0$, where $i, j \in \{a, c, g, t\}$.

Simplest model for sequence evolution: Jukes-Cantor

$$\begin{pmatrix} p_{a,a} & p_{a,c} & p_{a,g} & p_{a,t} \\ p_{c,a} & p_{c,c} & p_{c,g} & p_{c,t} \\ p_{g,a} & p_{g,c} & p_{g,g} & p_{g,t} \\ p_{t,a} & p_{t,c} & p_{t,g} & p_{t,t} \end{pmatrix} = \begin{pmatrix} 1-3\alpha & \alpha & \alpha & \alpha \\ \alpha & 1-3\alpha & \alpha & \alpha \\ \alpha & \alpha & 1-3\alpha & \alpha \\ \alpha & \alpha & \alpha & 1-3\alpha \end{pmatrix}$$

The stationary distribution is $\vec{\pi} = (0.25, 0.25, 0.25, 0.25).$

The parameter α depends on the time scale

(if the unit time is 100.000 generations, α would take a smaller value than if the unit time were chosen as 200.000 generations).

Necessary: $\alpha < 1/3$.

The *n*-step transition probabilities can be computed: $\mathbf{P}(X_n = i | X_0 = i) = 0.25 + 0.75 \cdot (1 - 4\alpha)^n$, for $i \in \{a, c, g, t\}$. $\mathbf{P}(X_n = j | X_0 = i) = 0.25 - 0.25 \cdot (1 - 4\alpha)^n$, for $i, j \in \{a, c, g, t\}, i \neq j$. **Underlying model**: Each site in the sequence evolves *according to a Markov chain*, and *independently* of the other sites.

All the Markov chains have the *same* transition matrix P (matrix with dimension 20×20).

FROM TRANSITION MATRIX TO ALIGNMENT SCORES

Two hypothesis:

- 1. Sequences S1 and S2 are unrelated (=random matching)
- 2. Sequences S1 and S2 have a common ancestor.

Score = Log (P1/P2)

P1 - probability of observed alignment given model 1P2 - probability of observed alignment given model 2

Dayhoff et al. (1978) used ungapped multiple alignments of certain well-conserved regions from closely related proteins.

(71 groups of proteins, all in all 1572 changes.)

Dr. Margaret Oakley Dayhoff (1925-1983)

The most parsimonious tree

Figure 79. Matrix of accepted point mutations derived from the tree of Figure 78.

The number of accepted mutations (A_{ij})

A	Ala																	V			
R	Arg	30																/			
N	Asn	109	17																		
C	Asp	154	C	532																	
С	Cys	33	10	0	0																
Q	Gln	93	120	50	76	0															
Ε	Glu	266	Û	94	831	0	422														
G	G1 y	579	10	156	162	10	30	112													
н	His	21	163	226	43	10	243	23	10												
1	Пe	66	20	36	13	17	8	35	0	З											
L	Leu	95	1-	37	0	0	75	15	17	40	253										
к	Lys	57	477	322	85	0	147	104	50	23	43	39									
м	Met	29	1,	0	0	C	20	7	7	ດ	57	207	90								
F	Phe	20	-	7	0	0	0	0	17	20	90	167	0	17							
Ρ	Pro	345	67	27	10	10	93	40	49	50	7	43	43	4	7	Ì					
\$	Ser	772	137	432	98	117	47	86	450	26	20	32	168	20	40	269					
Т	Thr	590	20	169	57	10	37	31	50	14	129	52	200	28	10	73	696				
W	Irp	0	27	3	0	0	c	0	Q	З	0	13	e	0	10	0	17	C]		
Ŷ	Iyr	20	3	36	0	30	0	10	0	40	13	23	10	0	260	0	22	23	6	1	
¥	Val	365	20	13	17	33	27	37	97	30	661	303	17	77	10	·50	43	186	0	17	
		4	P	N	D	с	Q	Ε	G	H	1	l	ĸ	М	۶	p	S	T	W	Y	
		A!a	Arg	Asn	Asp	Cys	Gln	Glu	G1 y	His	Ile	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val

Realistic Scoring

3

Database searches

Problem:

Alignment of a gene 1000bp against the Human genome $3 \cdot 10^9$ bp ... 10^{12} operations...

- protein against a database of 10^5 proteins
 - -> 10⁹ operations
- genome against genome
 - -> 10¹⁴ operations

NEED FASTER ALGORITHMS

Database searches

BLAST

- Pre-processing: Low Complexity Regions (LCRs)
- Scanning for common words (hits)
- Two-hit heuristic
- HSP (high-scoring segment pair) > S
- Constrained gaped extension
- E-value

WARNING: The final alignment is not very good!

