
I. Dissipative Dynamics

I.A Brownian Motion of a Particle

Observations under a microscope indicate that a dust particle in a liquid drop under-

goes a random jittery motion. This is because of the random impacts of the much smaller

fluid particles. The theory of such (Brownian) motion was developed by Einstein in 1905

and starts with the equation of motion for the particle. The displacement ~x(t), of a particle

of mass m is governed by,

m~̈x = − ~̇x

µ
− ∂V

∂~x
+ ~frandom(t). (I.1)

The three forces acting on the particle are:

(i) A friction force due to the viscosity of the fluid. For a spherical particle of radius R,

the mobility in the low Reynolds number limit is given by µ = (6πη̄R)−1, where η̄ is

the specific viscosity.

(ii) The force due to the external potential V(~x), e.g. gravity.

(iii) A random force of zero mean due to the impacts of fluid particles.

The viscous term usually dominates the inertial one (i.e. the motion is overdamped),

and we shall henceforth ignore the acceleration term. Eq.(I.1) now reduces to a Langevin

equation,

~̇x = ~v(~x) + ~η(t), (I.2)

where ~v(~x) = −µ∂V/∂~x is the deterministic velocity. The stochastic velocity, ~η(t) =

µ~frandom(t), has zero mean,

〈~η(t)〉 = 0. (I.3)

It is usually assumed that the probability distribution for the noise in velocity is Gaussian,

i.e.

P [~η(t)] ∝ exp

[

−
∫

dτ
η(τ)2

4D

]

. (I.4)

Note that different components of the noise, and at different times, are independent, and

the covariance is

〈ηα(t)ηβ(t′)〉 = 2Dδα,βδ(t − t′). (I.5)
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The parameter D is related to diffusion of particles in the fluid. In the absence of any

potential, V(~x) = 0, the position of a particle at time t is given by

~x(t) = ~x(0) +

∫ t

0

dτ~η(τ).

Clearly the separation ~x(t) − ~x(0) which is the sum of random Gaussian variables is itself

Gaussian distributed with mean zero, and a varaince

〈

(~x(t) − ~x(0))
2
〉

=

∫ t

0

dτ1dτ2 〈~η(τ1) · ~η(τ2)〉 = 3 × 2Dt.

For an ensemble of particles released at ~x(t) = 0, i.e. with P (~x, t = 0) = δ3(~x), the

particles at time t are distributed according to

P (~x, t) =

(
1√

4πDt

)3/2

exp

[

− x2

4Dt

]

,

which is the solution to the diffusion equation

∂P
∂t

= D∇2P.

A simple example is provided by a particle connected to a Hookian spring, with

V(~x) = Kx2/2. The deterministic velocity is now ~v(~x) = −µK~x, and the Langevin

equation, ~̇x = −µK~x + ~η(t), can be rearranged as

d

dt

[
eµKt~x(t)

]
= eµKt~η(t). (I.6)

Integrating the equation from 0 to t yields

eµKt~x(t) − ~x(0) =

∫ t

0

dτeµKτ~η(τ), (I.7)

and

~x(t) = ~x(0)e−µKt +

∫ t

0

dτe−µK(t−τ)~η(τ). (I.8)

Averaging over the noise indicates that the mean position,

〈~x(t)〉 = ~x(0)e−µKt, (I.9)
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decays with a characteristic relaxation time, τ = 1/(µK). Fluctuations around the mean

behave as

〈(
~x(t) − 〈~x(t)〉

)2
〉

=

∫ t

0

dτ1dτ2e
−µK(2t−τ1−τ2)

2Dδ(τ1−τ2)×3
︷ ︸︸ ︷

〈~η(τ1) · ~η(τ2)〉

=6D

∫ t

0

dτe−2µK(t−τ)

=
3D

µK

[
1 − e−2µKt

] t→∞−→ 3D

µK
.

(I.10)

However, once the dust particle reaches equilibrium with the fluid at a temperature T , its

probability distribution must satisfy the normalized Boltzmann weight

Peq.(~x) =

(
K

2πkBT

)3/2

exp

[

− Kx2

2kBT

]

, (I.11)

yielding
〈
x2

〉
= 3kBT/K. Since the dynamics is expected to bring the particle to equilib-

rium with the fluid at temperature T , eq.(I.10) implies the condition

D = kBTµ . (I.12)

This is the Einstein relation connecting the fluctuations of noise to the dissipation in the

medium.

