
Electron Tunneling and Spin Relaxation in a

Lateral Quantum Dot

by

Sami Amasha

B.A. in Physics and Math, University of Chicago, 2001

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Physics

December 11, 2007

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marc A. Kastner

Donner Professor of Physics and Dean of the School of Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thomas J. Greytak

Professor and Associate Department Head for Education



2



Electron Tunneling and Spin Relaxation in a Lateral

Quantum Dot

by

Sami Amasha

Submitted to the Department of Physics
on December 11, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We report measurements that use real-time charge sensing to probe a single-electron
lateral quantum dot. The charge sensor is a quantum point contact (QPC) adjacent
to the dot and the sensitivity is comparable to other QPC-based systems. We develop
an automated feedback system to position the energies of the states in the dot with
respect to the Fermi energy of the leads. We also develop a triggering system to
identify electron tunneling events in real-time data.

Using real-time charge sensing, we measure the rate at which an electron tun-
nels onto or off of the dot. In zero magnetic field, we find that these rates depend
exponentially on the voltages applied to the dot. We show that this dependence is
consistent with a model that assumes elastic tunneling and accounts for the changes
in the energies of the states in the dot relative to the heights of the tunnel barriers.
In a parallel magnetic field B the spin states are split by the Zeeman energy and we
measure the ratio of the rates for tunneling into the excited and ground spin states
of an empty dot. We find that the ratio decreases with increasing B. However, by
adjusting the voltages on the surface gates to change the orbital configuration of the
dot, we restore tunneling into the excited spin state.

We also measure the spin relaxation rate W ≡ T1
−1 between the Zeeman split

spin states for a single electron confined in the dot. At B = 1 T we find that T1 > 1 s.
The dependence of W on magnetic field is a power-law, and the exponent is consistent
with the prediction for the spin relaxation mechanism of spin-orbit mediated coupling
to piezoelectric phonons. Since spin relaxation involves the orbital states of the dot
via the spin-orbit interaction, we can achieve electrical control over W by using the
surface gates to manipulate the orbital states. We demonstrate that we can vary W
by over an order of magnitude at fixed Zeeman splitting, and we extract the spin-orbit
length, which describes the strength of the spin-orbit interaction in GaAs.

Thesis Supervisor: Marc A. Kastner
Title: Donner Professor of Physics and Dean of the School of Science
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Chapter 1

Introduction

Advances in material processing and synthesis techniques have led to the development

of a wide variety of nanoscale structures. One type of structure that has attracted

much interest is the quantum dot [1, 2, 3, 4, 5]. A quantum dot consists of a droplet

of electrons confined to a small region of space, where the typical length scales of the

dot are less than 100 nm. On these short length scales, quantum mechanics is needed

to understand the behavior of the dot.

There are several different types of quantum dots, including self-assembled dots

[6], vertical quantum dots [5], and gate-defined dots on semiconductor heterostruc-

tures [4], carbon nanotubes [7], and semiconducting nanowires [8]. In this thesis,

we study a gate-defined quantum dot (also called a lateral quantum dot or laterally

gated quantum dot) on an AlGaAs/GaAs heterostructure. In this material, the band

structure causes the conduction electrons to be confined in the direction perpendic-

ular to the heterointerface, but the electrons are free to move in the plane of the

interface and form a two dimensional electron gas (2DEG) [9]. We fabricate a lateral

quantum dot on this heterostructure by patterning metallic gates on the surface. Ap-

plying negative voltages to these gates repels the electrons in the 2DEG underneath

them, and isolates a small droplet of electrons, namely the quantum dot, from the

remaining 2DEG regions, which are called the leads. The primary advantage of this

type of quantum dot is that its properties can be tuned in-situ by adjusting the gate

voltages. For example, we can control the rates at which electrons tunnel between
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the dot and the leads. We can also control the number of electrons on the dot, thus

we can view quantum dots as artificial atoms with a tunable atomic number [2].

Quantum dots can be used to model physical phenomena. For example, we con-

struct a model Kondo system by using a quantum dot as an artificial magnetic impu-

rity atom [10, 11, 12, 13]: a dot that contains an odd number of electrons has a net

spin, and the electrons in the leads screen this net spin, much as conduction electrons

screen magnetic impurity atoms in material systems. The advantage of the model

system is that we can study the Kondo effect out of equilibrium and tune proper-

ties of the system [14], such as the Kondo temperature, that are fixed by chemistry

in material systems. This ability allows us to test theoretical predictions about the

Kondo effect. For example, theory predicts that the Kondo effect creates a peak in

the density of states at the Fermi energy of the leads, and that applying a magnetic

field splits this peak about the Fermi energy [15, 16, 17]. Using non-equilibrium mea-

surements on a quantum dot, we can observe this splitting of the Kondo peak, and

probe how the splitting depends on field [18, 19]. We also observe the photon-assisted

Kondo effect in a quantum dot by using non-equilibrium measurements to observe

the photon-assisted satellites [20].

Potential applications of lateral quantum dots extend beyond model systems and

include applications based on the spin physics of the dot. Until recently, most elec-

tronic devices have used only the charge of the electron to store or transport infor-

mation. The burgeoning field of spintronics [21, 22, 23] seeks to take advantage of

the electron’s spin degree of freedom to build improved electronic devices. For ex-

ample, the rapid increase in the storage capacity of modern hard-drives is a result of

technology based on giant magneto-resistance, which is a spin based effect. Quantum

dots have several potential applications in spintronics. Quantum dots can be used as

spin filters [24, 25] and spin pumps [26]. Individual quantum dots can also be used as

spin memory [27, 28], where information is stored in the spin of an electron confined

to the quantum dot.

Another important application of lateral quantum dots is quantum computing.

Applying a magnetic field to the dot splits the spin-up and spin-down states of the
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dot by the Zeeman energy. This provides a two level quantum system that can be

used as a qubit [29], which is the basic unit in a quantum computer [30]. Recent work

has demonstrated that quantum dots satisfy many of the criteria for a viable qubit

[31]. Loss and DiVincenzo [29] have shown that all the necessary gate operations on

a quantum dot qubit can be built out of two basic operations: the manipulation of

a single spin in a quantum dot and the controlled coupling of the spins in two dots

using the exchange interaction. Koppens et al. [32] have demonstrated single spin

manipulation through electron spin resonance [33], while measurements by Petta et

al. [34] have demonstrated the controlled coupling of spins in a double dot. More-

over, Elzerman et al. [35] and Hanson et al. [36] have demonstrated various methods

to measure the spin of an electron in a dot, thus providing a reliable read-out for

the qubit. An important remaining challenge is to understand and to control the

interactions between the electron’s spin and its solid-state environment.

The two most important of these interactions are the hyperfine and spin-orbit

interactions. The hyperfine interaction causes decoherence of the spin states by cou-

pling the electron’s spin to nuclear spins [37, 38, 39, 40, 34, 41]; however, because the

effective nuclear magnetic field changes slowly, coherent behavior is still observed and

measurements show the decoherence time T2 & 1 µs [34]. Recently methods have

been suggested for suppressing the hyperfine-induced decoherence [42, 43, 44].

The spin-orbit interaction (SOI) causes spin relaxation by mixing the orbital and

spin states, thus providing a mechanism for coupling the spin to electric fluctuations

in the environment of the dot [45, 46, 47, 48]. This coupling induces spin relaxation

and brings the probabilities of being in the excited and ground spin states to thermal

equilibrium. The timescale for energy relaxation is T1, and since relaxation necessarily

destroys any coherent spin state, it sets an upper limit on the decoherence time

T2 < 2T1 [46]. Understanding and controlling the interactions between the dot and

its environment is essential for developing lateral dots into viable qubits.

The spin readout techniques, as well as the studies of the decoherence and relax-

ation mechanisms discussed above, are possible because of the development of charge

sensing techniques in quantum dots [49, 50, 51, 35]. Previously, most measurements
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of lateral quantum dots involved applying a voltage across the dot and measuring

the resulting current through the dot. To have measurable currents, electrons must

tunnel onto and off of the dot frequently, and this tunneling necessarily disturbs the

spin state of the dot. Much of the development of the lateral quantum dot qubit has

relied on the use of a different method to measure the dot, namely charge sensing.

In general, charge sensing consists of coupling the quantum dot to another system

that is sensitive to the charge on the dot. By measuring the second system, one can

then determine the charge on the dot. The advantage to charge sensing is that it is

effective even when the tunneling rates between the dot and the leads are slow. In

addition to making the measurements of relaxation and decoherence possible, charge

sensing has been used to test predictions of counting statistics and correlations in

quantum dots [52, 53, 54].

In the work reported in this thesis, we use real-time charge sensing techniques to

measure electron tunneling and spin relaxation in a single-electron lateral quantum

dot. The organization of this thesis is as follows. In Chapter 2 we introduce the basic

physics of lateral quantum dots, in both zero and finite magnetic field. In Chapter 3,

we discuss our real-time charge detection system in detail, as well as a novel triggering

system we develop to handle the large amounts of data that we acquire.

In Chapter 4, we use our charge sensing system to study electron tunneling in a

quantum dot. Section 4.3 focuses on tunneling in zero magnetic field. We show that

the tunneling rates into and out of the quantum dot depend exponentially on the

voltages applied to the dot, and that this dependence is consistent with a model that

assumes elastic tunneling between the dot and the leads, and accounts for the energies

of the states in the dot relative to the heights of the tunnel barriers. In Section 4.4,

we study tunneling in a magnetic field. Previous experiments have shown that the

spin polarization of the electrons emitted from a quantum dot in a magnetic field

does not depend on the spin of the dot, contrary to expectation [55]. In this section

we use real-time charge detection and gate pulsing techniques to measure tunneling

into the spin states of an empty quantum dot. We find that the ratio of the rates for

tunneling into the excited and ground spin states of the dot depends on the magnetic
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field and the orbital configuration. We consider several possible explanations, but find

that none of these account for the observed dependence. These observations further

emphasize the need for a better understanding of the spin physics of tunneling in

a quantum dot. Such an understanding could lead to new applications for dots in

spintronics.

In Chapter 5, we describe techniques for measuring the spin relaxation time T1.

T1 depends on the Zeeman splitting between the spin states, and by measuring T1 as

a function of magnetic field we determine that the spin relaxation mechanism in

lateral quantum dots is spin-orbit mediated coupling to piezoelectric phonons. At

low magnetic fields, T1 becomes very long, and we find that T1 > 1 s at B = 1 T.

This result is very promising for applications of dots in quantum computing and as

spin memory in spintronics.

In Chapter 6, we use our understanding of the mechanism of spin relaxation to

exert electrical control over the spin relaxation rate at a constant Zeeman splitting.

While the relaxation rate can be controlled using the magnetic field, electrical control

is advantageous since it can be implemented locally and on fast timescales, and is

amenable to scalable architectures. In this chapter, we demonstrate in-situ electrical

control of the spin relaxation rate by using gate voltages to manipulate the mixing

of the spin and orbital states. These results show the promise of dots in spintronics

and are an important step toward controlling one of the interactions between the spin

states of the dot and its solid-state environment.

Finally, Chapter 7 summarizes the work in this thesis and suggests directions for

future research.
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Chapter 2

Lateral Quantum Dots

This chapter briefly reviews the salient features of lateral quantum dots in AlGaAs/GaAs

heterostructures. In the first section, we describe the heterostructure material used

in the device which we study in this thesis. The second section introduces the basic

physics of quantum dots, while the third section discusses transport measurements

in dots. In the final section, we examine the effect of a magnetic field on the physics

of the dot. For more details, the reader is referred to references [9], [4], [56],[57], and

[58].

2.1 Heterostructure and device

To fabricate a lateral quantum dot (QD), one starts with an AlGaAs/GaAs het-

erostructure grown by molecular beam epitaxy (MBE). A typical heterostructure

consists of a layer of Al0.3Ga0.7As δ-doped with Si grown on top of a thick layer of

GaAs. The Si is an n-type dopant and electrons move from the AlGaAs into the

GaAs, leaving behind positively charged donor ions. These ions produce an electric

field perpendicular to the interface that pulls the electrons back toward the AlGaAs

[9]. Because of the offset between the AlGaAs and GaAs conduction bands, the

electric field cannot pull the electrons back into the AlGaAs, and the electrons re-

mained trapped at the interface, forming a two-dimensional electron gas (2DEG).

The electrons are free to move in the plane of the interface, but they are confined in a
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Figure 2-1: (a) Schematic of the heterostructure material used in the device which
we study in this thesis. (b) Electron micrograph of the geometry of the gates of a
device similar to that studied in this thesis. The unlabeled gates are not used and
are kept grounded for all experiments.

triangular potential well in the direction perpendicular to the interface. The typical

width of the wavefunction in the confined direction is about 5 nm.

A schematic of the heterostructure used to fabricate the QD we study in this

thesis is shown in Fig. 2-1(a). This heterostructure, designated 030717A, has been

grown by our collaborators M. P. Hanson and A. C. Gossard at the University of

California, Santa Barbara. Starting from the surface, it consists of a 10 nm GaAs

cap, followed by a 100 nm layer of Al0.3Ga0.7As δ-doped with a single layer of Si with

density 4 × 1012 cm−2, and finally a thick layer of undoped GaAs [58]. The 2DEG

formed at the AlGaAs/GaAs interface 110 nm below the surface has a density of

2.2× 1011 cm−2 and a mobility of 6.4× 105 cm2/Vs [58, 59]. More details about this

heterostructure can be found in Granger (2005) [58].

We use electron beam lithography to pattern Ti/Au gate electrodes on the sur-

face of the heterostructure. The geometry of the gates for the device which we use

(designated DDL UR Small, also known as DDS-ESR1), is similar to that shown in

Fig. 2-1(b). Applying a negative voltage to gates SG1, LP1, PL, LP2, SG2, and OG

depletes the 2DEG underneath them and forms a QD coupled by two tunnel barriers

to the remaining 2DEG regions, which form the conducting leads (labeled 1 and 2 in

Fig. 2-1(b)). Although the device looks like a double dot, we apply voltages to the
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gates such that we form a single quantum dot. The gate geometry is based on that

of Ciorga et al. [60] and allows us to confine one electron in the dot, or even to empty

the dot. By applying a negative voltage to the gate QG2, we form a narrow channel

called a quantum point contact (QPC) between SG2 and QG2 which can be used as

a sensitive electrometer or charge sensor [50] for the quantum dot. We discuss charge

sensing in detail in Chapter 3.

2.2 Physics of a quantum dot

By applying negative voltages to the gate electrodes, we create a confining potential

that isolates the dot from the leads. Figure 2-2(a) shows an energy diagram of the

dot. Several energy scales contribute to the physics of the system. The first of these is

the temperature T , which sets the broadening of the Fermi distribution in the leads.

For all the work in this thesis, we measure the dot in a dilution refrigerator and the

electron temperature is T ≈ 120 mK, giving kBT ≈ 10 µeV.

Another important energy scale is the single-particle orbital energy level spacing

Eo. A confined electron has a discrete energy spectrum; the scale of the energy

spacing between the different orbital states is Eo ∼
~
2

2m∗a2 , where a is the length scale

of the confining potential, m∗ = 0.067me is the effective mass in GaAs, and me is the

mass of a free electron. For the dot we study, Eo ≈ 2 meV.

If electrons did not interact, then they would fill the dot in Fig. 2-2(a) with two

electrons in the ground orbital state (one spin up and one spin down), two more in

the first excited state, and so on until all the orbital states below the Fermi energy of

the leads are filled. However, electrons repel each other, and if there is one electron

on the dot then it takes a certain amount of energy to add a second electron to the

dot in the ground orbital state. This energy is called the charging energy U2 and the

chemical potential of the 2-electron state is an energy U2 above that of the 1-electron

state (Fig. 2-2(a)) [58]. In our dot U2 ≈ 4 meV.

If the 2-electron state is above the Fermi energy of the leads, as in Fig. 2-2(a), then

an electron cannot tunnel onto the dot. We can change the energies of the states by
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Figure 2-2: (a) Energy diagram for a single electron in a quantum dot. (b) As the
gate voltages are made less negative, the energies of the levels in the dot decrease.
When a level is aligned with the Fermi energy of the leads, an electron can tunnel
onto and off of the dot. (c) When a level is brought beneath the energy of the leads,
an electron tunnels onto the dot but cannot tunnel off again, increasing the number
of electrons on the dot.

changing the voltage Vg on one or more of the gates that define the dot. By making

the gate voltage less negative, we lower the energy of the 2-electron state and when

it is aligned with the Fermi energy of the leads, electrons can tunnel onto and off of

the dot as shown in Fig. 2-2(b).

If we make the voltage on the gate even less negative, as in Fig. 2-2(c), then the

2-electron state is below the Fermi energy of the leads. An electron can tunnel onto

the dot, but it cannot tunnel off because there are no available hole states at this

energy, leaving the dot with two electrons. In this way, we can control the number of

electrons on the dot. In our device we can completely empty the dot and then add

electrons one at a time, so we know exactly how many electrons are on the dot for a

given set of gate voltages.

We can extend the simple state filling picture above to larger numbers of electrons

in the dot. The third electron cannot go into the ground orbital state, rather it goes

into the next available orbital state which is an energy Eo above the ground orbital

state. Consequently, as shown in Fig. 2-2(c), the difference between the 2- and 3-

electron states is U3 + Eo, where U3 is the energy caused by Coulomb repulsion
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for adding the third electron. Assuming a simple state filling picture, the fourth

electron goes into the same orbital state as the third (with opposite spin) to form a

singlet and the difference in energy is U4. We can continue to add electrons to the

dot in this way. For understanding many features of dots, this simple state filling

picture is adequate. However, it is important to note that more complicated electron

configurations can occur. For example, exchange effects may make it more favorable

for the fourth electron to occupy a higher energy orbital state so that the 4-electron

state is a triplet state rather than a singlet state [58, 59]. Finally, we note that as we

add more electrons to the dot, the charging energy approaches a constant U .

A final important energy scale is the intrinsic width in energy of a state in the

dot. From the Uncertainty Principle, the width of a state is inversely proportional to

the lifetime of the state. One contribution to the lifetime comes from the tunneling

rate between the state and the leads [61]. When a level in the dot is aligned with

the Fermi energy of the leads as in Fig. 2-2(b), an electron can tunnel onto and off of

the dot with rate Γ. This rate is determined by the heights and widths of the tunnel

barriers, which in turn depends on the voltages applied to the gates that form the

barriers. If tunneling dominates the lifetime, then the average lifetime is 1/Γ, and

the state has a width of ~Γ [61].

2.3 Transport measurements of a quantum dot

A common method for probing a QD is to measure electron transport through the

dot. Electrical contact to the 2DEG is made using Ni/Ge/Au ohmic contacts that

are fabricated with the device. These contacts to the 2DEG give access to the leads,

which are often named drain and source following transistor terminology. The leads

are explicitly labeled ‘d’ and ‘s’ in Fig. 2-3 and correspond to leads 1 and 2, respec-

tively. To measure the QD, we apply a voltage between the drain and source and

measure the resulting current through the dot. The circuit we use is sketched in

Fig. 2-3. The dc voltages for the gates and the drain-source bias are provided by a

National Instruments 6703 analog output card in the data acquisition computer for
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Figure 2-3: Sketch of the circuit we use for transport measurements of a quantum
dot. The dc voltages on the gates and for the dc drain-source bias Vds are obtained
by dividing down the output of an analog output voltage card that is in the data
acquisition computer. An oscillating voltage ∆Vds is inductively coupled to Vds, and
this allows us to measure dI/dVds. CA denotes the current pre-amplifier.

the experiment. The voltage output of the card is divided down to smaller values and

filtered before being applied to the QD.

A dc drain-source bias voltage Vds is inductively coupled to an oscillating voltage

source at frequency fds via a transformer; this allows us to introduce a small oscillating

voltage ∆Vds on top of the dc voltage [58]. The resulting current through the QD

consists of a dc component and a component ∆I that oscillates at frequency fds. We

amplify this current using an Ithaco 1211 current pre-amplifier and then measure the

pre-amplifier output using a lock-in amplifier, which isolates the oscillating component

∆I. In this way, we measure the differential conductance dI/dVds ≈ ∆I/∆Vds of the

QD [58]. We usually report the conductance in terms of e2/h ≈ 1/25800 Ω−1, which
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Figure 2-4: (a) Example of dI/dVds vs ∆Vg with Vds = 0. ∆Vg = 0 corresponds to the
position of the first Coulomb blockade peak. The diagrams (b)-(e) show the energies
of the states of the dot at the different gate voltages. The drain and source leads are
labeled ‘d’ and ‘s’ in (b).

is the fundamental quantum of conductance [9, 61].

Figure 2-4(a) shows a measurement of dI/dVds as we change the voltages on the

gates; here ∆Vg refers to the change in the voltage applied to each of the three gates

LP1, PL, and LP2. ∆Vg = 0 is chosen to correspond to the position of the first

Coulomb blockade peak. We understand the peaks in conductance using the consid-

erations from the previous section. The dot diagrams in Figs. 2-4(b)-(e) illustrate the

energies of the states of the dot at a given value of ∆Vg. At the most negative values

of ∆Vg, the dot contains zero electrons and the 1-electron state is above the Fermi

energy of the leads (Fig. 2-4(b)). Thus an electron cannot tunnel onto the dot and

the conductance through the dot is low.

Changing the voltages on the gates changes the energies of the states of the dot.