Clearly the Langevin equation at long times reproduces the correct mean and variance

for a particle in equilibrium at a temperature T in the potential V(~x) = Kx2/2, provided

that eq.(I.12) is satisfied. Can we show that the whole probability distribution evolves to

the Boltzmann weight for any potential? Let P(~x, t) ≡ 〈~x|P(t)|0〉 denote the probability

density of finding the particle at ~x at time t, given that it was at 0 at t = 0. This probability

can be constructed recursively by noting that a particle found at ~x at time t+ ε must have

arrived from some other point ~x ′ at t. Adding up all such probabilities yields

P(~x, t + ε) =

∫

d3~x ′ P(~x ′, t) 〈~x|Tε|~x ′〉, (I.13)

where 〈~x|Tε|~x ′〉 ≡ 〈~x|P(ε)|~x ′〉 is the transition probability. For ε � 1,

~x = ~x ′ + ~v (~x ′)ε + ~ηε , (I.14)

where ~ηε =
∫ t+ε

t
dτ~η(τ). Clearly, 〈~ηε〉 = 0, and

〈
η2

ε

〉
= 2Dε × 3, and following eq.(I.4),

p(~ηε) =

(
1

4πDε

)3/2

exp

[

− η2
ε

4Dε

]

. (I.15)
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The transition rate is simply the probability of finding a noise of the right magnitude

according to eq.(I.14), and

〈~x |T (ε)|~x ′〉 = p(ηε) =

(
1

4πDε

)3/2

exp

[

− (~x − ~x ′ − ε~v(~x ′))
2

4Dε

]

=

(
1

4πDε

)3/2

exp




−ε

(

~̇x − ~v(~x)
)2

4D




 .

(I.16)

By subdividing the time interval t, into infinitesimal segments of size ε, repeated

application of the above evolution operator yields

P(~x, t) =
〈

~x
∣
∣
∣T (ε)t/ε

∣
∣
∣ 0

〉

=

∫ (~x,t)

(0,0)

D~x(τ)

N exp




−

∫ t

0

dτ

(

~̇x − ~v(~x)
)2

4D




.

(I.17)

The integral is over all paths connecting the initial and final points; each path’s weight

is related to its deviation from the classical trajectory, ~̇x = ~v(~x). The recursion relation

(eq.(I.13)),

P(~x, t) =

∫

d3~x ′

(
1

4πDε

)3/2

exp

[

− (~x − ~x ′ − ε~v(~x ′))
2

4Dε

]

P(~x ′, t − ε), (I.18)

can be simplified by the change of variables,

~y =~x ′ + ε~v(~x ′) − ~x =⇒
d3~y =d3~x ′ (1 + ε∇ · ~v(~x′)) = d3~x ′

(
1 + ε∇ · ~v(~x) + O(ε2)

)
.

(I.19)

Keeping only terms at order of ε, we obtain

P(~x, t) = [1 − ε∇ · ~v(~x)]

∫

d3~y

(
1

4πDε

)3/2

e−
y2

4Dε P(~x + ~y − ε~v(~x), t − ε)

= [1 − ε∇ · ~v(~x)]

∫

d3~y

(
1

4πDε

)3/2

e−
y2

4Dε×
[

P(~x, t) + (~y − ε~v(~x)) · ∇P +
yiyj − 2εyivj + ε2vivj

2
∇i∇jP − ε

∂P
∂t

+ O(ε2)

]

= [1 − ε∇ · ~v(~x)]

[

P − ε~v · ∇ + εD∇2P − ε
∂P
∂t

+ O(ε2)

]

.

(I.20)
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Equating terms at order of ε leads to the Fokker-Planck equation,

∂P
∂t

+ ∇ · ~J = 0, with ~J = ~vP − D∇P . (I.21)

The Fokker-Planck equation is simply the statement of conservation of probability. The

probability current has a deterministic component ~vP , and a stochastic part −D∇P . A

stationary distribution, ∂P/∂t = 0, is obtained if the net current vanishes. It is now

easy to check that the Boltzmann weight, P eq.(~x) ∝ exp[−V(~x)/kBT ], with ∇Peq. =

~vPeq./(µkBT ), leads to a stationary state as long as the fluctuation–dissipation condition

in eq.(I.12) is satisfied.

I.B Equilibrium Dynamics of a Field

The next step is to generalize the above formalism to a collection of degrees of freedom,

most conveniently described by a continuous field. The procedure will be described in terms

of the dynamics of a surface, although it is in fact quite general. Small fluctuations of the

surface can be described by a height h(x, t). Specific examples are the distortions of a soap

film or the fluctuations on the surface of water in a container. In both cases the minimum

energy configuration is a flat surface (ignoring the small effects of gravity on the soap film).