The energy E of the ground state relative to the Fermi energy of the source (Fig. 2-
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4(b)) is

E = −e
Cg

Ctot

∆Vg

where Cg is the combined capacitance of the dot to the three gates and Ctot is the total

capacitance of the dot to all the gates and leads [56, 58]. We define αg = Cg/Ctot.

Making ∆Vg less negative lowers the energies of the states of the dot and when the

energy of the 1-electron state is the same as the Fermi energy in the leads (E = 0),

electrons can tunnel between the drain lead and the dot with rate Γd and between

the source lead and the dot with rate Γs (Fig. 2-4(c)). Consequently, at this value

of ∆Vg the conductance is at a maximum. As ∆Vg is made positive, the 1-electron

state is filled. The energy of the 2-electron state is above the Fermi energy of the

leads (Fig. 2-4(d)), so transport is once again blocked, and the conductance is low.

At even more positive values of ∆Vg, the 2-electron state is at the same energy as the

leads (Fig. 2-4(e)), and conductance is once again at a maximum. The conductance

peaks are called Coulomb blockade peaks, and from the dot diagrams it is clear that

the separation ∆Vpeaks between the peaks is ∆Vpeaks = U2/eαg.

We can understand the lineshape of the Coulomb blockade peaks. The width of a

peak depends on the tunneling rate Γt = Γs+Γd and the electron temperature T . The

rate Γt determines the intrinsic width of the state while the temperature determines

the width of the Fermi distribution of the leads, which act as probes of the quantum

dot. In the limit where ~Γt ≫ kBT , the intrinsic width dominates and the lineshape

is a Lorentzian [56, 61, 9]

G =
2e2

h

ΓsΓd

Γs + Γd

(

Γt

(Γt

2
)2 + ( eαg

~
∆Vg)2

)

(2.1)

which is characteristic of lifetime broadening. In the limit ~Γ ≪ kBT , the relevant

width is that of the Fermi function. In this case, the lineshape is [56]:

G =
2e2

h

ΓsΓd

Γs + Γd

h

4kBT
cosh−2

(
eαg∆Vg

2kBT

)

(2.2)

These lineshapes are illustrated by the data in Figs. 2-5(a) and (b). Figure 2-5(a)
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Figure 2-5: (a) Coulomb blockade peak where the peak width is dominated by life-
time broadening of the state. The line is a fit to the Lorentzian lineshape Eqn. 2.1 and
is discussed in the text. (b) A Coulomb blockade peak where the width is dominated
by the width of the Fermi distribution. The thin line shows a fit to the Lorentzian
lineshape Eqn. 2.1, while the thick line shows a fit to the temperature limited lineshape
Eqn. 2.2.

shows an example of a Coulomb blockade peak where we adjust the gate voltages so

that the tunneling rates to the leads are large and the peak is lifetime broadened.

The solid line is a fit to Eqn. 2.1 and it is in good agreement with the data. Using

an estimate for αg (we will discuss a method for measuring αg later in this section),

we find that ~Γt ≈ 150µeV, corresponding to Γt ≈ 230 GHz.

Figure 2-5(b) shows an example of a Coulomb blockade peak where we reduce the

tunneling rates to the leads so we are in the temperature-limited regime. The thin

solid line shows a fit to the Lorentzian lineshape and clearly it does not give good

agreement with the data. The thick solid line shows a fit to the temperature-limited

lineshape Eqn. 2.2 and is in much better agreement. From this fit and a separately

measured value of αg, we extract T ≈ 129 mK.

We also measure the conductance as a function of the drain-source bias voltage

Vds and an example of this is shown in Fig. 2-6(a). The diagrams in Figs. 2-6(b)-(e)

illustrate the position of the levels on the dot at the different values of Vds labeled in
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Figure 2-6: (a) Example of dI/dVds vs Vds for a fixed ∆Vg. (b)-(e) Positions of the
levels on the dot for different values of Vds labeled in (a). (f) Example of dI/dVds vs
Vds and ∆Vg. ∆Vg = 0 corresponds to the position of the first Coulomb blockade peak
at Vds = 0. The dashed line marks the position of the trace in (a). The transport
lines corresponding to the dot configurations in (c) and (d) are also labeled.
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Fig. 2-6(a). For this trace the dot contains one electron, and the gate voltages are set

such that at Vds = 0 the energy of the 1-electron state is just below the Fermi energy

as shown in Fig. 2-6(b). The empty level in the diagram in Fig. 2-6(b) is an excited

orbital state that is an energy Eo above the ground state. Since the electron is below

the Fermi energy of both leads, it cannot tunnel off and transport is blocked, so the

conductance is low.

The effect of applying Vds is to change the Fermi energy of the drain lead (labeled

‘d’ in Fig. 2-6(c)) by an energy −eVds relative to the source lead (labeled ‘s’), which

is held at virtual ground because it is connected to the input of the current amplifier.

Applying a positive Vds lowers the Fermi energy of the drain lead (Fig. 2-6(c)). When

it becomes aligned with the ground state of the dot, the electron can tunnel off of the

dot and transport is permitted, leading to an increase in current. The current does

not increase indefinitely with Vds; rather, when the ground state is completely in the

transport window (the state is higher in energy than the drain but lower in energy

than the source) the current saturates at I = e(Γ−1
s + Γ−1

d )−1 = e ΓsΓd

Γs+Γd
. This is the

current corresponding to electrons tunneling through the dot one electron at a time.

The step-like increase in current with Vds gives a peak in dI/dVds when the level in

the dot is aligned with the Fermi energy in the leads (Fig. 2-6(c)) and this peak is

labeled as c in Fig. 2-6(a).

Applying a negative Vds raises the Fermi energy of the drain lead as shown in

Fig. 2-6(d). The capacitance Cds between the drain lead and the dot causes the

energies of the states of the dot to shift and this change is given by −eαdsVds, where

αds = Cds/Ctot. For sufficiently negative Vds the ground state of the dot is aligned with

the source lead, giving a peak in dI/dVds as shown in Fig. 2-6(a). Making Vds even

more negative further increases the energy of the drain lead. When it is aligned with

the energy of the excited orbital state (Fig. 2-6(e)) then there is an additional state

for electrons to tunnel into: an electron can tunnel into either the excited orbital

state or the ground orbital state. This additional channel for tunneling onto the dot

results in a peak in dI/dVds, labeled e in Fig. 2-6(a).

Figure 2-6(f) shows an example of data where we vary both Vds and ∆Vg. The
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dashed line marks the position of the bias sweep shown in Fig. 2-6(a). The transport

lines corresponding to the energy level configurations in Figs. 2-6(c) and (d) are

labeled in Fig. 2-6(f). Along line c, the change in the energy of the ground state

caused by ∆Vg is compensated by Vds so that the ground state energy remains equal

to the Fermi energy of the drain. The slope of this line depends on the capacitance

ratios αg and αds [58]. To calculate the slope of line c, we note that the energy of the

ground state relative to the source lead is given by E = −eαg∆Vg + −eαdsVds, and

that this must be equal to the energy of the drain lead, E = −eVds. This condition

gives Vds = mc∆Vg with slope mc = αg/(1−αds). For the configuration in Fig. 2-6(d),

E = −eαg∆Vg + −eαdsVds and the energy of the ground state must be equal to that

of the source lead, so E = 0. This gives the slope md = Vds/∆Vg = −αg/αds. Thus

by measuring the slopes of these two lines, we can determine the capacitance ratios

αg and αds.

Inside the lines labeled c and d in Fig. 2-6(f) electrons cannot tunnel onto and

off of the dot, so the number of electrons on the dot is fixed [58]. In particular, for

∆Vg < 0 these lines do not intersect other transport lines even for very large values

of Vds. This is the signature that there are no electrons on the dot for ∆Vg < 0.

2.4 Quantum dot in a magnetic field

The effects of applying a magnetic field to a quantum dot depend on the orientation

of the field with respect to the 2DEG. Applying the field perpendicular to the 2DEG

leads to exchange effects in multi-electron dots [62, 63, 64, 65]. These effects give the

spin states different spatial distributions, which influences the coupling of the spin

states to the leads [63, 65]. A perpendicular field can also influence the confinement

potential felt by the electrons [66]. Finally, a perpendicular field causes the energies

of the electrons in the leads to become quantized into Landau levels, and this affects

transport through the dot [60].

To avoid the orbital and exchange effects associated with a perpendicular magnetic

field, we apply the field parallel to the plane of the 2DEG. Since the electrons are
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Figure 2-7: (a) dI/dVds as a function of ∆VLP2 and Vds at B = 6 T. ∆VLP2 = 0
corresponds to the position of the Coulomb blockade peak at Vds = 0. The transport
line marked by the arrow is caused by tunneling through the excited spin state. (b)
dI/dVds vs Vds at ∆VLP2 = −6.5 mV. (c)-(e) Energies of the states of the dot for the
different values of Vds labeled in (b).

tightly confined in the direction perpendicular to the 2DEG (the z direction), the

electrons do not form Landau levels. However, the field still couples to the spin of

an electron confined in the dot. The interaction is given by H = gµB

~
S·B, where B

is the magnetic field, µB = 58 µeV/T is the Bohr magneton, and the spin operators

S = ~

2
σ, where σ are the Pauli matrices. For electrons in the GaAs conduction band,

g = −0.44 [67]. This is different from the value of g in vacuum because of the effects

of the spin-orbit interaction on the band structure of GaAs [68]. Thus the effect of

the magnetic field on the quantum dot is to split the spin states of the dot by the

Zeeman energy ∆ = |g|µBB. The spin-up state, in which the spin is aligned with the

magnetic field, is the ground spin state, while the spin-down state, which corresponds

to the spin being anti-aligned with the field, is the excited spin state.

We observe this spin splitting using transport measurements [69]. Fig. 2-7(a)

shows a measurement of dI/dVds as a function of ∆VLP2 and Vds in a magnetic field
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B = 6 T. The extra transport line marked by the arrow in the figure is caused by

transport through the excited spin state1. Figure 2-7(b) shows a measurement of

dI/dVds vs Vds taken at ∆VLP2 = −6.5 mV, while the diagrams in Figs. 2-7(c)-(e)

show the energies of the spin states at the various values of Vds that are labeled in

Fig. 2-7(b). At Vds = 0, both spin states are above the Fermi energy of the leads, as

shown in Fig. 2-7(c). Making Vds more negative raises the Fermi energy of the drain

lead, and when it is equal to the energy of the ground spin state, electrons can tunnel

from the drain to the source. This causes a peak in dI/dVds, labeled d in Fig. 2-7(b).

At even more negative Vds, the drain lead is at the same energy as the excited spin

state, and this produces a second peak in dI/dVds, labeled e in Fig. 2-7(b).

From these data, we can determine ∆. We let Vgrnd be the position of the peak

labeled d in Fig. 2-7(b). Then Vgrnd satisfies the condition −eVgrnd = −eαdsVgrnd −

eαLP2∆VLP2. Similarly, Vexc is the position of the peak labeled e and it satisfies

−eVexc = −eαdsVexc − eαLP2∆VLP2 + ∆. Subtracting these two equations and re-

arranging the terms gives ∆ = −e(1 − αds)(Vexc − Vgrnd), so from the peak spacing,

we can extract ∆.

While we can use this type of transport measurement to find the Zeeman splitting,

a number of factors contribute to uncertainty in the measurement. First, the mea-

surement depends on aligning the spin states in the dot with the Fermi energy of the

drain lead. However charge fluctuations in the heterostructure can electrostatically

couple to the states in the dot and randomly shift their energies by small amounts

[72]. This leads to uncertainty in the positions of the peaks. Also, uncertainty in the

measurement of αds contributes to the error in ∆.

To avoid these problems, we measure the Zeeman splitting using inelastic spin-flip

cotunneling spectroscopy [18]. We consider a dot that contains an odd number N of

electrons, so that it has a net spin as shown in Fig. 2-8(a). When the energy of the

N +1-electron state is above the Fermi energy of the leads, an electron cannot tunnel

onto the dot and transport is blocked. However, from the Uncertainty Principle, an

electron can virtually tunnel onto the dot for a time on the order of ~/U (Fig. 2-8(b)),

1We do not observe a corresponding transport line at Vds > 0 because Γs ≫ Γd [70, 71].
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after which one of the electrons tunnels off of the dot so that energy is conserved [73].

This process is called cotunneling [74, 75].

For |eVds| < ∆ cotunneling is an elastic process, and the final state of the dot has

the same energy as the initial state (Fig. 2-8(c)). However, for |eVds| > ∆, cotunneling

can also be an inelastic process and leave the dot in the excited spin state (Fig. 2-8(d)).

This additional cotunneling process causes an increase in the conductance dI/dVds

for |Vds| > ∆/e, as is shown by the data in Fig. 2-8(e). The width of the cotunneling

gap is a direct measure of 2∆/e. For a cotunneling process with negligible intrinsic

width, the lineshape of the gap is given by [76]:

dI

dVds

= Ce + Ci

[

F

(
eVds + ∆

kBT

)

+ F

(

−
eVds − ∆

kBT

)]

35



where, Ce is the conductance from elastic cotunneling, Ci describes the additional

contribution from inelastic cotunneling, and

F (x) = (1 + (x − 1) exp(x))/(exp(x) − 1)2.

This lineshape has steps centered at Vds = ±∆/e with width 5.4kBT/e. The solid

line in Fig. 2-8(e) shows the result of fitting this lineshape to the data, and from this

fit we extract ∆. Using inelastic spin-flip cotunneling to measure ∆ is advantageous

because the positions in Vds of the steps in conductance do not depend on aligning

the states with the Fermi levels in the leads, and so this measurement is not sensitive

to charge fluctuations. Also, this measurement of ∆ does not require measuring αds.

Using inelastic cotunneling, we measure ∆ as a function of B and the data is shown

in Fig. 2-8(f). We fit these data to ∆ = |g|µBB (solid line in Fig. 2-8(f)) and from

this we obtain |g| = 0.37.

Since cotunneling involves a virtual intermediate state, it is a higher order process

than resonant tunneling through the dot. The tunneling rate of a cotunneling process

is of the order ~Γ2/U [73]. Thus cotunneling is significant when ~Γ is comparable to U .

In the following chapters, we apply voltages to the gates so that Γ . 1000 Hz ≪ U/~,

and in this regime cotunneling gives a negligible contribution to the tunneling rates.
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Chapter 3

Real-Time Charge Sensing

In most of the work reported in this thesis, we study a quantum dot where the tunnel-

ing rate between the dot and its leads is very slow. In this limit, the current through

the dot is small or non-existent and we cannot measure the dot using transport tech-

niques. Consequently, we use a different method of measuring the dot, namely charge

sensing [50, 49, 51, 77, 35, 78, 79, 80]. The first two sections of this chapter introduce

how we implement real-time charge sensing to measure a quantum dot and discuss the

characterization of this real-time charge sensing system. The final section describes

the triggering system we develop in conjunction with the real-time charge sensing sys-

tem in order to identify electron tunneling events efficiently. We use this triggering

system extensively in the measurements described in the following chapters.

3.1 Charge sensing in real time

There is a lower limit to the tunneling rate that one can measure using transport

techniques (Fig. 3-1(a)). Using a very low noise transport circuit, one can in principle

measure currents as low as Imin ≈ 10 fA. The current through the dot is approximately

Idot ≈ eΓ, where Γ is the tunneling rate through the barriers. This puts a lower limit

on the tunneling rate that we can measure using transport: Γmin ≈ Imin/e ≈ 100

kHz. For the work in this thesis, we want to detect electrons tunneling onto and off

of the dot at rates slower than this.
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Figure 3-1: (a) Circuit diagram for measuring transport and charge sensing in a
quantum dot. Negative voltages are applied to the labeled gates to form the dot
and the adjacent QPC charge sensor; the unlabeled gate is grounded. The leads are
numbered 1-3: lead 1 is the drain for the transport circuit, lead 3 is the drain for the
QPC circuit, and lead 2 is the source for both circuits. The drain-source bias voltage
Vds is applied between leads 1 and 2. The arrows illustrate the different current
paths for transport (dotted line) and charge sensing (solid line). (b) Simultaneous
measurement of transport (left axis) and charge sensing (right axis). The current bias
I = ∆I + Idc, and for these data ∆I = 0.2 nArms and Idc = 0.

To measure electron tunneling events at these slow rates we use charge sensing.

The charge sensor for our quantum dot is a quantum point contact (QPC) adjacent

to the dot [50, 79]. A QPC is a narrow 1-dimensional conducting channel [81, 82],

and in our device it is formed between the gates labeled SG2 and QG2 in Fig. 3-

1(a). Applying a slightly more negative voltage to either of the gates SG2 or QG2

changes the resistance of the QPC1 because this voltage has the effect of changing the

electrochemical potential of the channel. Adding an electron to the quantum dot has

the same effect on the resistance because the negative charge of the electron changes

the electrochemical potential of the QPC in the same way as a slightly more negative

1In many QPCs, the conductance decreases in steps of 2e2/h as the gates are made more negative
[81, 82] in zero magnetic field. We do not observe quantized conductance in our QPC, but this is
not necessary for charge sensing. All that is required is that the conductance of the QPC vary with
gate voltage.
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gate voltage. In essence, the electron gates the QPC and in this way the QPC serves

as a sensitive electrometer for detecting charge on the quantum dot [50].

We measure the average differential resistance RQPC of the QPC using the circuit

sketched in Fig. 3-1(a). We source a small current I = Idc + ∆I that contains a dc

component Idc and an ac component ∆I. By measuring the average voltage ∆VQPC

across the QPC at the frequency of the ac excitation, we measure RQPC = ∆VQPC/∆I.

If the tunneling rates between the dot and its leads are large enough, then we can

measure transport and charge sensing simultaneously, and such a measurement is

shown in Fig. 3-1(b) [79]. As we make the voltage on gate LP1 less negative, RQPC

generally decreases because the capacitance between LP1 and the QPC causes the

electrochemical potential of the channel to decrease. The Coulomb blockade peak

in transport marks the gate voltage where the dot is transitioning between the N -

electron and N + 1-electron states. At precisely this voltage, RQPC increases because

of the addition of an electron to the dot. In this way we use charge sensing to probe

the number of electrons on the dot.

The great advantage of this method is that it functions even when we make the

voltages on gates SG1, SG2, and OG more negative so that the tunneling rates

between the dot and its leads are too small to be detected by transport measurements.

Figure 3-2(a) shows an example of charge sensing data taken in the regime where we

cannot measure transport, and the electrons are clearly visible in the data. Here ∆Vg

refers to the change in the voltage applied to the three gates LP1, PL, and LP2. A

striking feature of these data is that the behavior of the QPC as a function of the

gate voltages is far from the ideal. In fact, over certain ranges in ∆Vg, we see that

RQPC actually decreases as the gate voltages are made more negative. Resonances

in QPCs used as charge sensors have been observed before [83] and the lack of ideal

behavior does not affect the QPC’s ability to function as a charge sensor. All that

is necessary for charge sensing is for RQPC to be sensitive to gate voltage: then the

effect of adding an electron is the same as making the gate voltages slightly more

negative. Depending on whether RQPC increases or decreases with more negative

gate voltages, adding an electron will increase or decrease RQPC , respectively (these
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to the change in the voltage applied to the three gates LP1, PL, and LP2. The
arrows mark the gate voltages where the number of electrons on the dot changes,
and the number of electrons on the dot in each voltage range is indicated. (b) Real-
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cases are demonstrated by the right and left arrows in Fig. 3-2(a), respectively).

We identify the electron at ∆Vg = 0 as the first electron. One method we use to

identify the first electron is to set the voltages on gates SG1, SG2, and OG to values

that allow us to measure both transport and charge sensing and then identify the first

electron using transport measurements like those in Fig. 2-6(f). We then gradually

make the voltages on these gates more negative and follow the peak using transport

and charge sensing until the transport signal becomes too small, at which point we

use charge sensing alone. In this way we can identify the first electron and determine

the number of electrons in the dot in each gate voltage range as shown in Fig. 3-2(a).

We can take charge sensing a step further. The response time of our charge

detector is determined by RQPC and the capacitance C of the coaxial line connecting

the QPC to the voltage amplifier. The coaxial line has a capacitance C ≈ 500 pF

and for most measurements we set RQPC ≈ 100 kΩ. This gives a response time

τ = RQPCC ≈ 50 µs. The average time2 an electron spends on or off the dot is Γ−1

and if we make the voltages on the gates SG1, SG2, and OG sufficiently negative

such that Γ−1 > τ , then the charge sensor responds to individual electron tunneling

events in real time [77, 35, 78, 79, 80].

To observe this response, we set ∆I = 0 and Idc ≈ 1 nA. The small change in

the QPC resistance caused by an electron tunneling onto or off of the dot results

in a small change in voltage δVQPC . By measuring VQPC as a function of time, we

observe these tunneling events in real-time. Figure 3-2(b) shows an example of data

taken with the gate voltages set at ∆Vg = 0, so that the dot is at the 0 − 1 electron

transition. We see the voltage transitions between two well defined states: the upper

state corresponds to 1 electron on the dot, while the lower state corresponds to 0

electrons on the dot.

We perform two tests to verify that these voltage transitions are associated with

an electron tunneling onto and off of the quantum dot, as opposed to being caused

by some other effect, such as electrons moving around randomly in the donor layer.