The energy cost of small fluctuations for a soap film comes from the increased area and

surface tension, σ. Expanding the area in powers of the slope results in

Hσ = σ

∫

dDx

[√

1 + (∇h)
2 − 1

]

≈ σ

2

∫

ddx (∇h)
2

. (I.22)

For the surface of water there is an additional gravitational potential energy, obtained by

adding the contributions from all columns of water as

Hg =

∫

ddx

∫ h(x)

0

dh′ ρgh′ =
ρg

2

∫

ddxh(x)2 . (I.23)

The total (potential) energy of small fluctuations is thus given by

H =

∫

ddx
[σ

2
(∇h)

2
+

ρg

2
h2

]

, (I.24)

with the second term absent for the soap film.
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To construct a Langevin equation governing the dynamics of height fluctuations, first

calculate the force on each surface element from the variations of the potential energy. The

functional derivative of eq.(I.24) yields

F (x) = −δH[h]

δh(x)
= −ρgh + σ∇2h. (I.25)

The straightforward analog of eq.(I.2) is

∂h(x, t)

∂t
= µF (x) + η(x, t), (I.26)

with a random velocity, η, such that

〈η(x, t)〉 = 0, and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)δ(t − t′). (I.27)

The Langevin equation,

∂h(x, t)

∂t
= −µρgh + µσ∇2h + η(x, t), (I.28)

is most easily solved by examining the Fourier components,

h(q, t) =

∫

ddx eiq·xh(x, t), (I.29)

which evolve according to

∂h(q, t)

∂t
= −µ(ρg + σq2) h(q, t) + η(q, t). (I.30)

The Fourier transformed noise,

η(q, t) =

∫

ddx eiq·xη(x, t), (I.31)

has zero mean, 〈η(q, t)〉 = 0, and correlations

〈η(q, t)η(q′, t′)〉 =

∫

ddxddx′ eiq·x+iq′·x′

2Dδd(x−x
′) δ(t−t′)

︷ ︸︸ ︷

〈η(x, t)η(x′, t′)〉

=2Dδ(t − t′)

∫

ddx eix·(q+q
′)

=2Dδ(t − t′)(2π)dδd(q + q′).

(I.32)
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Each Fourier mode in eq.(I.30) now behaves as an independent particle connected to

a spring as in eq.(I.6). Introducing a decay rate

γ(q) ≡ 1

τ(q)
= µ(ρg + σq2), (I.33)

the evolution of each mode is similar to eq.(I.8), and follows

h(q, t) = h(q, 0)e−γ(q)t +

∫ t

0

dτ e−γ(q)(t−τ)η(q, τ). (I.34)

Fluctuations in each mode decay with a different relaxation time τ(q); 〈h(q, t)〉 =

h(q, 0) exp[−t/τ(q)]. The competition between surface tension and gravity introduces

a capillary length, λc ≈
√

σ/ρg. For most liquids λc is of the order of a few millime-

ters. (It is λc that sets the characteristic size of rain drops or ripples on the surface of a

pond.) On length scales larger than λc (or q � 1/λc), the relaxation time saturates to

τmax = 1/(µρg). On the other hand, for the soap film where gravity is not important, the

characteristic time scale grows with wavelength as τ(q) ≈ (µσq2)−1. The divergence of the

time scale is usually described by a dynamic exponent z, as τ ∝ λz. The value of z = 2 for

the soap film is characteristic of diffusion processes.

The connected height-height correlation functions are obtained from

〈h(q, t)h(q′, t)〉c =

∫ t

0

dτ1dτ2e
−γ(q)(t−τ1)−γ(q′)(t−τ2)

2Dδ(τ1−τ2)(2π)dδd(q+q
′)

︷ ︸︸ ︷

〈η(q, τ1)η(q′, τ2)〉

=(2π)dδd(q + q′) 2D

∫ t

0

dτe−2γ(q)(t−τ)

=(2π)dδd(q + q′)
D

γ(q)

(

1 − e−2γ(q)t
)

t→∞−→ (2π)dδd(q + q′)
D

µ(ρg + σq2)
.