The amount of time the electron spends on or off the dot is random, with the average

2We discuss the average time in more detail in Section 4.1.
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being set by the tunneling rates. Thus the times at which the voltage transitions

occur in Fig. 3-2(b) are random, and these data can be thought of as a type of noise,

called telegraph noise [84]. We measure the amount of noise by finding the root-

mean-square of a voltage trace like that in Fig. 3-2(b), and we denote this quantity

σQPC . Figure 3-2(c) shows the results of measuring RQPC (left axis) and the voltage

noise σQPC (right axis) simultaneously. At both ∆Vg < 0 and ∆Vg > 0, σQPC is

small because the dot has a fixed number of electrons (0 and 1 respectively). Near

the charge transition, electron tunneling events occur and hence the noise increases,

reaching a maximum at the charge transition. The correlation between the telegraph

noise and the charge transition as measured by RQPC is strong evidence that the

voltage transitions are caused by electrons tunneling onto and off of the quantum

dot.

We also measure σQPC as a function of ∆Vg and Vds, much as we did with transport

[53, 83]. Inside the Coulomb blockade diamonds charge transport is prohibited, and

in the absence of electron tunneling events, σQPC should be small. Outside the

diamonds, the level in the dot is in the transport window and hence electrons tunnel

onto and off of the dot and produce voltage transitions, which we detect. Figure 3-

2(d) shows an example of these type of data. The edges of the Coulomb diamond

are clearly visible. This dependence of tunneling on ∆Vg and Vds is exactly what we

expect for electrons tunneling onto and off of a quantum dot, and confirms that this is

the source of the transitions. From this diamond, we can also extract the capacitance

ratios αg and αds as discussed in 2.3.
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3.2 Characterization of the real-time charge detec-

tion system

We use real-time charge detection extensively, so it is important that we characterize

the detection system to understand the signal characteristics and the noise sources.

Figure 3-3 shows a diagram of the circuit we use for real-time charge detection. We

source a current Idc ≈ 1 nA through the QPC by applying a dc voltage across a large

resistor Rs = 10 MΩ. For the measurements in this section, we use a resistor mounted

near the sample at a temperature T ≈ 120 mK; however, for other measurements

we use a resistor at room temperature. We discuss the effects of having a room

temperature source resistor at the end of this section. RQPC is the resistance of the

QPC, which changes in response to the change in the number of electrons on the dot,

and C is the capacitance of the coaxial line going from the sample to the first stage

amplifier mounted at the top of the cryostat.

The first stage amplifier is a Signal Recovery model 5184 voltage preamplifier pow-

ered using external batteries. This amplifier has a fixed gain of 103 and a bandwidth

of approximately 1 MHz. This is much larger than the bandwidth of the charge sen-

sor, which is limited by the rise-time τ = RQPCC as discussed in the previous section.

Figure 3-3: Diagram of the circuit we use for real-time charge sensing. Potential noise
sources are shown, including Johnson noise Ith, shot noise ISN , and the amplifier
current and voltage noise, IA and VA respectively.
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This amplifier is also ac coupled with a high-pass filter at approximately 0.5 Hz, which

keeps the mean of the data at approximately 0. Following the first stage amplifier is

an Ithaco Model 1201 voltage preamplifier, which is set to a gain of between 10 and

50. The low-pass filter on this amplifier is set at 100 kHz which is also above the

bandwidth set by τ . The output of the second stage amplifier is passed out of the

shielded room through high-frequency filters (not shown in Fig. 3-3) and is digitized

by a NI 6110E card mounted in our data acquisition computer.

An example of real-time electron tunneling data is shown in Fig. 3-4(b). For

these data RQPC ≈ 100 kΩ (Fig. 3-4(a)). The transitions between the N = 0 and

N = 1 charge states are clearly visible in the real-time data in Fig. 3-4(b). If a charge
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transition happens at time t0 the shape of the resulting voltage signal VQPC(t) is

VQPC(t) =







Vi t < t0

Vi + Vs(1 − e−(t−t0)/τ ) t ≥ t0
(3.1)

where Vi is the voltage corresponding to the dot state at time t < t0 (so Vi = V0 if

N = 0 for t < t0 and Vi = V1 if N = 1 for t < t0). The size of the signal is given

by |Vs| = V1 − V0, where the sign of Vs depends on whether the transition is from

N = 1 to 0 (Vs < 0) or N = 0 to 1 (Vs > 0). Figure 3-4(c) shows the results of

fitting two transitions to Eqn. 3.1 and the agreement is excellent. From these fits,

we extract Vs and τ and Fig. 3-4(d) and (e) show histograms of the results of fitting

approximately 1800 charge transitions. We see that τ ≈ 60 µs while the average

signal size is |Vs| = 11.2 µV, which is approximately 9% of the total voltage across

the QPC. This value of τ is consistent with our estimate of τ = RQPCC ≈ 50 µs.

To measure the noise of the detection system, we acquire data when the ground

state of the dot is above the Fermi energy of the leads, so that the dot contains

0 electrons and there is no tunneling between the dot and the leads. In this case

the voltage fluctuations across RQPC are caused by noise sources and we record and

analyze 10 s of such data. We find that the total noise is 1.2 µVrms, which corresponds

to a noise of 0.11 electrons. Figure 3-5 shows a Fourier analysis of the data: Fig. 3-

5(b) shows the noise spectrum Vn(f) while Fig. 3-5(a) shows the integrated noise

V(f) ≡
(∫ f

0
Vn(f)2df

)1/2

. The noise spectrum rolls-off at frequencies f & 3 kHz

because of the time-constant τ of the circuit.

A number of sources contribute to the noise spectrum, some of which are indicated

in Fig. 3-3. One important source of noise is the first stage amplifier. This amplifier

contributes two types of noise: there is a voltage noise VA on its inputs and a noise

current IA that it sources through the circuit [85]. The specifications of the amplifier

give the total expected noise for a given input resistance R as a function of frequency

Vspec(f,R), and we can compare these specifications to the measured spectrum. For

an accurate comparison at frequencies f > (2πτ)−1 ≈ 3 kHz, care must be taken

because in this range the capacitance C contributes to the total input impedance of
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our circuit Z(f) = RQPC/(1 + i2πfτ), whereas this capacitance is not present in the

amplifier specifications. To account for this, we divide the specified amplifier noise

Vspec(f,RQPC) by (1 + (2πfτ)2)1/2 with τ = 60 µs; we will discuss the reasoning

behind this approximation in the next paragraph. The specifications for the amplifier

noise are shown by the filled circles in Fig. 3-5(b) and account for a good portion of

the noise spectrum.

For a given resistance R on the input and a given frequency f , the amplifier speci-

fications give the total noise Vspec = (V 2
A +(IAR)2)1/2. Vspec as a function of R at f = 1

kHz are shown in the inset of Fig. 3-5(a). We see that Vspec is approximately con-

stant until R ≈ 100 Ω, above which Vspec increases with increasing R. This indicates

that the voltage noise VA dominates the total noise at low resistances, while at larger

resistances the current noise dominates [85]. The dashed line in the inset indicates

R = RQPC = 100 kΩ, and we see that at this resistance the current noise dominates.

Then Vspec ≈ IARQPC and dividing the specified voltage by (1+ (2πfτ)2)1/2 as we do

in Fig. 3-5(b) gives

Vspec

(1 + (2πfτ)2)1/2
≈

IARQPC

(1 + (2πfτ)2)1/2
= IA|Z(f)|

The total amplifier noise in our circuit is given by VA,tot = (V 2
A + I2

A|Z(f)|2)1/2, so we

see that our treatment of the specified amplifier noise has accounted for the current

noise contribution; there is a small contribution from the intrinsic voltage noise that

we are missing. But the agreement between the specifications and the measurements

indicate that this approximation is good.

While the amplifier noise describes the general features of the noise spectrum, it

cannot account for the peaks in the noise at specific frequencies. These peaks have a

number of possible causes. For example, the peak at 60 Hz is most likely caused by

electrical pick-up because of the power-lines present in the shielded room that houses

the experiment. Some of the noise peaks are also caused by vibrations in our system.

The data for this spectrum has been taken in a 2.7 T magnetic field, so vibrations in

the system can cause variations in the magnetic flux through the dilution refrigerator
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wiring going to the QPC, inducing voltage pick-up at the frequency of the vibration.

The presence of such pick-up is hardly surprising considering the minimal vibration

isolation on the experimental setup. The contribution of these noise spikes to the

total noise can be seen clearly in the integrated noise voltage in Fig. 3-5(a): the sharp

jumps at specific frequencies are the contribution of the noise peaks.

Together the amplifier noise and the noise peaks account for the 1.2 µVrms of

observed noise: the amplifier accounts for 0.7 µVrms while the peaks account for

1 µVrms (the noise contributions add in quadrature). Thus the charge detection

system could benefit from improved vibration and electrical isolation to remove the

noise peaks, as well as an improved first-stage amplifier.

Although the noise is dominated by the amplifier noise and the noise peaks, it

is useful to consider some intrinsic sources of noise as these set the ultimate limit

on the measurement technique. One such intrinsic noise source is the thermal or

Johnson noise [85] across the QPC. We can model this as a noise current Ith =

(4kBT/RQPC)1/2 ≈ 8 fA/Hz1/2. Then the voltage Vth that falls across the parallel

combination of RQPC and C is

Vth = Ith|Z(f)| =

(
4kBTRQPC

1 + (2πfτ)2

)1/2

The Johnson noise spectrum is plotted in Fig. 3-5(b) and is a small contribution to

the total noise.

Another intrinsic source of noise is the shot noise through the QPC, given by the

current ISN = (2eIdcT (1 − T ))1/2 [86, 87], where T is the transmission coefficient

through the QPC. We use T = 0.5 to get a worst-case estimate of the noise. With

this value, we estimate ISN ≈ 9 fA/Hz1/2. As before, the voltage VSN that we measure

is

VSN = ISN |Z(f)| =

(
2eIdcT (1 − T )

1 + (2πfτ)2

)1/2

and this is plotted in Fig. 3-5(b) and is also a small contribution.

Finally, we consider the noise contribution from the source resistor Rs being at

room temperature as opposed to cryogenic temperatures. The noise current from this

48



resistor is Is = (4kBT/Rs)
1/2 ≈ 41 fA/Hz1/2 at T = 300 K. The noise voltage caused

by a warm source resistor is

Vs = |Z(f)|Is =

(
4kBT

Rs

R2
QPC

1 + (2πfτ)2

)1/2

and the results are shown in Fig. 3-5(b) for T = 300 K. The data for the measured

noise spectrum are taken with a source resistor at T = 120 mK so we see the noise

contribution of a warm source resistor is less than that caused by the amplifier and

the noise peaks. Thus we can use a warm source resistor in our experiments without

introducing additional noise.

To determine a figure of merit to describe the sensitivity of our system, we divide

the total noise of 0.11 electrons by the square root of our effective noise bandwidth3

of (4τ)−1 = 4.2 kHz. This gives a sensitivity of approximately 2 × 10−3 e/Hz1/2.

We can compare this with the sensitivity of other charge sensing systems. Lu et

al. [77] couple an Al SET to a quantum dot and measure the SET by embedding it in a

radio frequency (RF) impedance matching network like that developed by Schoelkopf

et al. [51]. This system has a sensitivity of 2 × 10−4 e/Hz1/2 and a bandwidth of 1

MHz. While this system is very sensitive, it is also somewhat cumbersome to integrate

with quantum dots because it requires fabricating a separate device coupled to the

dot [88]. Elzerman et al. [35] also use a QPC as a charge detector, but instead of

measuring the voltage across a current biased QPC, they use a low noise current

amplifier to measure the changes in current through a voltage biased QPC. They

have a sensitivity of approximately 1× 10−3 e/Hz1/2 [88], which is comparable to the

sensitivity of our system. Using a cryogenic amplifier Vink et al. [89] increase the

sensitivity to ≈ 4 × 10−4 e/Hz1/2. Reilly et al. [90] and Thalakulam et al. [91] have

adapted the RF-SET techniques to measure a QPC coupled to a quantum dot. In

Reilly et al. the system has a bandwidth of 8 MHz and a sensitivity of ≈ 10−3 e/Hz1/2.

In the RF-QPC system, the noise is small enough that it is dominated by the

shot noise of the QPC [90]. The limit on the sensitivity comes from the small signal

3The effective noise bandwidth of a single pole RC filter is given by
∫
∞

0
(1+(2πτf)2)−1df = (4τ)−1
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produced by an electron: a charge transition in a double dot changes the QPC con-

ductance by only ∼ 0.1%. Even in the measurements by Elzerman et al., the change

in current through the QPC caused by an electron tunneling event is only 1% [88].

One of the big advantages of our charge detection system is our large signal size:

a tunneling electron causes a 9% change in the voltage across the QPC. This large

signal size helps make our sensitivity comparable to the other QPC measurement

techniques. This good signal size may be caused by making the SG2 gate narrow,

which increases the coupling between the dot and the QPC [92]. Larger signals are

observed in a QPC coupled to a quantum dot where the structures are defined by

locally oxidizing the surface rather than by using surface gates. In this type of device,

Gustavsson et al. [53] observe changes in current through the QPC on the order of

50%.

3.3 Edge and threshold triggers

After amplification, the voltage across the QPC is digitized by the NI6110E DAQ

card as shown in Fig. 3-3. We set the card to digitize the voltages at 500 kHz, and

more recently at 100 kHz. Thus a 10 s data trace can contain 1 million or more data

points. Using the feedback techniques discussed in Section 4.2, we are able to keep

the dot stable and take data for 12 to 16 hour periods, and up to 2 days if necessary.

During this time we collect a large amount of data, from 20 to 65 gigabytes per

day depending on the digitization rate. Storing this much data is impractical, so we

develop tools to cull through the data quickly and identify and store the important

information. These tools are called ‘triggers’.

An example of a data trace is shown in Fig. 3-6(a). This trace contains 2500

points; however, the important information in the trace are the times and directions

of the charge transitions (the direction of a charge transition is whether it corresponds

to an electron tunneling onto or off of the dot). The function of the edge trigger is to

identify these transitions in real-time data; essentially, it is an edge finder. A simple

way of finding an edge is to take the derivative of the data. However, because of the
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Figure 3-6: (a) Real-time data trace. The shaded rectangles show the two time periods
that are averaged and then subtracted to give the value of VEtr at time t ≈ 1.3 ms,
which is marked by a dotted vertical line. (b) Value of VEtr as a function of time
for the data in (a). The edge trigger records an electron tunneling event at the time
when |VEtr| exceeds a threshold Vedge. The dashed horizontal lines mark the threshold
while the dotted vertical lines mark the two times when |VEtr| passes threshold.

noise, we cannot simply take the difference of consecutive points. Instead, the edge

trigger works by taking the difference between the average voltage at two different

times, a quantity that we call VEtr(t). Specifically, to find VEtr(t) we average the data

from t − 100 µs to t and from t + 40 µs to t + 40 + 100 µs and then subtract these

two averages. Formally,

VEtr(t) =
1

tave

∫ t+tskip+tave

t+tskip

VQPC(t) dt −
1

tave

∫ t

t−tave

VQPC(t) dt (3.2)

where tave = 100 µs is the time over which we average and tskip = 40 µs is the time we

skip between the regions we average. We choose the value of tskip to be approximately

the rise-time of the charge detection circuit. Figure 3-6(b) shows VEtr(t) for the data

trace in Fig. 3-6(a). The edge trigger records an electron tunneling event at the time

when |VEtr| exceeds a specified threshold Vedge; the sign of VEtr tells us whether an
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electron is tunneling onto the dot (VEtr > 0) or off of the dot (VEtr < 0). This is

illustrated in Fig. 3-6(b), where the dashed horizontal lines mark the the threshold

and the dotted vertical lines mark the two times when |VEtr| passes the threshold.

The edge trigger automatically reduces the 2500 data points in this trace down to the

4 pieces of information that are recorded (the times and directions of the two charge

transitions).

Since the edge trigger plays a large role in data collection, it is important to

characterize this trigger. To do this, we create artificial charge transitions by pulsing

the voltage on gate LP2. The capacitance between LP2 and the QPC causes RQPC

to change in response to the voltage pulse, and by properly choosing the size of the

voltage pulse we can generate a QPC response that is the same size as that of a charge

transition on the dot. The time-constant for the pulses (≈ 3 µs) is much faster than

the time constant for the QPC charge detector, so the shape of the artificial signals

are like those for electrons. An example of an artificial signal is shown in the inset

to Fig. 3-7(b) and it closely approximates an electron tunneling onto and then off of

a dot. The advantage with the artificial signals is that we know precisely when they

occur.

To characterize the edge trigger, we analyze 400 artificial charge transitions. To

check the accuracy of the edge trigger, we look at a 2 ms window around an ar-

tificial charge transition and check that the the edge trigger identifies precisely one

charge transition during this period and that it correctly identifies the direction of the

transition. We repeat this for different values of Vedge and the results are plotted in

Fig. 3-7(a) as a function of Vedge/|Vs|, where |Vs| ≈ 11.5 µV is the size of the artificial

signals. For Vedge/|Vs| . 0.25 the edge trigger is inaccurate because the threshold is

too low and so it triggers on the noise and finds multiple electron tunneling events.

For Vedge/|Vs| & 0.65 the accuracy decreases because the threshold is so high that

the trigger starts to miss charge transitions. However, in the intermediate range,

we see that the trigger is very accurate, and for most experiments we typically have

Vedge/|Vs| ≈ 0.4.

We also measure the accuracy with which the edge trigger identifies the time of
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Figure 3-7: (a) The accuracy and (b) average offset terror of the edge trigger as a
function of the ratio of Vedge to the signal size |Vs| for 400 artificial signals. The inset
in (b) shows an example of an artificial signal generated by applying a voltage pulse
to gate LP2.
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Figure 3-8: The threshold trigger saves all data points that pass below a specified
threshold Vthresh, as well as 500 µs to either side in order to capture the transitions.

the charge transition. We define terror = tedge − tpulse where tedge is the time at which

the artificial charge transition occurs as determined by the edge trigger, and tpulse is

the actual time. The average values of terror are plotted in Fig. 3-7(b) and we see

there is a systematic offset that depends on Vedge/|Vs|. For Vedge/|Vs| ≈ 0.4 we have

terror ≈ −45 µs.

One drawback to the edge trigger is that it is calculation intensive, so depending

on the digitization rate we can spend up to an equal amount of time analyzing data

as acquiring data. For some data, we can use another trigger to speed up the analysis

process. For example, in the data in Fig. 3-8 the dot is mostly in the N = 1 state,

but occasionally the electron tunnels off the dot and then back on a short time later.

Instead of analyzing the entire trace with the edge trigger, we first apply a threshold

trigger. The threshold trigger saves only the data points for which VQPC(t) < Vthresh,

as well as 500 µs around these points in order to capture the edges of the transitions.

The points saved by the threshold trigger are shown in black in Fig. 3-8 and we see

that this trigger reduces the number of points to be analyzed from 3500 to 859. We

analyze the output of the threshold trigger with the edge trigger to identify the charge

transitions. Using the threshold and edge triggers in sequence can reduce the analysis

time by a factor of 2 to 4.

In summary, the edge and threshold triggers allow us to reduce the amount of data

we need to save by ∼ 1000. This makes it possible to take data over long periods of

time and acquire good statistics. As we acquire data, we randomly save data traces
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and use these for diagnostic purposes. Much of the real-time data shown in this thesis

are from such randomly saved traces.
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Chapter 4

Tunneling in Quantum Dots

The rate at which an electron can tunnel between the quantum dot and the leads

is an important parameter in determining the mechanism that dominates the spin

physics of an electron confined in the dot. When the tunneling rates are very fast,

the dot is in the Kondo regime where the spin of an electron on the dot forms virtual

singlets with the spins of electrons in the leads [12, 13]. When the tunneling rates

are very slow, the spin of a confined electron interacts with nuclear spins via the

hyperfine interaction [37, 38, 39, 41, 34, 40] and with phonons via the spin-orbit in-

teraction [28, 93], leading to spin decoherence and relaxation, respectively. Tunneling

is also essential to potential applications for quantum dots in spintronics, such as spin

filtering [24, 25].

In this chapter we use our real-time charge sensing techniques to explore electron

tunneling in greater detail. The first section discusses how we measure the occupation

probability of the dot and the rates at which an electron tunnels into or out of the

dot. The second section describes how we use measurements of the tunneling rates

to implement a novel active feedback system to maintain the stability of the dot.

In the third section we describe experiments investigating the energy dependence of

tunneling in a quantum dot. These results are reported in MacLean et al. [80]. In the

final section we discuss our observations of spin dependent tunneling in a magnetic

field, which are reported in Amasha et al. [94].
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4.1 Measuring the occupation probability and tun-

neling rates

Before considering tunneling rates, we discuss a closely related quantity called the

occupation probability Pon, which is the probability that there is an electron on the

quantum dot. We expect Pon to depend on the energies of the states of the dot relative

to the Fermi energy of the leads. We can simplify the situation by adjusting the gate

voltages so that the tunneling rate through the barrier defined by gates SG2 and OG

(which we call b2) is much greater than that through the barrier defined by the gates

SG1 and OG (which we call b1). With the gate voltages set in this way, we have a

quantum dot coupled to only one lead, as illustrated in Fig. 4-1(a). When the energy

of the ground state of the dot is above the Fermi energy of the lead (E > 0), we expect

that Pon is small. Figure 4-1(b) shows an example of real-time data with E > 0; as

we expect the dot is unoccupied the majority of the time. As we lower the energy of

the ground state by making the voltage on gate LP2 less negative, Pon increases until

Pon ∼ 0.5 at E ∼ 0 (Fig. 4-1(c)). Finally, when the energy of the ground state is well

below the Fermi energy, the dot is mostly occupied, and the electron tunnels off only

occasionally (Fig. 4-1(d)).