(I.35)

However, direct diagonalization of the Hamiltonian in eq.(I.24) gives

H =

∫
ddq

(2π)d

(ρg + σq2)

2
|h(q)|2, (I.36)

leading to correlation functions

〈h(q)h(q′)〉 = (2π)dδd(q + q′)
kBT

ρg + σq2
. (I.37)
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Comparing equations (I.35) and (I.37) indicates that the long-time dynamics reproduce

the correct equilibrium behavior if the fluctuation–dissipation condition, D = kBTµ, is

satisfied. In fact it is possible to obtain the correct equilibrium weight with q dependent

mobility and noise, as long as the generalized fluctuation–dissipation condition,

D(q) = kBTµ(q), (I.38)

holds. Physically, correlations in noise at different locations are generated if the impact of

particles from the surrounding fluid exerts a force over many surface elements.

Starting with a flat interface, h(x, t = 0) = h(q, t = 0) = 0, the profile at time t is

h(x, t) =

∫
ddq

(2π)d
e−iq·x

∫ t

0

dτe−µ(ρg+σq2)(t−τ)η(q, t). (I.39)

The average height of the surface, H̄ =
∫

ddx 〈h(x, t)〉 /Ld is zero, while its overall width

is defined by

w2(t, L) ≡ 1

Ld

∫

ddx
〈
h(x, t)2

〉
=

1

Ld

∫
ddq

(2π)d
|h(q, t)|2, (I.40)

where L is the linear size of the surface. Using eq.(I.35), we find that the width grows as

w2(t, L) =

∫
ddq

(2π)d

D

γ(q)

(

1 − e−2γ(q)t
)

. (I.41)

There are a range of time scales in the problem, related to characteristic length scales

through eq.(I.33). The shortest time scale, tmin ∝ a2/(µσ), is set by an atomic size a. The

longest time scale is set by either the capillary length (λc) or the system size (L). For

simplicity we shall focus on the soap film where the effects of gravity are negligible and

tmax ∝ L2/(µσ). We can now identify three different ranges of behavior in eq.(I.41):

(a) For t � tmin, none of the modes has relaxed since γ(q)t � 1 for all q. Each mode

grows diffusively, and

w2(t, L) =

∫
ddq

(2π)d

D

γ(q)
2γ(q)t =

2Dt

ad
. (I.42)

(b) For t � tmax, all modes have relaxed to their equilibrium values since γ(q)t � 1 for

all q. The height fluctuations now saturate to a maximum value given by

w2(t, L) =

∫
ddq

(2π)d

D

µσq2
. (I.43)
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The saturated value depends on the dimensionality of the surface, and in a general

dimension d behaves as

w2(t, L) ∝ D

µσ







a2−d for d > 2, (χ = 0)
ln(L/a) for d = 2, (χ = 0+)
L2−d for d < 2, (χ = 2−d

2 )
, (I.44)

where we have defined a roughness exponent χ that governs the divergence of the

width with system size via limt→∞ w(t, L) ∝ Lχ. (The symbol 0+ is used to indicate

a logarithmic divergence.) The exponent of χ = 1/2 in d = 1 indicates that the one

dimensional interface fluctuates like a random walk.

(c) For tmin � t � tmax only a fraction of the shorter length scale modes are saturated.

The integrand in eq.(I.41) (for g = 0) is made dimensionless by setting y = µσq2t,

and

w2(t, L) ∝ D

µσ

∫

dq qd−3
(

1 − e−2µσq2t
)

∝ D

µσ

(
1

µσt

) d−2

2
∫ t/tmin

t/tmax

dy y
d−4

2

(
1 − e−2y

)
.

(I.45)

The final integral is convergent for d < 2, and dominated by its upper limit for d ≥ 2.

The initial growth of the width is usually described by an exponent β defined through

limt→0 w(t, L) ∝ tβ , and

w2(t, L) ∝







D
µσ a2−d for d > 2, (β = 0)
D
µσ ln (t/tmin) for d = 2, (β = 0+)

D
(µσ)d/2

t(2−d)/2 for d < 2, (β = (2 − d)/4)

. (I.46)

The dependencies on space and time in the height–height correlation function can be

summarized by the dynamic scaling form

〈

[h(x, t) − h(x′, t′)]
2
〉

= |x − x′|2χ g

( |t − t′|
|x − x′|z

)

. (I.47)

Since equilibrium equal time correlations only depend on |x − x′|, limy→0 g(y) should be

a constant. On the other hand correlations at the same point can only depend on time,

requiring that limy→∞ g(y) ∝ y2χ/z, and leading to the exponent identity β = χ/z.

The single particle Fokker-Planck equation (I.21) can be generalized to describe the

evolution of the whole probability functional, P([h(x)], t), as

∂P([h(x)], t)

∂t
= −

∫

ddx
δ

δh(x)

[
∂h(x, t)

∂t
P − D

δP
δh(x)

]

. (I.48)
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For the equilibrium Boltzmann weight

Peq.[h(x)] ∝ exp

[

−H[h(x)]

kBT

]

∝ exp

[

− σ

2kBT

∫

ddx(∇h)2
]

, (I.49)

the functional derivative results in

δPeq.

δh(x)
= −∇ · δPeq.

δ(∇h)
=

σ

kBT
(∇2h)Peq.. (I.50)

The total probability current,

J [h(x)] =

[

µσ∇2h − Dσ

kBT
∇2h

]

Peq., (I.51)

vanishes if the fluctuation–dissipation condition, D = µkBT , is satisfied. Once again, the

Einstein equation ensures that the equilibrium weight indeed describes a steady state.

I.C Dynamics of a Conserved Height

The prescription for dynamics that leads to the Langevin equations (I.25)–(I.27), does

not conserve the net height,
∫

ddxh(x, t). Although this quantity is on average zero, it

undergoes stochastic fluctuations in time. In dealing with a volume of liquid, if particle

exchange with the surrounding gas via evaporation and condensation is negligible, the total

height of the liquid must be conserved, i.e.

d

dt

∫

ddxh(x, t) =

∫

ddx
∂h(x, t)

∂t
= 0. (I.52)

How can we construct a dynamical equation that satisfies eq.(I.52)? The integral clearly

vanishes if the integrand is a total divergence, i.e.

∂h(x, t)

∂t
= −∇ ·~j + η(x, t). (I.53)

The noise itself must be a total divergence, η = −∇ · ~σ, and hence in Fourier space,

〈η(q, t)〉 = 0, and 〈η(q, t)η(q′, t′)〉 = 2Dq2δ(t − t′)(2π)dδd(q + q′). (I.54)

We can now take advantage of the generalized Einstein relation in eq.(I.38) to ensure the

correct equilibrium distribution by setting,

~j = µ∇
(

− δH
δh(x)

)

. (I.55)
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A similar question arises in dealing with the dynamics of a binary mixture undergoing

phase separation. The order parameter φ(x), the difference between the densities of the

two species, may now be conserved. The standard procedure and terminology for such

situations is provided by Hohenberg and Halperin. Given a Hamiltonian H[φ], the Langevin

dynamics of the field φ(x, t) is constructed from

∂φ(x, t)

∂t
= −µ̂

(
δH

δφ(x)

)

+ η(x, t), (I.56)

with

〈η(x, t)〉 = 0, and 〈η(x, t)η(x′, t′)〉 = 2D̂
(
δd(x − x′)δ(t − t′)

)
. (I.57)

In model A dynamics the field φ is not conserved, and µ̂ = µ and D̂ = D are constants.

In model B dynamics the field φ is conserved, and µ̂ = −µ∇2 and D̂ = −D∇2.

Let us now go back to the example of a conserved volume of fluid whose surface

fluctuations are subject to the Hamiltonian (I.24). The equation of motion constructed

from model B dynamics is†

∂h(x, t)

∂t
= µρg∇2h − µσ∇4h + η(x, t). (I.58)

The evolution of each Fourier mode is given by

∂h(q, t)

∂t
= −µq2(ρg + σq2)h(q, t) + η(q, t) ≡ −h(q, t)

τ(q)
+ η(q, t). (I.59)

Because of the constraints imposed by the conservation law, the relaxation of the surface

is more difficult, and slower. The relaxation times diverge even in the presence of gravity,

and depending on wavelength we can define dynamic exponents z, via

τ(q) =
1

µq2(ρg + σq2)
≈

{

q−2 for q � λ−1
c (z = 2)

q−4 for q � λ−1
c (z = 4)

. (I.60)

The equilibrium behavior is unchanged, and

lim
t→∞

〈
|h(q, t)|2

〉
=

Dq2

µq2(ρg + σq2)
=

D

µ(ρg + σq2)
, (I.61)

as before. Thus the same static behavior can be achieved by different dynamics. The

static exponents (e.g. χ) are determined by the equilibrium (stationary) state and are

unchanged, while the dynamic exponents may be different. As a result, dynamical critical

phenomena involve many more universality classes than the corresponding static ones.

† While model A dynamics provides a reasonably accurate description of the relaxation

of a soap film, model B dynamics is not particularly useful for describing surface waves.

As conservation of momentum in the fluid is an important constraint not included here,

the following results are merely intended as an illustration.
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