We can quantify the dependence of Pon on the energy of the ground state of the

dot. Using the triggering system discussed in Section 3.3 we identify when an electron

tunnels onto or off of the dot. From these data, we determine the time intervals1 ton

and toff during which the dot is occupied or unoccupied, respectively, as shown in

Fig. 4-1(c). Then we have

Pon =
Ton

Ton + Toff

=
τon

τon + τoff

(4.1)

where Ton is the total time the dot is occupied and this is found by summing the

measurements of ton. Toff is the total time the dot is unoccupied, and is determined

in a similar manner. τon and τoff are the average times that the dot is occupied or

1Note that ton and toff are determined by subtracting the times at which charge transitions
occur, so the systematic error terror in the measurement of the transition time should cancel.
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Figure 4-1: (a) Diagram showing a single-electron quantum dot coupled to one lead.
E is the energy of the ground state relative to the Fermi energy EF of the lead. (b)-
(d) Real-time data when the ground state is above, near, and below the Fermi energy,
respectively. The voltages on the QPC that correspond to the dot being occupied
(N = 1) and unoccupied (N = 0) by an electron are indicated in (b). Examples of ton

and toff are illustrated in (c). (e) Occupation probability Pon as a function of gate
voltage (bottom axis) and E (top axis). The solid line is a fit discussed in the text.

unoccupied, respectively. Figure 4-1(e) shows an example of Pon as a function of gate

voltage. As we expect, Pon is small at more negative gate voltages where the ground

state is above the Fermi energy and increases as LP2 is made less negative.

We quantitatively understand the shape of Pon using thermodynamic consider-
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ations. For a dot with one orbital state2, there are four possibilities for the dot

occupation: the dot can be empty, it can contain one electron in either the spin-up

or spin-down states, and it can contain two electrons. The partition function for this

system is

Z = 1 + 2e−β(ǫ−µ) + e−β(2ǫ+U−2µ)

where β = 1/kBT , ǫ is the energy of the ground state relative to the bottom of the

conduction band, µ = EF is the Fermi energy of the lead, and U is the charging energy

associated with having two electrons on the dot. The average number of electrons on

the dot Ndot is given by Ndot = − ∂
∂µ

(−kBT ln Z). Since U ≈ 4meV > kBT , we take

the limit of infinite U and find Ndot = (1+1
2
eβ(ǫ−EF ))−1. But Ndot = 0×Poff+1×Pon =

Pon, so we have

Pon = (1 + (1/2)eE/kBT )−1 (4.2)

where E = ǫ−EF . Essentially, Pon is a shifted Fermi function Pon = f(E − kBT ln 2)

where f(x) = (1 + ex/kBT )−1.

The energy of the ground state is related to the gate voltage by

E = −eαLP2∆VLP2 + E0, where E0 is the energy corresponding to ∆VLP2 = 0 and

αLP2 = 0.06 is measured from a noise diamond obtained by slightly adjusting the

gate voltages to allow transport through b1. The solid line in Fig. 4-1(e) shows a fit

of the data to Eqn. 4.2, and from this fit we extract a temperature of T = 110 mK.

The occupation probabilities are related to the tunneling rates by the equation3

Ṗon = ΓonPoff − ΓoffPon (4.3)

where Poff = 1 − Pon. If the dot is empty at t = 0, we can use this equation

to find the probability distribution Poff that the dot will remain empty until time

t = toff , at which time an electron tunnels onto the dot. Given that the dot is empty,

the probability that an electron will tunnel on during a short time interval ∆t is

2We can safely neglect the excited orbital states because their energies are much greater than
kBT .

3We assume that at zero magnetic field the tunneling rates into the two spin states of the dot
are equal.
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data. The solid lines are fits to determine the tunneling rates as discussed in the text.

given by Eqn. 4.3: ∆Pon = Ṗon∆t = ∆t(ΓonPoff − ΓoffPon) = Γon∆t. In this last

equality we use the fact that Poff = 1 and Pon = 0 initially. Since the probability

for tunneling on is Γon∆t, the probability that the electron does not tunnel on is

(1 − Γon∆t). If we divide the time interval between t = 0 and toff into N segments

of length ∆t = toff/N , then the probability of tunneling onto the dot between toff

and toff + ∆t is given by Poff (toff )∆t = (1 − Γon∆t)N(Γon∆t), where (1 − Γon∆t)N

is the probability that the electron does not tunnel onto the dot in the N segments

before toff and (Γon∆t) is the probability of tunneling on between toff and toff +∆t.

Then Poff (toff) = Γon(1 − Γontoff/N)N and taking the limit as N → ∞ gives

Poff (toff ) = Γone
−Γontoff . (4.4)

We can similarly show that

Pon(ton) = Γoffe
−Γoff ton . (4.5)

Thus we see that measurements of ton determine Γoff , and vice-versa. Note that from

the probability distributions, the average off and on times are related to the rates by

τoff = Γ−1
on and τon = Γ−1

off .
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To find the tunneling rates, we histogram the measurements of ton and toff at

a fixed set of gate voltages as shown in Fig. 4-2. By fitting these histograms to

exponentials (solid lines in Fig. 4-2), we extract the tunneling rates Γon and Γoff as

shown.

From Eqn. 4.3 we derive a relationship between Γoff and Γon. In steady state

Ṗon = 0 and

Pon = (1 + Γoff/Γon)−1 (4.6)

Comparing this equation to Eqn. 4.2, we see that [83]

Γoff/Γon = (1/2)eE/kBT (4.7)

If we assume that tunneling is elastic, a sensible model for Γoff is Γoff = Γ(1−f(E))

where Γ is the bare tunneling rate through the barrier and (1 − f(E)) is the density

of hole states in the leads [77, 78, 83]. Then from Eqn. 4.7, we have Γon = 2Γf(E),

which is the result we expect for electrons tunneling into the two spin states of an

empty dot.

4.2 Active feedback control

For the experiments that are discussed in the following sections and chapters, we need

to control the energies of the states of the dot relative to the Fermi energy and to

keep these states stable. For some experiments this control is necessary because we

want to study the tunneling rates when the states are at a particular energy relative

to the Fermi energy of the leads. in other experiments, we position one of the states

a certain energy above or below the Fermi energy and observe whether an electron

tunnels onto or off of the dot, and this gives us information about whether this state

is occupied. Also, we need the states to be stable to acquire good statistics.

Unfortunately, as has been noted in previous work [36], the energies of the states in

lateral quantum dots tend to shift over time because of background charge fluctuations

in the heterostructure [72]. In general, these fluctuations do not change the energies
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of the states relative to one another (for example, the energies of the excited states

relative to the ground state remain constant); rather, the charge fluctuations tend

to act like changes in gate voltage and shift the energies of all the states together.

Although our heterostructure is relatively stable in this regard, we still observe two

types of shifts: a slow drift of the energies of the states over time and sudden, large

shifts in the energies.

To compensate for these shifts, we use a novel active feedback control system to

position and to maintain the stability of the states of the dot. The feedback system

uses measurements of the tunneling rate out of the ground state of the dot, which is

given by Γoff = Γ(1 − f(E)). When this state is below the Fermi energy of the lead

(E . −kBT ), Γoff ≈ ΓeE/kBT , so that Γoff is exponentially sensitive4 to the energy

E of the ground state relative to the Fermi energy, as illustrated in Fig. 4-3(a).

The feedback system takes advantage of the exponential sensitivity of Γoff . The

data acquisition computer regularly measures Γoff by monitoring the dot for a period

of time tf and counting the number of times N that an electron tunnels off the dot

as shown in Figs. 4-3(b) and (c); Γoff is then given by Γoff = N/tf . A desired set

point Eset corresponds to a tunneling rate Γset (Fig. 4-3(a)), and if E ≈ Eset then

Γoff ≈ Γset as shown in Fig. 4-3(b). We typically choose Eset so that Γset ≈ 10 Hz.

However, if the energies of the states of the dot shift, for example if E < Eset as in

Fig. 4-3(c), then Γoff < Γset and the data acquisition computer automatically adjusts

the voltage on gate LP2 to change E until Γoff ≈ Γset.

To determine whether Γoff is sufficiently close to Γset, we test if |Γoff−Γset| < Γtol,

where Γtol is a tolerance that we typically choose to be between 1 and 5 Hz, depending

on the precision with which we need to control the levels. The choice of Γtol affects

the time needed to monitor the dot tf : the smaller the tolerance, the longer tf needs

to be in order to make a sufficiently accurate measurement of Γoff . We quantify this

relationship as follows. We have Γoff = N/tf , and from counting statistics we know

that the error in a count N is given by N1/2. So the error in our measurement of Γoff

4For a few data sets, the feedback system uses measurements of the tunneling rate onto the dot
when E > kBT . In this case Γon = 2Γf(E) ≈ 2Γe−E/kBT and so we are also exponentially sensitive
to the dot energy.
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Figure 4-3: (a) An example of Γoff = Γ(1 − f(E)) as a function of E for Γ = 700
Hz and T = 120 mK. For E < −kBT ≈ −10 µeV, Γoff is exponentially sensitive to
E. The dashed vertical line shows a typical energy that we choose for a set point
Eset; the dashed horizontal line shows the corresponding value of Γset. (b) and (c)
Real-time data and the corresponding dot energy diagrams. Since the energy of the
ground state is below the Fermi energy EF , the electron tunnels off only occasionally
because of the small density of hole states in the leads. The dot does not remain
empty for long, however, because there are many filled electron states in the leads,
so an electron quickly tunnels back onto the dot (on a timescale of Γ−1). Therefore
each tunneling event appears as a sharp spike, and the computer can easily count the
number of events in a given time to determine Γoff .
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is δΓ = N1/2/tf . If Γoff = Γset then the expected value of N = Γsettf and the error

in the measured rate is δΓ = (Γset/tf )
1/2. We need to set the tolerance to be larger

than this expected error, so we have Γtol ≥ (Γset/tf )
1/2, which then implies

tf ≥
Γset

Γ2
tol

(4.8)

While the feedback system makes possible many of the measurements reported in

this thesis, it also adds to the time we are not acquiring data. We usually choose tf

to be between 5 and 10 s, and the amount of time spent in the feedback sequence

ranges from 25%-50% of the total aquisition time. A number of improvements could

decrease the amount of time spent in the feedback sequence. First, the time it takes

to analyze the feedback data is about 50% of tf . This can be improved by reducing

the time resolution of the data during tf , as we are not concerned about the times at

which electron tunneling events occur. Also, it may be possible to implement multi-

threading so that the triggers analyze the data aquired as part of the experiment in

parallel with the collection of data for the feedback step (currently, data collection

and analysis occurs serially).

4.3 Energy-dependent tunneling in a quantum dot

4.3.1 Introduction

In this section, we use real-time charge sensing and gate pulsing techniques to study

electron tunneling in a single electron quantum dot. We observe that the rates for

tunneling onto and off of the dot, Γon and Γoff respectively, are exponentially sensitive

to Vds and Vg. We show that this exponential dependence of the tunneling rates is

in excellent quantitative agreement with a model that assumes elastic tunneling and

accounts for the effect on tunneling of the energies of the states of the dot relative to

the heights of the tunnel barriers connecting the dot to its leads.
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4.3.2 Tunneling as a function of drain-source bias

Using our real-time charge sensing techniques, we characterize how the tunneling

rates Γon and Γoff change as a function of the bias voltage Vds between leads 1 and

2. These data are shown in Fig. 4-4(a). From the data, we see that Γoff increases

exponentially as Vds is made more negative. In contrast, as Vds is made more negative

Γon increases rapidly at two specific values of Vds (marked by e1 and e2 in the bottom

panel of Fig. 4-4(a)). But between these points Γon decreases as Vds is made more

negative.

The increases in Γon at e1 and e2 are because of the excited states of the dot. For

negative Vds, the Fermi energy of lead 1 is greater than that of lead 2, so electrons

tunnel onto the dot through b1 and then tunnel off the dot through b2. The increases

in Γon occur when the Fermi energy of lead 1 is aligned with the energy of one of

the excited orbital states of the dot, as illustrated by the diagram in Fig. 4-4(b).

Γon increases rapidly because the excited orbital states are more strongly coupled to

the leads than the ground state. From the values of Vds at which Γon increases, we

estimate the energies of the excited states using αds measured from noise diamonds

and other techniques. We obtain 1.9 and 2.9 meV, which are close to the energies of

the excited states obtained from differential conductance measurements made with

larger tunneling rates, shown in Fig. 4-4(c). The increases in Γon do not correspond to

sharp changes in Γoff because after the electron tunnels into an excited orbital state,

it relaxes to the ground orbital state before it can tunnel off the dot (the relaxation

timescale of . 10 ns [95, 96, 80] is much shorter than the timescale for tunneling).

Once in the ground orbital state the electron tunnels off the dot through b2.

What remains to be understood is why Γoff increases exponentially as Vds is

made more negative, while Γon decreases. From quantum mechanics, we know that

the transmission of an electron through a potential barrier depends on the energy of

the electron relative to the height of the barrier [97, 98]. In the semi-classical limit5,

5To be in the semi-classical limit in the barrier, the inverse wavevector of the electron in the
barrier must be much less than the length scale over which the potential varies [98]. A priori, it
is not clear that we satisfy this condition. But the semi-classical picture provides motivation for
expecting an exponential dependence of the tunneling rates on Vds, which we do observe.
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the transmission through a potential barrier is proportional to

exp

[

−2

∫ √

2m

~2
(U(x) − ǫ) dx

]

where U(x) is the height of the barrier and ǫ is the energy of the tunneling electron,

both of which are measured from the bottom of the conduction band. We assume

that tunneling is elastic, so that ǫ is also the energy of the state on the dot into

which the electron is tunneling. For small perturbations to the energy of this state

δǫ and the potential barrier δU , we linearize the above expression and obtain Γ =

Γ0 exp[−κ(δU −δǫ)], where κ and Γ0 depend on the details of the barrier and the dot.

Applying a drain-source bias Vds has the effect of varying the energies of the states

in the dot; in a linear capacitance model this variation is given by δǫ = E = −eαdsVds.

Similarly, we expect Vds to affect the two barriers. The linear capacitance model gives

δU1 = −eαU1,dsVds, where αU1,ds describes the coupling of Vds to b1, and we have a

similar dependence for δU2.

The relative values of αU1,ds, αds, and αU2,ds depend on geometry [99]: because

lead 1 is closer to b1 than it is to the dot, we expect that αU1,ds > αds. Similarly,

lead 1 is closer to the dot than it is to b2, so we expect that αds > αU2,ds. Thus for

negative Vds, we expect that δU1 > E > δU2, as illustrated in Fig. 4-4(d). Then the

effect of the bias is to increase the height of b1 relative to the energies of the states

of the dot, which then decreases the rate at which the electrons tunnel onto the dot.

This explains why Γon decreases with more negative Vds between the rapid increases

in Fig. 4-4(a). The bias also increases the energies of the states more that it increases

the height of b2, and this brings the states closer to the top of b2. This results in an

increase in the rate at which electrons tunnel off the dot. For tunneling out of the

ground state, we describe this quantitatively by

Γoff = Γ2e
−β2Vds (4.9)

where Γ2 describes the rate through b2 at Vds = 0 and β2 = κ2|αU2,ds−αds|. The solid
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Figure 4-5: Tunneling rates through the dot as a function of Vds. Near Vds = 0
electrons can tunnel on and off the dot through both leads. The solid lines are
calculations discussed in the text.

line in Fig. 4-4(a) shows a fit to this equation, from which we obtain β2 = 0.9 mV−1.

The data in Fig. 4-4(a) is for Vds ≫ 0, where electrons tunnel on through b1 and

off through b2. We also study electron tunneling closer to Vds = 0, as shown in Fig. 4-

5. Near Vds = 0, electrons can tunnel on and off the dot through both barriers, and

the tunneling rates depend on the Fermi statistics in the leads. We extend Eqn. 4.9

to include these effects. For tunneling through the ground state of the dot, we have

Γoff = Γ2e
−β2Vds [1 − f2(E)] + Γ1e

β1Vds [1 − f1(E)] (4.10)

and

Γon = ηΓ2e
−β2Vdsf2(E) + ηΓ1e

β1Vdsf1(E). (4.11)

In these equations E = −eαdsVds is the energy of the ground state relative to the Fermi

energy in lead 2, and f1 and f2 are the Fermi functions of the leads f1(E) = f(E+eVds)

and f2(E) = f(E). Also, η is the ratio of the on and off rates for a given lead, so

from Eqn. 4.7 we expect η = 2 from spin degeneracy [100, 54], and we use this value

for the rest of this section.
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The solid lines in Fig. 4-5 show Eqns. 4.10 and 4.11 with β1 = 0.9 mV−1, Γ1 = 6 Hz,

β2 = 0.8 mV−1, and Γ2 = 65 Hz. At negative Vds, electrons tunnel onto the ground

state through b1 and off through b2, whereas at positive Vds, electrons tunnel off

through b1 and on through b2. While there is good agreement between the calculation

and Γoff over the whole range, at large positive and negative values of Vds we see that

Γon deviates from the calculation. This deviation is because of the excited states,

and a lineshape that includes the excited states can be calculated and gives good

agreement with the data (see MacLean et al. [80] for details).

4.3.3 Tunneling as a function of gate voltage

We also characterize the dependence of the tunneling rates on changes in the gate

voltages ∆Vg applied to the three gates LP1, PL, and LP2. For these measurements,

the barriers are tuned so that the tunneling rate Γ1 through b1 is negligible compared

to that through b2 (the same situation described in Section 4.1). The energy of the

ground state relative to the Fermi energy is given by E = −eαg∆Vg. When E ∼ 0,

electrons can tunnel on and off the dot, and we can measure both rates with our

real-time charge detection techniques. However, for E ≪ 0 and E ≫ 0, Γoff and

Γon are negligibly small, respectively. For these values of E, spontaneous tunneling

events are rare and we have to measure the rates using pulse techniques.

The diagrams in Figs. 4-6(a) and (b) show the position of the ground state of the

dot during the pulse sequence we use to measure Γoff for E ≫ 0. The top panel in

Fig. 4-6(c) shows the change in the energy of the ground state during each step. First

we apply a voltage pulse to gate LP2 to bring the energy of the ground state down

to the Fermi energy, and hold it at this energy for a time tH ≈ 0.6 ms. During this

time an electron can tunnel onto the dot. After tH , we bring the state back to its

original energy and observe the electron tunneling out of the dot. The bottom panel

of Fig. 4-6(c) shows an example of real-time data taken during the pulse sequence.

Using our triggering system, we measure the time ton between the end of the charging

pulse and when the electron tunnels off the dot. We then fit a histogram of the values

of ton to an exponential to extract Γoff . To measure Γon when E ≪ 0, we use a
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Figure 4-6: (a) and (b) are dot diagrams illustrating the position of the ground state
of the dot during the two steps of the pulse sequence. The top panel of (c) shows the
energy of the state during the two steps, while the bottom panel shows an example
of real-time data. The direct capacitive coupling between LP2 and the QPC causes
the QPC to respond to the pulse sequence; electron tunneling events are evident on
top of this response. The 0’s denote when an electron tunnels off the dot, while 1’s
denote when an electron tunnels on. Using our triggering system, we automatically
measure the time ton between the end of the pulse sequence and when and electron
tunnels off the dot. (d) Tunneling rates as a function of ∆Vg. Near ∆Vg = 0 the rates
are measured by observing spontaneous tunneling. Away from ∆Vg = 0, one of the
rates is negligibly small and we use a pulse sequence to measure the other rate.
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similar sequence where we pulse the gate to empty the dot and then measure the

time it takes for an electron to tunnel onto the dot.

Measurements of the tunneling rates as a function of ∆Vg are shown in Fig. 4-6(d).

Near ∆Vg = 0, Γoff decreases rapidly with increasing ∆Vg and Γon increases because

of Fermi statistics. Away from this region, however, we see that the rates generally

decrease with increasing ∆Vg. We can understand this dependence in much the same

way we understood the dependence on Vds. Changing the gate voltages cause a change

E = −eαg∆Vg in the energy of the dot, as well as a change δU2 = −eαU2,g∆Vg in

the height of the tunnel barrier. Since the gates LP1, PL, and LP2 are closer to the

dot than to b2, we expect that αg > αU2,g, so the change in energy of the dot will be

greater than the change in the barrier. Then for increasing ∆Vg, the state is brought

further below the top of the barrier and the tunneling rate between the dot and the

lead decreases. Quantitatively, we have

Γoff = Γ2e
−βg,2∆Vg [1 − f(E)] (4.12)

and

Γon = ηΓ2e
−βg,2∆Vgf(E) (4.13)

where βg,2 = κ2|αU2,g −αg|. The solid lines in Fig. 4-6(d) show fits to these equations

and we obtain βg,2 = 0.5 mV−1. In these fits we fix η = 2 because of the spin degener-

acy of the ground state of the dot, although better agreement could be obtained with

a smaller value [54]. The fact that the tunneling rate decreases as ∆Vg is made more

positive supports our assumption of elastic tunneling. As ∆Vg is made more positive,

the ground state is brought further below the Fermi energy of the lead, making more

states available for inelastic tunneling processes. Despite these additional inelastic

processes, the tunneling rate continues to decrease exponentially, which is consistent

with our model based on purely elastic tunneling.

We can combine the equations to describe the tunneling rates of the ground state
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Figure 4-7: (a) and (b) show measurements of the rates for tunneling off of and onto
the ground state of the quantum dot, respectively. In these data, the voltage on
the QPC was changed slightly as a function of ∆Vg to maintain sensitivity over the
entire range of gate voltages. (c) and (d) show results of the calculations of the rates.
The value of βg,2 in these calculations is different from that measured in Fig. 4-6(d)
because the gate voltages are set differently to allow tunneling through both barriers.
The white areas are regions where one of the calculated tunneling rates is less than 1
Hz.

as a function of both Vds and ∆Vg. The combined equations are:

Γoff = Γ2e
−β2Vds−βg,2∆Vg [1 − f2(E)] + Γ1e

β1Vds−βg,1∆Vg [1 − f1(E)]

and

Γon = ηΓ2e
−β2Vds−βg,2∆Vgf2(E) + ηΓ1e

β1Vds−βg,1∆Vgf1(E).

where E = −eαdsVds − eαg∆Vg describes the combined effects of Vds and ∆Vg on

the energy of the ground state. Measurements of Γoff and Γon as a function of Vds

and Vg are shown in Figs. 4-7(a) and (b), respectively. The white areas are regions
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where one of the rates is negligibly small, so that there are few tunneling events.

Tunneling rates calculated using the above equations are shown in Figs. 4-7(c) and

(d). The calculation of Γoff gives very good agreement with the data over the entire

range. The calculation of Γon also gives good agreement, but starts to deviate from

the data for |Vds| ≫ 0. These deviations are caused by the excited orbital states,

which are not included in the calculation. These calculations show that we have a

good understanding of the energy-dependence of tunneling in a quantum dot.

4.4 Spin-dependent tunneling into an empty quan-

tum dot

4.4.1 Introduction

In the previous section, we develop a good understanding of tunneling in zero mag-

netic field. In this section, we study tunneling in a magnetic field. Tunneling in a

magnetic field has been studied in both lateral GaAs quantum dots [60, 101, 102]

and self-assembled InAs quantum dots coupled to three-dimensional electron reser-

voirs [103, 104]. Despite the progress in understanding the spin physics of tunneling,

measurements of the spin state of electrons emitted from a lateral quantum dot in

the Coulomb blockade regime by Potok et al. [55] remain unexplained. Using a mag-

netic focusing geometry and a QPC spin sensor [105], Potok et al. measure the spin

polarization of electrons emitted from a quantum dot as the dot’s spin state is varied

from S = 0 to S = 1. Surprisingly, these authors find no variation in the polarization

of the emitted electron’s spin as they vary the spin state of the dot. These experi-

ments point out the need to further understand the spin-dependence of tunneling in

quantum dots.

In this section, we report experiments that use real-time charge sensing and gate

pulsing techniques to probe electron tunneling into an empty quantum dot in a mag-

netic field B applied parallel to the 2DEG [94], where the spin states of the dot are

split by the Zeeman energy ∆ = |g|µBB. We find that the ratio of the rates for
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tunneling into the excited and ground spin states of the empty dot decreases with

increasing magnetic field. However, we find that by adjusting the voltages on the

surface gates to change the orbital configuration of the dot, we restore tunneling into

the excited spin state and the ratio of the tunneling rates reaches a maximum when

the dot is symmetric.

4.4.2 Magnetic field dependence of tunneling

To measure the rate Γon for tunneling into the empty dot, we make the tunneling

rate through b1 negligibly small relative to that through b2 and use a two-step pulse

sequence (Fig. 4-8(a)) similar to that described in the previous section. First, we

ionize the dot by bringing both spin states of the dot above the Fermi energy of

the lead: if there is an electron on the dot then it tunnels off. Next is the loading

step, during which we apply a voltage pulse Vp to gate LP2 to bring the ground spin
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Figure 4-8: (a) Dot energy diagrams showing the positions of the Zeeman split spin
states of the dot during the pulse sequence. (b) Example of real-time data. The
direct capacitive coupling between LP2 and the QPC causes the QPC to respond to
the pulse sequence; electron tunneling events are evident on top of this response. The
0’s denote when an electron tunnels off the dot, while 1’s denote when an electron
tunnels onto the dot. (c) Example of a histogram of measurements of tL for a given
pulse depth Vp. The solid line is a fit to an exponential to find Γon.
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state an energy Ep = −eαLP2Vp below the Fermi energy of the lead for a period of

time. During this time, an electron can tunnel into the ground spin state of the dot.

For sufficiently large Vp, the excited spin state is also below the Fermi energy and an

electron can tunnel into either spin state. We expect the rate Γon to increase when the

excited spin state passes below the Fermi energy, because there is now an additional

state into which the electrons can tunnel.

Figure 4-8(b) shows an example of real-time data. During the ionization step, we

observe that an electron tunnels off of the dot, and then an electron tunnels onto the

dot at a time tL after we begin the loading step. We measure the time tL with our

automatic triggering system, and a histogram of these times for a fixed Vp is shown in

Fig. 4-8(c). We fit these data to an exponential (solid line in Fig. 4-8(c)) to determine

the rate Γon at which electrons tunnel onto the dot at this value of Vp.

The active feedback system plays an important role in this measurement. Before

applying the pulse sequence, we use the feedback system to position the ground spin

state near the Fermi energy. This ensures that the voltage pulse brings the state to

the proper energy. We then apply a train of pulses, and after analyzing the data with

the triggers, we run the feedback system again in preparation for another pulse train

at a different Vp.

An example of Γon vs Vp at B = 3 T is shown in Fig. 4-9(a). The data is similar to

the measurements of Γon in Fig. 4-6(d) (solid and open circles), except that there are

now two increases in Γon instead of just one. The first rise at Vp = 0 is caused by the

ground spin state passing below the Fermi energy, while the second rise at Vp ≈ 1 mV

is caused by the excited spin state passing below the Fermi energy. Figures 4-9(a)-(c)

show examples of Γon vs Vp at several magnetic fields. The key qualitative feature of

these data is that the rate increase associated with the excited spin state gets weaker

with increasing magnetic field, and is not observable at B = 7.5 T. The arrow in

Fig. 4-9(c) indicates where we would expect to find the rate increase.

We quantify this suppression of tunneling into the excited spin state relative6 to

6The tunneling rate through the barrier changes with magnetic field and hence it is necessary to
adjust this rate using the gate voltages to keep Γon at measurable levels (≈ 200 − 400 Hz at the
peak). This means it is not possible to compare the values of Γon at two different magnetic fields.
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Figure 4-9: (a)-(c) Examples of Γon vs Vp at several magnetic fields. The solid and
dashed lines are discussed in the text. In (a) and (b) the increase in Γon caused when
the excited spin state passes below the Fermi energy of the lead is clearly visible,
while the arrow in (c) marks the value of Vp = ∆/eαLP2 where the feature is expected
to be. (d) χ as a function of magnetic field from fits to data such as those in (a)-(c).
For B ≤ 6 T, the excited state feature is clearly visible and ∆ can be extracted
from the fit. For B > 6 T, the feature is not visible and fits are performed fixing
∆ = |g|µBB, where |g| = 0.39 is determined by fitting measurements from which we
can extract ∆ (inset). These measurements include values at B = 7.5 T for different
orbital configurations where tunneling into the excited spin state is not suppressed.
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tunneling into the ground state by extending Eqn. 4.13 from the previous section to

describe tunneling in a magnetic field:

Γon = Γ2e
−βg,2Vp [f(Ep) + χf(Ep + ∆)]. (4.14)

Here f(Ep) and f(Ep+∆) give the occupation of the lead at the energies of the ground

and excited spin states, respectively, and the factor χ accounts for spin-dependent

tunneling.

The solid lines in Figs. 4-9(a)-(c) show fits to Eqn. 4.14 and the fits are in good

agreement with the data. In Eqn. 4.14, the contribution of tunneling into the ground

spin state is given by Γg = Γ2e
−βg,2Vpf(Ep) and this is shown by the dashed line in

Fig. 4-9(a). The remaining contribution is caused by tunneling into the excited state

with rate Γe. For pulses deep enough to bring the excited state below the Fermi energy

so that f(Ep) ≈ f(Ep + ∆) ≈ 1, we have χ = Γe/Γg. In this way, χ describes the

spin-dependence of the tunneling rates. Measurements of χ as a function of magnetic

field B are shown in Fig. 4-9(d), and we see that χ decreases with increasing magnetic

field.

4.4.3 Shape dependence of tunneling in a magnetic field

We affect this suppression by manipulating the orbital states of the dot using the

voltages we apply to the gates [93]. The x and y axes of the dot, which correspond

to the [110] and [110] GaAs crystalline axes, respectively, are shown in Fig. 4-10(a)

(the magnetic field is parallel to the y-axis). When the voltages on all the gates that

form the dot are approximately equal, we expect the dot to be less confined along

the x-axis than along the y-axis because of the geometry of the gates, as illustrated

by the black solid ellipse in Fig. 4-10(a). To change the shape of the dot, we apply a

more negative voltage to gate SG1 and a less negative voltage to gates LP1, PL, and

LP2; these changes are balanced to keep the ground state energy constant. The effect

Consequently we cannot determine whether the suppression is caused by an increase in the rate for
tunneling into the ground spin state or a decrease in the rate for tunneling into the excited spin
state.
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Unlike Fig. 4-9(c), at this value of Vshape the excited state feature is clearly present.
The value of Vp at which it appears is different than in Fig. 4-9(c) because αLP2

changes with Vshape (see Section 6.2).
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of these changes is to increase confinement along x, while decreasing the confinement

along y as illustrated by the white dotted ellipse in Fig. 4-10(a). We parameterize a

set of gate voltages by Vshape, the numeric value of which is the voltage on gate SG1

(see Section 6.2 for more details). The data in Fig. 4-9 are at the most negative value

of Vshape = −1350 mV.

We can characterize the change in the shape of the dot using the energies of the

excited orbital states, which depend on the confinement potential. To see this, note

that if we model the electrostatic potential of the dot with an anisotropic harmonic

oscillator potential U(x, y) = 1
2
m∗ω2

xx
2 + 1

2
m∗ω2

yy
2, then the energies of the excited

orbital states relative to the ground state are determined by confinement: Ex = ~ωx

and Ey = ~ωy. As we make Vshape more negative, we increase the confinement along

x and decrease the confinement along y. Thus we expect that Ex should increase and

Ey should decrease as Vshape is made more negative. The top panel of Fig. 4-10(b)

shows the energies of the first two excited orbital states relative to the energy of

the ground orbital state, which we measure using gate pulsing and real-time charge

detection techniques [93] described in Section 6.2. As we expect, the energy of one

state increases and the other state decreases as Vshape is made more negative, and this

allows us to identity the states as indicated in the figure. Our interpretation of these

data are confirmed by our measurements of the spin-relaxation time as a function of

Vshape, which we discuss in Section 6.3.

At each value of Vshape, we measure Γon as a function of Vp at B = 7.5 T. From

these data, we extract ∆, and verify it is independent of Vshape. We also extract χ

and the results are shown in the bottom panel of Fig. 4-10(b). Clearly χ depends on

Vshape, and χ reaches a maximum of ≈ 1 at Vshape ≈ −990 mV. Figure 4-10(c) shows

an example of data at this value of Vshape. In contrast to Fig. 4-9(c) the rise in Γon

associated with the excited state is now clearly visible.

4.4.4 Discussion

If we assume that tunneling is elastic [80] and that there is no coupling between the

electron orbital and spin states in the dot or the leads, then we would expect the
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Figure 4-11: Dot diagrams for (a) spin-up and (b) spin-down electrons. The energies
of the levels are set such that the excited spin state is aligned with the Fermi energy
of the lead. Note that both spin species have the same Fermi energy. The horizontal
arrows are to emphasize that we assume tunneling is elastic.

tunneling rates to be described by Eqn. 4.14 with χ = 1. This is because in the

absence of such coupling, the excited and ground spin states of the dot have the same

orbital wavefunction and hence the same overlap with the leads. Thus the tunneling

rates into both spin states should be the same, and the tunneling rates should have

the same dependence on Vp.

This argument may seem counter-intuitive: because the spin-down state is higher

in energy than the spin-up state, should not the two states have different tunneling

rates? Although the spin-down state is higher in energy, the spin-down electrons

tunneling into this state also see a higher tunnel barrier because the bottom of the

conduction band for spin-down electrons is also shifted up by ∆, as illustrated in

Fig. 4-11. To see this explicitly, we note the Hamiltonian for the system is H = p2

2m∗
+

Udot(x, y) + 1
2
∆σy, where Udot is the electrostatic potential. The effective potential

seen by the electrons is Ueff = Udot + 1
2
∆σy. The potential is different for the two

spin states, and they are related by Ueff, ↓ = Ueff, ↑ + ∆. The key feature is that,

assuming tunneling is elastic, the spin-up and spin-down electrons tunnel through

barriers of equal height. Thus we expect tunneling to be described by Eqn. 4.14 with

χ = 1. That we observe χ changing with the magnetic field and with the shape of
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the dot implies that this simple picture does not adequately describe the physics of

electron tunneling in a magnetic field.

We consider several possible mechanisms- the spin-orbit interaction, a perpen-

dicular magnetic field, and interaction with the QPC- but find that none of these

account for the observed spin-dependence of tunneling. The variation of χ with the

shape of the dot suggests that the tunneling into the spin states depends on the or-

bital states of the dot. One mechanism that can couple orbital and spin states is the

spin-orbit interaction (SOI). As we will see in more detail in Chapter 6, the effect

of the SOI on the states of the dot is to mix the Zeeman split ground orbital state

with excited orbital states, so any difference in mixing between the spin states could

cause spin-dependent tunneling. However, the SOI induced mixing is small because

it is on the order of x/λSO ≈ 8 × 10−3 where x ≈ 17 nm is the length scale for a

harmonic oscillator potential approximating a dot with energy spacing E ≈ 2 meV,

and the spin-orbit length λSO ∼ 2 µm describes the strength of the SOI [93, 106].

Moreover, as the magnetic field increases the Zeeman splitting also increases, so the

mixing of excited orbital states into the higher energy spin-down state is greater than

the mixing into the lower energy spin-up state. Excited orbital states have stronger

overlap with the leads, so the rate of tunneling into the spin-down state should in-

crease relative to the rate into spin-up state and χ should increase with field, which

is not what we observe in Fig. 4-9(d).

The SOI also couples the orbital and spin states of electrons in the leads. In the

leads, the SOI can be thought of as a momentum-dependent effective magnetic field

with magnitude BSO ≈ 2EF

π|g|µB

λF

λSO
≈ 6 T at the Fermi energy, where EF ≈ 7.7 meV

and λF ≈ 54 nm are the Fermi energy and wavelength respectively. As the magnetic

field increases we expect the Zeeman splitting to begin to dominate the SOI and the

physics to approach the simple picture in Fig. 4-11, and thus χ should approach 1 at

high fields. This is not what we observe.

Although we orient the sample such that the field is parallel to the 2DEG, a small

misalignment could give a perpendicular field B⊥. We estimate that the sample is

parallel to within 5 degrees and this limits B⊥ < 0.65 T at B = 7.5 T, which is
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the highest field we use. Since we are measuring single-electron tunneling into an

empty quantum dot, there are no exchange effects in the dot; rather, the states of

the dot are single-particle states. But B⊥ can affect the states in the ohmic leads by

forming Landau levels, and one possibility is that we would observe spin-dependent

tunneling were the dot a spin-sensitive probe of the states in the leads [60]. We do not

believe this is the case for several reasons. First, this mechanism does not explain how

changes in the dot shape could affect χ. Also, we observe spin-dependent tunneling

in a second device where we perform magneto-transport measurements on the device

mesa. We find only a small variation in the voltage across the mesa with magnetic

field, and if we ascribe this change to a Hall voltage, we extract B⊥ ≈ 20 mT at

B = 7.5 T.

Finally, we check whether the spin-dependence of tunneling depends on the current

in the QPC by measuring χ for several different currents through the QPC in a second

device. We vary the current by a factor of 3 (from 0.9 to 2.7 nA) but observe no

significant variation in χ. These observations suggest that the QPC is not responsible

for the observed effect.
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Chapter 5

Spin Relaxation in Lateral

Quantum Dots

In this chapter we describe how we measure the spin relaxation rate of a single electron

confined in a lateral quantum dot in a magnetic field. Understanding this rate is im-

portant for spin-based applications. In the first section, we introduce spin relaxation

in quantum dots and discuss theoretical predictions and previous measurements. In

the second section, we discuss our measurement technique, while the third section fo-

cuses on one of the errors in our measurement. Finally, in the last section we discuss

how we use measurements of the spin relaxation rate as a function of magnetic field

to determine the relaxation mechanism in lateral quantum dots. Parts of this work

are reported in Amasha et al. [107].

5.1 Introduction to spin relaxation

Understanding the interactions between a quantum system and its environment is es-

sential to developing the system for use in applications, such as quantum information

processing [29] and spintronics [21, 22, 23]. Recent experiments have demonstrated

the ability to manipulate [34, 32] and read-out [35, 36] the spin states of an electron in

a lateral GaAs quantum dot [4, 108], thus making this type of quantum dot an attrac-

tive option for spin based applications. One of the ways the spin of an electron in a
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dot interacts with its environment is the hyperfine interaction between the electron’s

spin and the effective nuclear field Bnuc caused by nuclear spins [38, 37, 39, 41, 40].

This interaction causes phase decoherence, and the decoherence time T2 has been

measured [34].

An electron confined in a quantum dot can also exchange energy with its envi-

ronment, and this affects the spin. In a magnetic field B the spin states of a single

electron in a dot are split by the Zeeman energy ∆ = |g|µBB, providing a two level

quantum system. Spin relaxation occurs when the electron exchanges energy with

its environment to bring the probabilities of being in the excited and ground spin

states into thermal equilibrium. T1 is the timescale over which this equilibrium is

established; at low temperatures (T ≪ ∆/kB), it is the average time necessary for an

electron in the excited spin state to lose energy and relax to the ground spin state.

Since relaxation necessarily destroys a coherent superposition of spins, it limits [46]

the coherence time T2 < 2T1.

At fields B . Bnuc ≈ 3 mT, the electron can relax by interacting with the nuclear

spins [41]. For B ≫ Bnuc, this mechanism is suppressed because of the mismatch

between the Zeeman splittings for the electron and the nuclei. In this regime, a

variety of mechanisms for spin relaxation have been proposed [45, 46, 109, 110, 47,

48, 111, 112, 113, 114]. Many of these mechanisms involve the spin-orbit interaction,

which couples the spin states of the dot to the orbital states. The orbital states

interact with fluctuating electric fields to exchange energy, and relax the spin of

the electron. Relaxation can be induced by spin-orbit mediated coupling to electrical

fluctuations caused by phonons [45, 46, 109, 110], as well as electrical fluctuations from

surface gates [47], ohmic leads [48], or shot noise from an adjacent quantum point

contact [111]. Spin relaxation can also be induced by hyperfine (rather than spin-

orbit) mediated coupling to phonons [112] or gate fluctuations [47]. The mechanisms

have different dependences on magnetic field (see Appendix A for details): spin-

orbit mediated coupling to piezoelectric phonons is expected to dominate at large

magnetic fields where spin relaxation should be faster, while the other effects may

become important at low fields where relaxation should be slower.
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Measurements of the spin relaxation rate W ≡ T1
−1 over a range of fields can

determine the mechanism. Such measurements are challenging because at low fields

∆ is comparable to the electron temperature making spin read-out difficult. Also

W is expected to be a very strong function of B, meaning an experiment must have

a large dynamic range to be able to measure rates that vary over several orders of

magnitude. Pulsed gate transport measurements [95, 69] in lateral dots have put

lower bounds on T1, while Elzerman et al. [35] have measured T1 for one electron

in a single lateral dot for B ≥ 8 T and found T1 < 1 ms. Hanson et al. [36]

and Meunier et al. [115] have measured the triplet-singlet relaxation time at smaller

fields for two electrons. Kroutvar et al. [28] have used optical methods to measure a

layer of self-assembled Ga(In)As quantum dots and have demonstrated that spin-orbit

mediated coupling to piezoelectric phonons accounts for the observed spin relaxation.

However, the relaxation times in lateral GaAs quantum dots may be different because

the presence of Indium in the self-assembled dots may lead to increased spin-orbit

effects and because lateral quantum dots are coupled to surface gates, ohmic leads,

and quantum point contacts, which may introduce new relaxation mechanisms at low

fields.

In this chapter we describe techniques that allow us to measure the relaxation rate

W of one electron in a lateral quantum dot from 7 T down to 1 T, a range over which

W varies by 3 orders of magnitude. At 1 T we find W < 1 s−1, which corresponds

to T1 > 1 s. These measurements are possible because of the good stability of the

heterostructure we use combined with the active feedback system that compensates

for residual drift and switches of the dot energy levels and allows us to maintain

the stability of our read-out state, especially at low fields. Also our analysis method

extends our dynamic range by allowing us to measure W even when it is faster than

our electron tunneling rates. We find that our measurements of W as a function

of field are fit well by a power-law and that the exponent is consistent with that

predicted for the mechanism of spin-orbit mediated coupling to piezoelectric phonons

[45, 46]. This demonstrates that this mechanism can account for spin relaxation in

lateral quantum dots.
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5.2 Measuring the spin relaxation rate

The quantum dot we use for the spin relaxation measurements is shown in Fig. 5-1.

For these measurements, we adjust the voltages on the gates to make the tunneling

rate through barrier b2 (defined by gates SG2 and OG) much larger than that through

barrier b1 (defined by gates SG1 and OG). As in the previous chapter, this gives a

dot coupled to a single lead.

To measure W at a given magnetic field, we apply a three step pulse sequence [35]

on top of the dc voltage on gate LP2: VLP2 = Vdc + Vp. This sequence is illustrated

in Fig. 5-2(d), where we convert the gate voltage pulse Vp into the resultant change

in the energies of the states of the dot using Ep = −eαLP2Vp. Figures 5-2(a)-(c) show

the positions of the spin states of the dot during each step in the sequence. First

we bring both spin states above the Fermi energy of the lead (Fig. 5-2(a)) so that

any electron on the dot will tunnel off, leaving the dot empty or ionized. Next, we

bring both states below the Fermi energy of the lead (Fig. 5-2(b)) and hold the dot

in this configuration for a time tw, which we vary. During this time, an electron can

tunnel into either the excited or the ground spin state of the dot with rate Γe or Γg,

respectively. An electron that has tunneled into the excited state can also relax with

rate W . So at the end of tw there are three possible states for the dot. There is some

probability that tw is not long enough for an electron to tunnel into the dot, so the

dot is still ionized; this is the ionized probability Pi(tw). There is also a probability

Pe(tw) that the electron is still in the excited spin state, and this probability depends

on W . Finally, there is some probability Pg(tw) that the electron is in the ground

spin state of the dot.

The final step in the pulse sequence is the real-time read-out, shown in Fig. 5-2(c).

We follow Elzerman et al. [35] and position the levels so that the excited state is above

or near the Fermi energy of the lead and the ground state is below the Fermi energy.

In this configuration, an electron in the excited spin state can quickly tunnel off the

dot with rate Γoff , while the tunneling rate of an electron out of the ground state Γb

is exponentially suppressed.
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Figure 5-1: Electron micrograph of the gate geometry. Negative voltages are applied
to the labeled gates to form the quantum dot and the QPC charge sensor; unlabeled
gates and the ohmic leads labeled 1 and 2 are grounded. Pulses are applied to gate
LP2.
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Figure 5-2: (a)-(c) diagrams showing the positions of the spin states during the
three steps in the pulse sequence. In (b) relaxation is illustrated in the case where
∆ ≫ kBT and an electron relaxes from the excited to the ground spin state. At lower
fields where ∆ ∼ kBT , the reverse rate (from the ground to the excited state) is not
negligible and W is the sum of the forward and reverse rates (see Appendix A.7). (d)
The three step pulse sequence converted into the resultant change in the energies of
the states of the dot.
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An important part of our experiment is maintaining the stability of the read-out

configuration, especially at low B where ∆ is comparable to kBT . To do this, we

use the active feedback mechanism described in Section 4.2. The active feedback

maintains Γb ∼ 10 Hz, which keeps the ground spin state the proper energy below

the Fermi energy of the lead. We run the feedback routine between applications of

the T1 measurement pulse sequence described above; we typically run the feedback

routine at least once every several minutes, if not more frequently. The active feedback

system maintains stability and allows us to collect large numbers of pulses at each tw

and B, typically between 4 × 103 and 1.5 × 105 pulses.

Figures 5-3(a) and (b) show two examples of data taken at B = 2.5 T and tw = 4
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Figure 5-3: Examples of real-time data that results from applying the spin relaxation
measurement pulse sequence. The direct capacitive coupling between LP2 and the
QPC causes the QPC to respond to the pulse sequence; electron tunneling events are
evident on top of this response. The 0’s denote when an electron tunnels off the dot,
while 1’s denote when an electron tunnels on.
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ms. In Fig. 5-3(a) we see that an electron tunnels off during the ionization pulse,

leaving the dot empty. During the charging pulse, an electron tunnels onto the dot

a time tL after the pulse is applied. When we enter the read-out step, the electron

tunnels off the dot, presumably from the excited spin state, at a time1 toff after the

end of the charging pulse. Shortly after the electron tunnels off, an electron tunnels

back onto the empty dot. We call this behavior a ‘tunnel-off’ event. In contrast, in

Fig. 5-3(b) we see an electron tunnel off during the ionization pulse, but no electron

tunnels on during the charging pulse. Thus the dot is empty entering the read-out

stage and the first event in this stage is an electron tunneling onto the empty dot.

We call this an ‘ionization event’, and measure the time ton between the end of the

charging pulse and the time when an electron tunnels onto the dot. We measure the

times using the automatic triggering system discussed in Section 3.3.

From data such as those in Fig. 5-3 we measure the probabilities. To measure

the ionized probability Pi(tw), we need to count the number of times Ni that the

dot is empty entering the read-out step. To do this we histogram the measurements

of ton from ionization events like the one shown in Fig. 5-3(b). The results are

shown in Figs. 5-4(a)-(c) for three different sets of B and tw. We fit the data to

an exponential, and the fit is shown by the solid lines in the figures. The area

underneath the exponential gives Ni, and the ionized probability is then determined

by Pi = Ni/Npulses, where Npulses is the total number of pulses applied at the given

tw and B.

The rate of the exponential decrease is just the rate Γon at which electrons tunnel

onto the empty dot in the read-out state (Fig. 5-4(d)). In a given magnetic field, the

read-out configuration is the same for all values of tw, so we expect that Γon should

be independent of tw. This is demonstrated by the data in Figs. 5-4(e)-(g), which

shows the value of Γon measured at each tw. It is not meaningful to compare the

values of Γon at different fields, because we modify the voltages on the gates SG2 and

OG at each field to tune the tunneling rate through b2 to a value convenient for the

1Note that our definitions of toff and ton in this section are different from the definitions of these
variables in Chapter 4.
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Figure 5-4: (a)-(c) Histograms of ton for ionization events for three different sets of
B and tw. The solid lines are fits to exponentials discusses in the text. The rate of
decrease of the exponential is the rate Γon at which electrons tunnel into the empty
dot in the read-out state as illustrated by the dot diagram in (d). (e)-(g) show
measurements of Γon as a function of tw at a given field extracted from histograms
like those in (a)-(c). The solid lines are the average values of Γon, which are 720, 320,
and 820 Hz respectively.
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Figure 5-5: (a)-(c) Histograms of toff for tunnel-off events for three different sets of
B and tw. Solid lines show fits described in the text. (d)-(f) Measurements of R (top
panel) and Γb (bottom panel) as a function of tw at a three different magnetic fields
extracted from histograms like those in (a)-(c). The solid lines are the average values
of R (102, 198, and 2300 Hz, respectively) and Γb (9, 8, and 8 Hz, respectively).
(g) Dot diagram illustrating how an electron can leave the excited spin state in the
read-out configuration by either tunneling off the dot or relaxing to the ground state.
(h) Dot diagram illustrating an electron tunneling off the dot out of the ground state.

measurement.

To measure the probability Pe that an electron is still in the excited spin state after

a given tw, we need to count the number of times Ne the electron is in the excited spin

state entering the read-out step. To do this, we histogram the measurements of toff

from tunnel-off events and the results are shown in Figs. 5-5(a)-(c) for three different

sets of tw and B. At low fields (Fig. 5-5(a)), ∆ is comparable to temperature and the

rates for tunneling out of the ground and excited states are similar. At these fields

the data are fit well by a double exponential (solid line in Fig. 5-5(a)): the faster

exponential with rate R is from electrons leaving the excited state (Fig. 5-5(g)),

while the slower exponential is caused by tunneling out of the ground state at rate Γb
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(Fig. 5-5(h)). The contribution of tunneling from the ground state is shown explicitly

as the dashed line in Fig. 5-5(a). At larger fields (Figs. 5-5(b) and (c)), R is large

enough compared to Γb that the background can be approximated as a constant offset

(dashed line). The complete read-out probability distribution Pro(toff ) is derived in

Appendix B.2.

Since the read-out state is the same for all values of tw at a given magnetic field,

we expect that the rates R and Γb should be independent of tw. This is demonstrated

by the data in Figs. 5-5(d)-(f), which show the values of R and Γb extracted from

fits to histograms such as those in Figs. 5-5(a)-(c). The measurements at the two

shortest tw at B = 7 T do differ from the average, but at these small values of tw

most events are ionization events, and so the measurement is not as accurate because

of the low statistics. Note that the average value of Γb is near 10 Hz for all three data

sets, which demonstrates the efficacy of our feedback system.

The data also show that the rate R is independent of tw. Two different processes

contribute to the rate R at which an electron can exit the excited state. The electron

can tunnel to the lead with rate Γoff or the electron can relax before it has a chance to

tunnel off the dot [36], as illustrated in Fig. 5-5(g). Thus R = Γoff +W and the area

under the exponential and above the background is the fraction η ≡ Γoff/(Γoff +W )

of the number of electrons in the excited state that tunnel off before they relax (see

Appendix B.2 for more details). Thus the area under the exponential and above the

background is ηNe, and we then determine ηPe = ηNe/Npulses. Since η = Γoff/(Γoff +

W ) = (R − W )/R is independent of tw, this multiplicative factor does not affect our

ability to extract W .

Figures 5-6(a)-(c) show measurements of Pi and ηPe as a function of tw at three

different magnetic fields. To understand these data we consider the processes that

occur during the charging pulse (Fig. 5-2(b)): electrons tunnel into either the ground

or excited states with rates Γg and Γe, respectively, and relax with rate W . For

∆ ≫ kBT the corresponding rate equations are Ṗi = −ΓtPi and Ṗe = ΓePi − WPe,

with Γt = Γe + Γg. Solving these equations, we find that the probabilities after time
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of the values of tL at B = 1.25 T and tw = 50 ms.

tw are

Pi(tw) = ǫie
−Γttw (5.1)

Pe(tw) = ǫi
Γe

Γt

Γt

Γt − W
(e−Wtw − e−Γttw) (5.2)

where ǫi is the probability the dot is ionized by the ionization pulse. At the lowest

fields where ∆ ∼ kBT , we need to add the term 1−e−Wtw

1+e∆/kBT to Eqn. 5.2 to account

for the fact that the excited state population at equilibrium is not negligible (see

Appendix B.1 for details). Note that the tw dependence of Pe depends only on W

and Γt. In particular Eqn. 5.2 has a maximum at tw = ln(Γt/W )/(Γt − W ).

We determine Γt and ǫi by fitting measurements of Pi(tw) to Eqn. 5.1 (we include

a constant offset in the fit for reasons we discuss in the next section). The fits are

shown as solid lines in the top panels of Figs. 5-6(a)-(c), and the values of Γt extracted

from the fits are shown in the figure. Another method of measuring Γt is to histogram

the measurements of the times tL for an electron to tunnel onto the dot during the

charging pulse from events like the one in Fig. 5-3(a). An example of such a histogram
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is shown by the open triangles in the top panel of Fig. 5-6(a), which go with the right

axis. We fit these data to an exponential and obtain Γt = 204 Hz, which is in excellent

agreement with the measurement of Γt from fitting Pi.

Using the value of Γt, we fit the measurements of ηPe(tw) to Eqn. 5.2 to find W

and the prefactor Ξ = ηǫiΓe/Γt. These fits, shown as the solid lines in the lower

panels in Figs. 5-6(a)-(c), give excellent agreement with the data. It is important to

note that since we measure Γt independently, the tw dependence of Pe determines W .

From the upper and lower panels of Figs. 5-6(a)-(c), one can explicitly see the

relationship between Pi(tw) and Pe(tw) in two different regimes. In Figs. 5-6(a) and

(b) Γt > W , and Pi decreases over a timescale of Γ−1
t as it becomes more likely that

an electron has tunneled onto the empty dot. ηPe increases over this same timescale

as electrons tunnel into the excited state. After this timescale, the dot is occupied

and then ηPe decreases exponentially with rate W as the excited state population

relaxes. We can see this quantitatively in Eqn. 5.2: in the limit Γ−1
t < tw we have

ηPe ≈ ηǫi(Γe/Γt)e
(−Wtw).

In Fig. 5-6(c), Γt < W . In this case, the dot relaxes much faster than it loads.

So Pe increases until it is cut-off by the relaxation rate at a timescale given by W−1.

After this time the probability of being in the excited state is saturated at the loading

rate Γe divided by the rate out of the excited state W , multiplied by the probability

that the dot is empty Pi. We can see this explicitly from Eqn. 5.2: in the limit

W−1 < tw we have ηPe ≈ ηǫi(Γe/W )e(−Γttw) = η(Γe/W )Pi(tw). Thus Pi(tw) and

Pe(tw) decrease with the same rate at long tw, which is what we observe in the data.

Because we can measure Γt directly from Pi, we can still measure W in this regime.

Thus our analysis allows us to determine W over a large dynamic range.
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5.3 Event misidentification

In this section we consider one of the sources of error in the spin relaxation mea-

surement in greater detail. The capacitance between gate LP2 and the QPC causes

the QPC to respond to the pulse sequence. Unfortunately, if the gate pulse is large

enough, the edge trigger will identify the gate pulse as an electron tunneling event2.

To avoid triggering on the voltage pulses, we need to allow time for the QPC to

relax. To this end, we introduce a delay of about 250 − 350 µs between when the

dot is pulsed into the read-out configuration and when the triggers start looking for

electron tunneling events. This delay is illustrated in Fig. 5-7: the left-most dashed

vertical line marks the time when the levels on the dot are pulsed into the read-out

configuration and the second dashed line marks the time when the triggers begin

looking for electron tunneling events. We call the time between when we enter the

read-out configuration and when the triggers start looking for events the ‘blind spot’.

This delay causes the triggers to misidentify electron tunneling events on occasion,

and the two types of misidentification are shown in Fig. 5-7. The data in Fig. 5-7(a)

show an example of an ionization event that is misidentified as a tunnel-off event:

the dot is ionized when it enters the read-out state but the triggers miss the electron

tunneling into the empty dot because it happens during the blind spot. The first

charge transition observed is when the electron tunnels off the dot, and hence this is

misidentified as a tunnel-off event. An example of the other type of misidentification

is shown by the data in Fig. 5-7(b): an electron is on the dot when the dot enters the

read-out state and tunnels off during the blind spot. Then the first electron transition

found by the trigger is an electron tunneling back onto the empty dot, causing this

event to be misidentified as an ionization event.

These misidentified events can have a small effect on our measurements of Pi and

Pe, as shown by the data in Fig. 5-8. The data in Fig. 5-8(a) shows measurements of Pi

out to long values of tw, where Pi decreases at a much slower rate. At such long values

of tw there should be no ionization events, and this tail in Pi is caused by tunnel-

2We actually took advantage of this in Section 3.3 to characterize the edge trigger.
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Figure 5-7: Real-time data taken during the T1 measurement pulse sequence at B = 2
T. The 0’s denote when an electron tunnels off the dot, while 1’s denote when an
electron tunnels on. The left-most dashed vertical line marks when the dot is pulsed
into the read-out state, while the right-most dashed vertical line marks when the
triggers start searching for electron tunneling events. The time in-between (350 µs
in this example) is the blind spot. In (a), an electron tunnels into the empty dot
during the blind spot, and this event is misidentified as a tunnel-off event. In (b)
an electron tunnels off during the blind spot, and this event is misidentified as an
ionization event.
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off events that the triggers misidentify as ionization events. We can quantitatively

describe this effect by noting that this type of misidentification is much more likely

to happen when the electron is in the excited spin state rather than the ground spin

state, because the rate out of the excited state is much greater than the rate out of

the ground spin state. Then the contribution to Pi caused by misidentified events

should be proportional to Pe, and using Eqn. 5.2 for Pe we have

Pi(tw) = ǫie
−Γttw + AiPe(tw)

= ǫie
−Γttw + Ãi(e

−Wtw − e−Γttw)

= (ǫi − Ãi) e−Γttw + Ãi e−Wtw .

Here Ai is the contribution of misidentified excited state events to Pi and Ãi =

Aiǫi
Γe

Γt

Γt

Γt−W
. The solid line in Fig. 5-8(a) shows a fit to a double exponential. There

is good agreement with the data and we extract the rates Γt = 201 Hz and W = 15 s−1

from the fit. This value of Γt is consistent with the measurement of Γt = 206 Hz from

histograms of the times tL for an electron to tunnel onto the dot during the charging

pulse. Also, the measurement of W is consistent with W = 15 s−1 which we obtain

from fitting ηPe. As an alternative to the double exponential fit, we find that fitting

the data with a single exponential with a constant offset also gives an accurate value

for Γt. Fitting to a single exponential without an offset gives Γt = 180 Hz, which is

significantly slower than the correct value.

Misidentified events also have a small effect on our measurement of ηPe. One way

this happens is from a misidentified ionization event: the dot is empty when it enters

the read-out state and an electron tunnels into the excited spin state of the dot during

the blind spot. This electron then tunnels out of the dot while the triggers are active,

as shown in Fig. 5-7(a), and is counted as a tunnel off event. This will then lead to an

artificial enhancement in our measurement of the probability of being in the excited

spin state.

This effect is not significant at high fields, because the excited spin state is above
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the Fermi energy of the lead in the read-out state and the probability of an electron

tunneling into this state is negligible. But for data at low fields, like those in Fig. 5-8

which is at B = 2 T, this type of misidentification can affect ηPe. Measurements

of ηPe as a function of tw are shown in Fig. 5-8(b) and one of the curves shows a

fit to Eqn. 5.2. Since this type of misidentification requires that the dot be ionized

when entering the read-out state, the effect is largest at low values of tw, when there

is a high probability the dot is ionized. Figure 5-8(c) focuses on ηPe at tw < 40

ms. The fit to Eqn. 5.2 is not consistent with the measurements because of the

enhancement caused by misidentified ionization events. Since the probability of this

type of misidentified event is proportional to Pi, we can quantitatively account for

these misidentified events by adding a term AePi = Ãee
−Γttw to Eqn. 5.2, where we

use Eqn. 5.1 for Pi, Ãe = Aeǫi, and Ae describes the contribution of the misidentified

events. The other curve in Figs. 5-8(b) and (c) shows a fit to this equation, and it

gives good agreement with the data. From this we obtain W = 14 s−1. From the

fit to Eqn. 5.2 over the full range we obtain W = 16 s−1, which is close to the value

obtained by fitting to the form that accounts for misidentified events.

To determine the central value of W we use the fit to Eqn. 5.2 over a range of

tw where the effect of misidentification is small (tw ≥ 3 ms in Fig. 5-8(b)). For the

data in Fig. 5-8(b) this gives W = 15 s−1, which is very close to the value obtained

from the fit accounting for misidentification. We use the fit to the equation that

includes the term accounting for misidentification to help determine the error bar

on the central value. We choose error bars that encompass the value from the fit

including the misidentification term, as well as the results of other fits where we vary

the range of tw that we fit over, etc.
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5.4 Magnetic field dependence of the spin relax-

ation rate
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Figure 5-9: Spin relaxation rate W as a function of magnetic field. The lines are fits
discussed in the text. The inset shows W as a function of B for a different set of gate
voltages. The fit in the inset is to the temperature-corrected power-law with p = 4.6.

Using the techniques we discuss in the previous sections, we measure W as a

function of magnetic field and the data are plotted in Fig. 5-9 (the inset shows data

for a different set of gate voltages). At low fields, the relaxation rate becomes very

slow: we measure T1 > 1 s at B = 1 T (Fig. 5-9 inset). These data also demonstrate

that we can measure W over 3 orders of magnitude.

In the limit where the dipole approximation can be applied to the electrical fluc-

tuations (such as when the phonon wavelength is much larger than the dot), theory

predicts that W is a power-law in field: W = CBp coth(∆/(2kBT )) where p is de-

termined by the spin relaxation mechanism and the coth factor accounts for finite

temperature at low fields (see Appendix A for details). Spin-orbit mediated coupling

to piezoelectric phonons [45, 46] gives p = 5, while other mechanisms [47, 48, 111, 112]
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that could contribute at low fields give different values of p. For example, spin-orbit

mediated coupling to gate or ohmic electrical fluctuations [47, 48] give p = 3, as does

hyperfine mediated coupling to piezoelectric phonons [112]. The thick solid line in

Fig. 5-9 shows a fit to this temperature-corrected power law and we find p = 4.6±0.8,

which is consistent with spin-orbit mediated coupling to piezoelectric phonons. The

red dashed line shows a fit with p = 5 and is consistent with the data.

At B = 7 T, the wavelength of the phonon emitted via spin relaxation is λ =

∆/vs ≈ 100 nm, where vs ≈ 4000 m/s is the average sound velocity in GaAs. This

wavelength is close to the size of the dot, so we compare our data to a theoretical

prediction for spin-orbit mediated coupling to phonons by Golovach et al. [46] that

includes finite wavelength effects. The calculation is shown as the solid black line in

Fig. 5-9 and gives good agreement with the data. We discuss this calculation in more

detail in the next chapter.
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Chapter 6

Electrical Control of Spin

Relaxation in a Quantum Dot

In the previous chapter, we use the magnetic field dependence of the spin relaxation

rate W ≡ T1
−1 to identify the relaxation mechanism in lateral quantum dots as

spin-orbit mediated coupling to piezoelectric phonons. In this chapter, we utilize this

mechanism to demonstrate in-situ electrical control over the relaxation rate. In the

first section, we discuss the spin-orbit interaction and spin-orbit mediated coupling to

phonons in more detail. In particular, we see that in this mechanism spin relaxation

involves the excited orbital states of the dot. In the second section, we discuss how

we use the gate voltages to control the electrostatic confinement potential of the dot,

and hence affect the orbital states. Finally, in the last section, we study how the spin

relaxation rate changes as we vary the confinement potential and demonstrate that

we can vary W by over an order of magnitude at fixed ∆ = |g|µBB. We find that W

depends only on the confinement of the electron wavefunction in the direction along

the applied in-plane magnetic field, as expected for the spin-orbit interaction in GaAs,

and that the dependence of W on the energy scale for confinement is that predicted

by theory [45, 46]. From these data we extract the spin-orbit length, which describes

the strength of the spin-orbit interaction. These results are reported in Amasha et

al. [93].
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6.1 Spin relaxation via the spin-orbit interaction

6.1.1 The spin-orbit interaction

An essential component to spin relaxation in GaAs quantum dots is the spin-orbit

interaction (SOI). The SOI is a relativistic effect that arises from the orbital motion

of electrons through electric fields intrinsic to the AlGaAs/GaAs heterostructure. In

the electron’s rest frame these intrinsic electric fields transform into magnetic fields

that interact with the electron’s spin.

One of the intrinsic electric fields in the heterostructure is the field that is per-

pendicular to the AlGaAs/GaAs interface. This field is caused by the lack of inver-

sion symmetry in the heterostructure and gives rise to Rashba spin-orbit coupling

[116]. One can get an intuitive understanding of the form of the Rashba term in the

spin-orbit Hamiltonian by considering the transformation of a uniform electric field

E = Eẑ
′. The primed coordinate system refers to the GaAs crystalline axes, with

x′, y′, and z′ corresponding to [100], [010], and [001], respectively. For an electron

with momentum p, this electric field transforms into a magnetic field in the electron’s

rest frame [117] given by B = − 1
m∗c2

p×E = E
m∗c2

(−py′ , px′ , 0) where m∗ is the effec-

tive mass of the electron. The electron’s spin interacts with this magnetic field via

H = gµB

~
B·S, where S = ~

2
σ and σ are the Pauli matrices. This gives

HR = α(px′σy′ − py′σx′)

where α is the Rashba spin-orbit parameter. This is the form of the Rashba term in

the spin-orbit Hamiltonian [116]. While this argument gives intuition as to the form

of the Rashba term, it is important to note that proper calculations of α are much

more complicated, and involve the band structure of GaAs [118].

A second contribution to the SOI in GaAs arises because GaAs is a polar crystal

and the zinc blende crystal structure of GaAs lacks inversion symmetry. This creates

an intrinsic electric field, which causes Dresselhaus spin-orbit coupling [119]. From

106



band structure calculations, this type of spin-orbit coupling takes the form [120]:

HD = γ[σx′px′(p2
y′ − p2

z′) + σy′py′(p2
z′ − p2

x′) + σz′pz′(p
2
x′ − p2

y′)]

where γ describes the strength of the interaction. Electrons in the 2DEG are confined

in the z-direction, where they occupy the lowest sub-band, and this gives 〈pz′〉 = 0

while 〈p2
z′〉 6= 0 [118, 108]. Combining this with the above equation gives us the

familiar form for the Dresselhaus spin-orbit term:

HD = β(py′σy′ − px′σx′) + γ(σx′px′p2
y′ − σy′py′p2

x′).

In this equation, β is the Dresselhaus spin-orbit parameter, and gives the strength of

the term that is linear in momentum.

In spin relaxation, the contribution of the spin-orbit terms that are linear in

momentum dominate the contribution from the cubic terms [46]. So for the work

discussed in this thesis, it is sufficient to consider the spin-orbit Hamiltonian

HSO = α(px′σy′ − py′σx′) + β(py′σy′ − px′σx′).

This Hamiltonian is written with respect to the GaAs crystalline axes. However the

natural x and y axes of the dot are rotated with respect to the crystalline axes, and

are aligned along the [110] and [110] axes, respectively, as shown in Fig. 4-10(a). We

re-write HSO in terms of these axes using the transformations

px′ = cos(θ)px − sin(θ)py σx′ = cos(θ)σx − sin(θ)σy

py′ = sin(θ)px + cos(θ)py σy′ = sin(θ)σx + cos(θ)σy

with θ = π/4. This gives the Hamiltonian:

HSO = (β − α)pyσx + (β + α)pxσy. (6.1)

Finally, two useful quantities that describe the strength of the spin-orbit inter-

107



action are the length scales λ+ = ~/(m∗(β + α)) and λ− = ~/(m∗(β − α)) [46].

Physically, these length scales represent the distance an electron has to travel in the

x or y direction, respectively, for its spin to rotate by a certain angle ϕ [118]; for

our definition of λ± this angle is ϕ = 2 radians. To see this, we consider an electron

moving along the y-axis, so that px = 0 and HSO = (β − α)pyσx. We compare this

to the Hamiltonian for the interaction between a magnetic field and a spin given by

H = gµB

~
B·S and we see that the spin-orbit interaction acts like an effective magnetic

field BSO = 2(β−α)
|g|µB

pyx̂ along the x-axis. The spin will precess around this field with

frequency ω = |g|µBBSO/~ = 2(β − α)py/~. The net precession angle during a time

t is given by ϕ = ωt = 2(β − α)m∗L/~, where L = vyt is the distance the electron

travels in time t. Then ϕ = 2L/λ−, which implies that the spin rotates by 2 radians

over the length scale given by L = λ−. The stronger the spin-orbit interaction, the

shorter this distance will be.

6.1.2 Spin-orbit mediated coupling to piezoelectric phonons

An electron in a quantum dot can exchange energy with its environment by inter-

acting with phonons via the piezoelectric and deformation potential electron-phonon

interactions [121]. Phonons couple different orbital states of the dot, and these in-

teractions are responsible for the very short relaxation times (. 10 ns) between the

excited and ground orbital states [95, 96]. While phonons couple different orbital

states of the dot, they cannot couple different spin states (Fig. 6-1(b)). Coupling

between spin states is mediated by the SOI, which mixes the Zeeman split ground

orbital state with excited orbital states of the opposite spin [45], as illustrated in

Fig. 6-1(c). This allows phonons to induce spin relaxation. Because the phonon cou-

pling to the spin states must be mediated by the SOI, the spin relaxation rates we

measure in Chapter 5 are much slower than the orbital relaxation rates. Another

difference between orbital and spin relaxation is the type of phonon involved. For

orbital relaxation, which has a typical energy scale of 1 meV, deformation potential

phonons are the dominant mechanism. For the range of magnetic fields we study

in this thesis, the Zeeman energy ∆ is of order 100 µeV, and on this energy scale
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Figure 6-1: (a) At B = 0 and with no SOI, the spin-↑ and spin-↓ states of the ground
orbital state |g〉 are degenerate. (b) Applying a magnetic field splits the spin states
but phonon coupling between |g ↑〉 and |g ↓〉 is prohibited. (c) The SOI acts as a
perturbation and mixes the orbital and spin states: the perturbed spin states |g ↑〉SO

and |g ↓〉SO contain excited orbital states (|e〉) of the opposite spin so the perturbed
states can be coupled by phonons.

piezoelectric phonons are primarily responsible for spin relaxation [46].

We can describe the SOI mediated mixing using perturbation theory. We have

ε+ =
〈e ↓|HSO|g ↑〉

~ω0 + ∆
and ε− =

〈e ↑|HSO|g ↓〉

~ω0 − ∆

where ~ω0 is the energy of the excited orbital state |e〉 relative to the ground orbital

state |g〉. We use this to understand the dependence of the spin relaxation rate W

on ~ω0 and B. This is worked out in detail in Appendix C, but approximately we

have 〈e ↓|HSO|g ↑〉 ∼ 〈e ↑|HSO|g ↓〉 ∼ iεSO, where εSO is real. The electron relaxes

from the state |g ↓〉SO to |g ↑〉SO by emitting a phonon, and the matrix element for

this transition is

M =SO 〈g ↓|Uph|g ↑〉SO ∼ i〈Uph〉
εSO

~ω0

(

1

1 + ∆
~ω0

−
1

1 − ∆
~ω0

)

where 〈Uph〉 ∼ 〈e|Uph|g〉 ∼ 〈g|Uph|e〉 describes how piezoelectric phonons couple the

ground and excited orbital states of the dot.
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Figure 6-2: (a) An oscillating electron in zero external field. The electron’s spin
precesses around the effective magnetic field BSO caused by the SOI. The SOI is
time reversal invariant, so BSO reverses its direction when the electron reverses its
momentum p. As a result, there is no net precession of the spin. (b) An external
field B breaks time reversal symmetry and allows the oscillation to induce a net spin
precession.

An important feature of the matrix element is that M → 0 as B → 0. This is

called van Vleck cancellation and is a consequence of the time reversal invariance of

the spin-orbit interaction [45, 108, 122]. An intuitive picture for this effect is given

by Hanson et al. [108]. Suppose a phonon causes the electron to oscillate along the

y-axis, as illustrated in Fig. 6-2(a). Then HSO = (β − α)pyσx and the electron will

feel an effective magnetic field BSO = 2(β−α)
|g|µB

pyx̂ along the x-axis from the SOI. If the

external magnetic field B = 0, then the electron’s spin will precess around BSO. The

key point is that because the direction of BSO depends on the electron’s momentum,

any spin rotation caused by the electron moving in one direction along the y-axis

is reversed when the electron moves back in the opposite direction, as illustrated in

Fig. 6-2(a). So with B = 0, the oscillation induced by the phonon produces no net
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change in the direction of the electron’s spin.

This is not the case if there is an external magnetic field B. Then the electron’s

spin precesses around the vector sum of B and BSO as illustrated in Fig. 6-2(b).

When the electron reverses its motion, BSO reverses directions, but B does not,

so the electron’s spin does not precess back to its original position. This picture

illustrates how controlled oscillations of an electron can be used to manipulate its

spin via the SOI; this type of manipulation is called electron-dipole spin resonance

[123, 124, 125]. However, since piezoelectric phonons in the environment of the dot

are incoherent, this mechanism leads to spin relaxation.

Returning to the matrix element M , we take the limit ∆ ≪ ~ω0 since the Zeeman

splitting is much smaller than the energies of the excited orbital states. Then we have

M ∝ 〈Uph〉
εSO

~ω0

∆

~ω0

∝ ω1/2∆λ−1
SO(~ω0)

−2

where ω is the frequency of the emitted phonon and ǫSO ∝ λ−1
SO. We also use 〈Uph〉 ∝

ω1/2, which comes from the form of the piezoelectric electron-phonon interaction in

GaAs [45] (see Appendices A.4 and C for details). The spin relaxation rate is given by

Fermi’s golden rule: W = 2π
~
|M |2Dph(ω) where Dph(ω) ∝ ω2 is the density of phonon

states at the frequency of the emitted phonon. Then W ∝ ω3∆2λ−2
SO(~ω0)

−4 ∝

∆5λ−2
SO(~ω0)

−4 because energy conservation requires that the emitted phonon have

energy ~ω = ∆. More precisely we have

W = A
B5

λ2
SO(~ω0)4

(6.2)

where, A = 33 s−1meV4µm2/T5 depends on the g-factor of the dot and phonon

parameters in GaAs1.

From the arguments presented above, we see that the B5 dependence of W is

1For the g-factor we use |g| = 0.38, which is the average of the measurements in Sections 2.4
and 4.4.2. The uncertainty in |g| is accounted for in the error on the parameters we extract from
the fits in Section 6.3. The phonon parameters we use are from Golovach et al. [46] and they are
effective mass m∗ = 0.067, dielectric constant κ = 13.1, crystal density ρc = 5.3 g/cm3, sound
velocities vt = 3.35 × 103 m/s and vl = 4.73 × 103 m/s, piezoelectric constant h14 = −0.16 C/m2

and deformation potential ξ0 = 6.7 eV.
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characteristic of the mechanism of SOI mediated coupling to piezoelectric phonons:

two powers of B come from the time reversal invariance of the SOI in the matrix ele-

ment, two powers come from the phonon density of states, and the final power comes

from the form of the piezoelectric electron-phonon interaction. Another important

feature of Eqn. 6.2 is that W depends sensitively on the energies of the excited orbital

states. The lower the energies of the excited orbital states, the more effective the SOI

is at mixing excited states of opposite spin into the Zeeman split ground orbital state.

The spectrum of excited orbital states of a quantum dot is determined by the shape

of its confining potential, which we can control electrically as we discuss in the next

section.

6.2 Controlling the orbital states of the dot

Varying the voltage applied to the gates allows us to manipulate the electrostatic

confining potential of the dot and hence its orbital states. We model the electro-

static potential of the dot with an anisotropic harmonic oscillator potential U(x, y) =

1
2
m∗ω2

xx
2+ 1

2
m∗ω2

yy
2. When the voltages on all the gates that form the dot are roughly

equal, one expects from the geometry of the gates that the dot is less confined along

the x-axis than along the y-axis, as illustrated by the black solid ellipse in Fig. 6-3(a).

The energies of the excited orbital states relative to the ground state are determined

by confinement: the lowest lying excited state is at energy Ex = ~ωx above the ground

state, while the next higher excited state has Ey = ~ωy (assuming Ey < 2Ex).

To change the shape of the dot, we simultaneously change the voltage on 4 gates:

we apply a more negative voltage to SG1 and apply a less negative voltage to the

gates LP1, PL, and LP2. These changes are balanced to keep the ground state energy

constant. The more negative voltage on SG1 pushes the dot toward SG2 and increases

confinement along x, while the less negative voltages on LP1, PL, and LP2 reduces

confinement along y. The net effect of these changes are illustrated by the white

dotted ellipse in Fig. 6-3(a). We use the parameter Vshape to indicate a set of gate

voltages (VSG1, VLP1, VPL, VLP2). Numerically, Vshape takes the value of VSG1 for the
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Figure 6-3: (a) Electron micrograph of the gate geometry. To change the shape
of the confining potential, we change the voltages on the labeled gates. The black
solid (white dotted) ellipse illustrates the expected dot shape for less (more) negative
Vshape. The magnetic field is parallel to the y-axis and all voltage pulses are applied to
gate LP2. For all the work in this chapter, we set the voltages so that the tunneling
rate to lead 1 is negligible compared to that to lead 2. (b) The energies of the orbital
excited states of the dot as a function of Vshape.

set. From these geometric considerations, we expect Ex to increase and Ey to decrease

as Vshape is made more negative, as illustrated in Fig. 6-3(b).

At each Vshape we measure the energies of the excited orbital states using a three

step pulse sequence, shown in Figs. 6-4(a)-(c), with B = 0. After ionizing the dot

(Fig. 6-4(a)), we apply a voltage pulse Vp to gate LP2 to bring the ground orbital state

an energy Ep = eαLP2Vp below the Fermi energy of the lead (Fig. 6-4(b)). We apply

this pulse for time tp that is short (15 µs < tp < 400 µs) compared to the average

tunneling time into the ground orbital state (≈ 10 ms near the Fermi energy). For

such a short pulse time, the probability for tunneling into the ground orbital state

is small. However, for sufficiently large Vp, one or more excited orbital states will be

below the Fermi energy of the lead. These states are more strongly coupled to the

lead than the ground orbital state [53, 80], and an electron can tunnel onto the dot

with rate Γon. Once it has tunneled into an excited orbital state, the electron quickly

decays to the ground orbital state [95, 96] by emitting a phonon.

The third and final step is to bring the dot to the read-out state (Fig. 6-4(c)),

where the ground state is just below the Fermi energy of the leads. If the dot is still

ionized then an electron tunnels onto the dot during the read-out step (top diagram in
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Figure 6-4: (a)-(c) Three step pulse sequence for measuring the energies of the excited
orbital states. (d) Examples of real-time data. The direct capacitive coupling to the
pulsed gate causes the QPC to respond to the pulse sequence; electron tunneling
events are evident on top of this response. The 0’s denote when an electron tunnels
off the dot, while 1’s denote when an electron tunnels on. The charging pulse (tp =
50 µs for this example) appears as a sharp spike between the ionization and read-out
periods.

Fig. 6-4(c)), and we observe this with our real-time charge detection system (top panel

of Fig. 6-4(d)). However, if an electron tunnels into the dot during the charging pulse,

then no electron tunnels on during the read-out step (bottom diagram in Fig. 6-4(c)),

and we observe no tunneling event in the read-out state (bottom panel of Fig. 6-4(d)).

To measure Γon at a given Vp, we repeat this pulse sequence the same number of

times for several different values of tp and count the number of times Nion that the

dot is still ionized after the charging pulse. An example of Nion vs tp is shown in

Fig. 6-5(a). Nion decreases exponentially and the rate of decrease gives Γon. Figure 6-

5(b) shows Γon as a function of Vp: the two large increases in the rate are at the pulse

voltages at which an excited orbital state crosses the Fermi energy (the positions are

marked with the dashed vertical lines).

To convert the positions of the increases in Γon into the energies of the excited

orbital states, we need to measure αLP2, which relates the voltage pulse to the re-

sultant change in the energies of the states of the dot by Ep = eαLP2Vp. To do

this, we measure the average time an electron spends on (τon) and off (τoff ) the dot
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Figure 6-5: (a) The number of events Nion as a function of tp. The solid line is a
fit discussed in the text. (b) Γon vs Vp for Vshape = −850 mV. The two sharp rises
marked by the dashed vertical lines occur at pulse voltages where an excited state
crosses the Fermi energy. (c) Pon vs ∆VLP2 at T = 280 mK. The solid line is a fit to
the Fermi function to extract αLP2 as discussed in the text.
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Figure 6-6: (a) Energies of the excited orbital states and (b) αLP2 as a function of
Vshape. The dashed lines in (a) are linear fits discussed in the text.
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as gate LP2 is made more negative and the ground state is swept from below to

above the Fermi energy of the lead. Then from Section 4.1, Pon = τon/(τon + τoff ) =

f(−eαLP2∆VLP2 + V0), where f(x) = (1 + ex/kBT )−1 is the Fermi function. We per-

form these measurements at T = 280 mK so that the Fermi function is broader,

which gives a more accurate measurement of αLP2. Figure 6-5(c) shows an example

of a measurement of Pon vs ∆VLP2 and a fit to determine αLP2. Using this value,

we convert Vp into Ep as shown on the top axis of Fig. 6-5(b). The energies of the

excited states are given by the positions of the sharp increases in Γon.

We repeat this procedure for measuring the excited state energies at several values

of Vshape. The results are shown in Fig. 6-6(a) and show one state increasing and one

state decreasing in energy. This behavior is what we expect from the geometric

considerations: as the confinement along x increases and along y decreases with more

negative Vshape, the energy Ex of the x-excited state increases, while the energy Ey of

the y-excited state decreases, allowing us to identify the x and y states as indicated

in Fig. 6-6(a). The value of αLP2 as a function of Vshape is plotted in Fig. 6-6(b).

We see that αLP2 increases with more negative Vshape, which is what we expect from

the geometric considerations in Fig. 6-3(a). As Vshape, and hence VSG1, is made more

negative the dot is pushed toward LP2. More negative Vshape also corresponds to

less negative VLP2, which tends to reduce the confinement along y and bring the dot

closer to LP2. These considerations lead us to expect that αLP2 should increase, as

we observe.

6.3 Electrical control of the spin relaxation rate

At each Vshape, we measure W ≡ T1
−1 at B = 3 T. The results are shown as a

function of Vshape in the top panel of Fig. 6-7 and we see that we can vary W by

over an order of magnitude. At each Vshape we also measure ∆ at B = 7.5 T. For

this measurement, we use the pulse sequence discussed in Section 4.4 to measure Γon

vs Vp. The separation between the increases in Γon associated with the ground and

excited spin states give ∆, and we extract this by fitting to Eqn. 4.14. We perform this
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Figure 6-7: Top panel: W vs Vshape at B = 3 T. The solid, dotted, and dashed lines
show fits with Ax/Ay = 0.01, 0.25 and 1, respectively. Bottom panel: ∆ vs Vshape at
B = 7.5 T.

measurement at B = 7.5 T because this is where ∆ is largest, and can be measured

most accurately. The results are shown in the bottom panel of Fig. 6-7, and from the

data we see that ∆ does not vary systematically with Vshape. This confirms that the

variation in W with Vshape in Fig. 6-7 is not caused by changes in ∆. Thus the data

in Fig. 6-7 demonstrate electrical control of W at constant ∆.

As we discuss in Section 6.1.1, the energies of the excited orbital states affect W

because the higher the energies of the excited states, the weaker the SOI coupling to

the ground state, hence the slower the relaxation rate. If we model W assuming the

anisotropic 2-D harmonic oscillator potential U(x, y), an in-plane magnetic field B, a

SOI that is linear in the electron momentum, and a phonon wavelength much greater

than the dot size (dipole approximation), then W has the form W = AxE
−4
x +AyE

−4
y

(full derivation presented in Appendix C). Here Ax and Ay describe the contribution

of each orbital state to spin relaxation and W ∝ E−4 because of van Vleck cancellation

[45].

We fit the data in Fig. 6-7 to this equation by approximating Ex(Vshape) and
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Ey(Vshape) by the dashed lines shown in Fig. 6-6(a). The result is shown as the solid

line in Fig. 6-7 and the fit gives Ax/Ay = (0.9 ± 5.6)%. To determine a limit on

Ax/Ay we use this result, as well as the results of other fits where we use different

estimates for the linear fits to Ex(Vshape) and Ey(Vshape). From these, we determine

that Ax/Ay < 14%, which implies that only the y-excited orbital state is contributing

to spin relaxation. The dotted and dashed lines in Fig. 6-7 show fits with Ax/Ay =

25% and 100%, respectively. Clearly, these are not consistent with the data.

We can understand why the y-excited state dominates spin relaxation from the

spin-orbit Hamiltonian HSO = (β − α)pyσx + (β + α)pxσy. The magnetic field B

is applied along the y-axis and so the spin-up and spin-down states are eigenstates

of σy. But this implies that σy cannot couple states of opposite spin, as required

for spin relaxation. Only the first term in HSO, which is proportional to σx, can

couple different spin states as in Fig. 6-1(c). Since the first term is proportional to

py, a change in parity along the y-axis is also required. The x-excited state does not

satisfy this requirement, so the pyσx term couples the Zeeman split ground orbital

state to y-excited states of opposite spin. Alternatively, because the first term is

proportional to py, only the energy scale for confinement in the y-direction, which is

given by Ey, matters for spin relaxation. A consequence is that for Vshape > −1000

mV, it is the higher energy excited state that determines W , an unusual situation.

To compare to theory, Fig. 6-8 shows W as a function of Ey; here the directly

measured values of Ey are used. In the limit where the phonon wavelength is much

larger than the size of the dot, we have from Eqn. 6.2 that W = AB5E−4
y λ−2

SO where

A = 33 s−1meV4µm2/T5. Since only the first term in HSO contributes to spin relax-

ation, we have λSO = λ− = ~/m∗|β−α|. We fit the data in Fig. 6-8 to the theoretical

prediction by Golovach et al. [46] that includes the effects of the phonon wavelength

being comparable to the size of the dot and obtain λSO = 1.7 ± 0.2 µm, consistent

with previous measurements of spin-orbit length scales in dots [106].

Spin relaxation also depends sensitively on the magnetic field [28] as shown in

Fig. 6-9 for two different sets of gate voltages (these are the data from Fig. 5-9 and

the inset). These data demonstrate electrical control of W over a range of fields.
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Figure 6-8: The same relaxation rate data as in Fig. 6-7, plotted as a function of the
measured values of Ey from Fig. 6-6(a). The solid line is a fit to find the spin-orbit
length as discussed in the text.

10
0

10
1

10
2

10
3

W
 (

s-1
)

1 2 3 4 5 6 7
B (T)

 Ey= 2.8 meV
 Ey= 2.3 meV

Figure 6-9: Spin relaxation rate as a function of magnetic field for two different sets
of gate voltages. Solid lines are fits discussed in the text.
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Using our value of λSO = 1.7 µm, we independently estimate Ey for the two sets of

gate voltages by fitting the data to the theory of Golovach et al. [46]. The solid lines

in Fig. 6-9 show the fit results, and we extract values of Ey consistent with what we

expect for these gate voltages. Moreover, the agreement between our data and theory

down to a field of 1 T demonstrates that spin-orbit mediated coupling to piezoelectric

phonons is the dominant mechanism down to low fields, corresponding to very long

spin relaxation times.
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Chapter 7

Conclusions

In summary, we use real-time charge detection to measure electron tunneling and

spin relaxation in a lateral quantum dot. First, we characterize our real-time charge

detection system and find that it has a sensitivity of 2 × 10−3e/Hz1/2 and a band-

width of 4 kHz. Our sensitivity is aided by the large size of our signal: an electron

tunneling event causes a 10% change in the voltage across the QPC. However, the

sensitivity is limited by both the amplifier noise and peaks in the noise spectrum

from electrical pick-up and vibrations, and better sensitivity could be achieved using

an amplifier with lower noise and improving the vibration and electrical isolation of

the experiment. Using a cryogenic amplifier mounted near the sample would have

the additional benefit of increasing the bandwidth by reducing the capacitance of the

wires going to the amplifier.

For these measurements, we also develop a novel triggering system to identify

events in real-time data, and compress the massive amounts of data we collect (20-65

gigabytes per day) by a factor of about 1000. This allows us to acquire good statistics

in our measurements. We also develop a novel feedback system that correctly positions

the states of the dot and maintains their stability. This allows us to perform a variety

of measurements and to take data continuously for periods as long as 2 days.

Understanding electron tunneling in quantum dots is important for applications

of quantum dots in spintronics, and other fields. Using real-time charge detection

and gate pulsing techniques, we characterize the rate at which an electron tunnels
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onto and off of the quantum dot in zero magnetic field. We find that the tunneling

rates depend exponentially on the gate and drain-source bias voltages. We explain

this exponential dependence with a model that assumes elastic tunneling, and ac-

counts for the energies of the states in the dot relative to the heights of the tunnel

barriers. A particular significant observation is that as an empty state is brought

further below the Fermi energy of the leads, we find the rate for tunneling onto the

dot decreases exponentially. This decrease occurs despite the increasing number of

inelastic processes available; however, the decrease is consistent with the model that

assumes purely elastic tunneling.

We also measure the rate for tunneling into an empty quantum dot in a magnetic

field, where the spin states are split by the Zeeman energy. We find that the ratio

of the rates for tunneling into the excited and ground spin states decreases with

increasing magnetic field. However, by changing the orbital configuration of the dot,

we can change the ratio and the ratio reaches a maximum when the dot is symmetric.

We consider several possible explanations for these observations, but find that none

of them can explain the spin-dependence of tunneling into the quantum dot.

Next, we measure the spin relaxation rate W ≡ T1
−1 for a single electron in a

lateral quantum dot in a magnetic field. Using our feedback system to maintain the

stability of our read-out state and our triggering system to collect good statistics,

we measure W at fields as low as 1 T, where the Zeeman splitting is comparable

to temperature. At this field we find that T1 > 1 s, which is very promising for

applications of quantum dots in quantum computing and as spin memory [27, 28] in

spintronics. We also measure W from 1 T up to 7 T, a range over which W varies

by 3 orders of magnitude. The dependence of W on field is a power-law, and the

power is characteristic of the spin relaxation mechanism. From our measurements,

we determine that the dominant spin relaxation mechanism in lateral dos is spin-orbit

mediated coupling to piezoelectric phonons.

Finally, we demonstrate in-situ electrical control over the spin relaxation rate in

a lateral dot. This control is possible because spin relaxation requires that the spin-

orbit interaction couple the Zeeman split ground orbital state to excited orbital states
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of opposite spin, and this coupling depends on the energies of the excited states. By

varying the voltages on the surface gates, we affect the confining potential of the dot,

and hence the energies of the orbital states. We demonstrate that we can vary W by

over an order of magnitude at fixed ∆, and that this variation depends only on the

confinement of the electron wavefunction in the direction along the applied in-plane

magnetic field, as predicted by theory. From these data we extract the spin-orbit

length, which describes the strength of the spin-orbit interaction in GaAs.

The results in this thesis point toward several directions for future work. Our

observation of spin-dependent tunneling into an empty dot, taken in conjunction

with measurements by Potok et al. [55] of the lack of spin polarization of electrons

emitted from a quantum dot in a magnetic field, suggest that the spin physics of

tunneling in quantum dots is not yet understood. Further experimental studies of

electron tunneling in a magnetic field are needed to help determine the underlying

cause of these effects. Developing a theory to explain the experimental observations

could have important implications for applications of dots in spintronics. It could also

have implications for quantum computation, where spin-dependent tunneling could

affect the initialization of a quantum dot qubit.

There is also more work to be done characterizing spin relaxation in quantum dots.

The Rashba and Dresselhaus spin-orbit interactions have different forms, and this

causes the spin relaxation rate W to vary as we change the orientation of the in-plane

magnetic field with respect to the GaAs crystalline axes [46]. For some orientations of

the field, the Rashba and Dresselhaus interactions cooperate, and W is at a maximum.

For other orientations, the interactions oppose one another, and the relaxation rate

is at a minimum. If the Rashba and Dresselhaus parameters are equal, then the two

interactions can cancel one another at the minimum, and the spin relaxation would

become dominated by other mechanisms, such as hyperfine coupling to phonons. A

priori the Rashba and Dresselhaus parameters are not necessarily equal. However,

experiments have demonstrated gate control over the spin-orbit interaction [126], so

it may be possible to tune these parameters to be equal.
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Appendix A

Spin Relaxation Mechanisms

A.1 General approach to spin relaxation

The purpose of this appendix is to motivate the dependence of the spin relaxation

rate on magnetic field and confinement potential of the dot for different possible

relaxation mechanisms. Consequently, the treatment in this appendix will not be

rigorous; rather we will seek to capture the essential elements necessary to understand

the physics behind the mechanisms. Full treatments of the various mechanisms are

given in the references [45, 46, 47, 48, 111, 112], and we consider one mechanism in

great detail in Appendix C.

In magnetic fields B that are on the order of the effective nuclear field Bnuc caused

by the nuclear spins, relaxation proceeds through the hyperfine interaction between

the electrons’s spin and the nuclear spins [37, 41]. However, at fields B ≫ Bnuc, the

Zeeman splitting of the electron is much greater than that of the nuclei, and this

mechanism is suppressed, so other mechanisms dominate spin relaxation. In general,

these other mechanisms involve two types of interactions. One type of interaction is

responsible for absorbing the energy released when the electron flips its spin. Since

electrons are charged, electrical fluctuations from phonons and ohmic fluctuations

couple very strongly to the electron’s charge distribution (which is essentially the

orbital part of the electron’s wavefunction), and are good candidates for absorbing

the energy. However while electrical fluctuations can couple orbital states, they do
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not couple directly to spin and cannot induce a spin-flip. Consequently, another

interaction is needed to couple the electron’s orbital states to its spin states, thus

mediating spin relaxation. Two interactions that can couple orbital and spin states

are the spin-orbit and hyperfine interaction.

To describe these mechanisms quantitatively, we can write the Hamiltonian for

the system as [47]:

H =
p2

2m∗
+

1

2
m∗ω2

0(x
2 + y2) + −

1

2
∆σy

︸ ︷︷ ︸

H0

+VSF + UE

Here UE describes the source of electrical fluctuations (phonons, gate or ohmic fluctu-

ations, etc), VSF describes the interaction responsible for coupling states of opposite

spin (hyperfine interaction or spin-orbit interaction), and ω0 describes the confine-

ment potential. The eigenstates of H0 are |n, s〉 where n is the index of the harmonic

oscillator states with energy En = (n + 1)~ω0 and s is the spin state (we ignore the

orbital index m). The higher energy spin-down state and the lower energy spin-up

state are separated by the Zeeman energy ∆ = |g|µBB. We can account for the effects

of VSF using perturbation theory [45, 47]:

|0 ↑〉eff = |0 ↑〉 +
∑

n,s

|n, s〉〈n, s|VSF |0 ↑〉

E0↑ − En,s

and

|0 ↓〉eff = |0 ↓〉 +
∑

n,s

|n, s〉〈n, s|VSF |0 ↓〉

E0↓ − En,s

To first order in VSF the matrix element for a spin-flip transition caused by cou-

pling to electrical fluctuations is [45, 47]:

M = eff〈0 ↓|UE|0 ↑〉eff

= 〈0 ↓|UE|0 ↑〉

+
∑

n,s

〈0 ↓|UE|n, s〉〈n, s|VSF |0 ↑〉

E0↑ − En,s

+
∑

n,s

〈0 ↓|VSF |n, s〉〈n, s|UE|0 ↑〉

E0↓ − En,s
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The electrical fluctuations cannot cause a spin-flip, so 〈0 ↓|UE|0 ↑〉 = 0 and

M =
∑

n

〈0 ↓|UE|n ↓〉〈n ↓|VSF |0 ↑〉

E0↑ − En↓

+
〈0 ↓|VSF |n ↑〉〈n ↑|UE|0 ↑〉

E0↓ − En↑

In the dipole approximation we have that UE ∝ Eωx where Eω is the electric field for

fluctuations at frequency ω = ∆/~ and ∆ = |g|µBB. Also, for a harmonic confining

potential 〈n|x|0〉 6= 0 for n = 1 and is 0 otherwise, so

M ∝ Eω

(
〈0|x|1〉〈1 ↓|VSF |0 ↑〉

~ω0 + ∆
+

〈0 ↓|VSF |1 ↑〉〈1|x|0〉

~ω0 − ∆

)

︸ ︷︷ ︸

ξ

Let us denote the terms in the parentheses in the above expression by ξ. At T = 0

the electron will relax from the excited spin-down state to the ground spin-up state

through spontaneous emission (we consider the effects of finite temperature in the

last section). The rate W0 is given by Fermi’s Golden rule [45, 47]:

W0 =
2π

~2
|M |2D(ω) ∝ E2

ω|ξ|
2D(ω)

where D(ω) denotes the density of states at frequency ω for the electrical fluctuations.

The spectrum of electrical fluctuations S(ω) = E2
ωD(ω) [47, 48] and so we have

W0 ∝ |ξ|2S(ω) (A.1)

The advantage of expressing spin-relaxation in terms of ξ and S is that the magnetic

field and confining potential dependence of ξ is determined by VSF , while that of S is

determined by the electrical fluctuations UE. We now consider these terms in greater

detail.
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A.2 Hyperfine interaction

The hyperfine interaction is caused when the spin of the electron on the dot interacts

with the spins of the Ga and As nuclei [38, 37, 39, 41, 40]. The wavefunction of

the dot electron is spread out over N nuclei, and N = nnucleiAd, where nnuclei is the

density of nuclei, d is the depth of the 2DEG, and A ∝ x2 is the area of the dot

[41]. The electron’s spin interacts with the average nuclear field, and fluctuations

in this field can induce spin-flips in the dot. The fluctuations are on the order of

VHF ∝ (CHF /N1/2)σ, where CHF is the hyperfine coupling constant and σ represents

the Pauli sigma matrices (we don’t worry about the index of the matrix here. The

details are worked out in the references). But N−1/2 ∝ A−1/2 ∝ x−1 and so we have

ξHF ∝
〈0|x|1〉〈1| 1

x
|0〉

~ω0 + ∆
+

〈0| 1
x
|1〉〈1|x|0〉

~ω0 − ∆

We note that 〈0|x|1〉 ∝ (~ω0)
−1/2, 〈1| 1

x
|0〉 ∝ (~ω0)

1/2, and similarly for the other

terms. Then using the fact that ∆ ≪ ~ω0, we have

ξHF ∝
1

~ω0

(A.2)

A.3 Spin-orbit interaction

The spin-orbit interaction is a relativistic effect that is caused by the electron’s motion

through electric fields intrinsic to the semiconductor heterostructure [119, 116]. This

interaction is discussed in greater detail in Section 6.1.1. We approximate VSF ∝ pσ

and we have

ξSO ∝ 〈↓|σ|↑〉

(
〈0|x|1〉〈1|p|0〉

~ω0 + ∆
+

〈0|p|1〉〈1|x|0〉

~ω0 − ∆

)

For a harmonic oscillator potential 〈0|x|1〉 = 〈1|x|0〉 ∝ ω
−1/2
0 and 〈1|p|0〉 ∝ ω

1/2
0 . But

〈0|p|1〉 = −〈1|p|0〉 and so we have

ξSO ∝
1

~ω0 + ∆
−

1

~ω0 − ∆
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Here we drop the term 〈↓|σ|↑〉 because it does not depend on the confinement potential

or the magnitude of the magnetic field. In this equation, we note that ξSO = 0 at

B = 0. This is known as van Vleck cancellation [45] and is caused by the time-reversal

invariance of the spin-orbit interaction. This is discussed in more detail in Section

6.1.2. For ∆ ≪ ~ω0, we have

ξSO ∝
∆

(~ω0)2
. (A.3)

A.4 Piezoelectric phonons

One source of electrical fluctuations is from phonons via the piezoelectric interaction

[121]. The piezoelectric electron-phonon interaction has the form

UE ∝ ω−1/2ei(qr−ωt)

where we neglect angular factors (these are considered explicitly in Appendix C).

Then the magnitude of the oscillating electric field is

Eω ∝ | −∇UE| ∝ qω−1/2 ∝ ω1/2

where this last proportionality follows from q ∝ ω. For phonons, the density of states

is given by D(ω) ∝ ω2 and so we have

Sph(ω) ∝ |Eω|
2D(ω) ∝ ω3

and using ω ∝ ∆ gives [48]

Sph ∝ ∆3. (A.4)

Another type of electron-phonon interaction is through the deformation potential.

For the range of ∆ studied in this thesis, the contribution of deformation potential

phonons should be small.
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A.5 Ohmic fluctuations

Another source of electrical fluctuations are the voltage fluctuations intrinsic to a con-

ductor, and these will be present on the gates and ohmic leads [47, 48]. These fluctu-

ations are called ‘ohmic’ fluctuations and are described by the fluctuation-dissipation

theorem. From this we can obtain [48]

Sohmic(ω) ∝ R~ω

where R describes the impedance of the conductor. To gain some intuition, we note

that at finite temperature the density of emitted electrical fluctuations is given by

Sohmic(ω)n(~ω), where n(~ω) = (e(~ω/kBT )−1)−1 is the Bose occupation factor. Notice

that in the limit ~ω ≪ kBT , we have Sohmic(ω)n(ω) ∝ RkBT , which is what we expect

for the intrinsic Johnson noise of a conductor. For now, we continue to consider T = 0

and so we have

Sohmic ∝ ∆ (A.5)

where we use ~ω = ∆. Note that in certain limits, the electrical fluctuations from

the QPC are also described by ohmic fluctuations [111].
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A.6 Results at T = 0

Having evaluated ξ and S for different mechanisms, we can now use Eqn. A.1 to

combine these pieces to find the dependence of W0 on magnetic field and confinement

potential for several different mechanisms. These results are summarized in table A.1.

Mechanism W0

hyperfine coupling
to phonons ∆3(~ω0)

−2

hyperfine coupling
to ohmic fluctuations ∆(~ω0)

−2

spin-orbit coupling
to phonons ∆5(~ω0)

−4

spin-orbit coupling
to ohmic fluctuations ∆3(~ω0)

−4

Table A.1: This table gives the dependence of the spin relaxation rate on magnetic
field B = ∆/|g|µB and confinement potential ~ω0 for a variety of possible relaxation
mechanisms. Here phonons refer to piezoelectric phonons. At high fields, spin-orbit
coupling to piezoelectric phonons dominates, while at low fields other mechanisms
may contribute.

A.7 Effect of finite temperature

G

We

Figure A-1: Transition rates that establish thermal equilibrium in a quantum dot
decoupled from its leads.

We now consider the effects of finite temperature on the spin relaxation rate. We

consider an electron confined in a quantum dot that is not coupled to its leads, as

illustrated in Fig. A-1. The transition rate from the excited spin-down state to the
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ground spin-up state is We and the reverse rate from the spin-up state to the spin-

down state is G. At T = 0, the electron can relax from the spin-down to the spin-up

state through the spontaneous emission of an electrical fluctuation, however, it cannot

absorb energy and transition from spin-up to spin-down. Thus We = W0 and G = 0.

At finite T , the transition rates are given by the familiar formulas for absorption and

emission [45]: G = W0n(∆) for stimulated absorption and We = W0(1 + n(∆)) for

spontaneous and stimulated emission, where n(∆) = (e(∆/kBT ) − 1)−1.

With these rates, the evolution of the probability for being in the spin-down state

Pe is described by:

Ṗe = GPg − WePe

where Pg is the probability for being in the lower energy spin-up state. Since Pg =

1 − Pe we have

Ṗe = G − (We + G)Pe.

Solving this equation for Pe we obtain:

Pe(t) =
G

We + G
+

(

Pe,0 −
G

We + G

)

e−(We+G)t (A.6)

where Pe,0 = Pe(t = 0). From this equation we see that as t → ∞ and the system

reaches thermal equilibrium, Pe,∞ = G
We+G

and Pg,∞ = 1 − Pe,∞ = We

We+G
. Then in

thermal equilibrium we have Pe,∞/Pg,∞ = G
We

= n(∆)
1+n(∆)

= e−∆/kBT as we expect.

From Eqn. A.6, we see that the timescale for reaching equilibrium is given by

W = We +G where W ≡ T1
−1 is the spin relaxation rate. Then W = W0(2n(∆)+1)

and simplifying this gives

W = W0 coth(∆/2kBT ) (A.7)

For ∆ ≫ kBT we are in the T = 0 limit and W = W0. For ∆ ≪ kBT we have

W = W0
2kBT

∆
.
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Appendix B

Probability calculations for spin

relaxation measurements

B.1 Ionized and excited state probabilities

Γe

Γg

GWe

Figure B-1: Diagram of processes that can occur during the charging step of the spin
relaxation measurement sequence.

In this section we consider in detail the processes that occur during the charging

step of the spin-relaxation measurement pulse sequence discussed in Section 5.2. Be-

fore the charging step, both spin states are brought above the Fermi energy of the

leads, so that any electron can tunnel off the dot, leaving the dot ionized. During the

charging step, the spin states are brought below the Fermi energy of the leads and

held in this configuration for a time tw. During this time, electrons can tunnel into

the excited and ground spin states with rates Γe and Γg respectively, as illustrated

in Fig. B-1. We do not assume that Γe = Γg a-priori, because we see in Section 4.4
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that this is not always the case. Electrons can also transition from the excited spin

state to the ground spin state with rate We, and the reverse process has rate G. Thus

after waiting a time tw, the dot can be in one of three possible states: there is some

probability Pi(tw) that the dot is still ionized, there is some probability Pe(tw) that

the electron is in the excited spin state, and finally there is some probability Pg(tw)

that the electron is in the ground state. Note that Pi + Pe + Pg = 1. In this section,

we will calculate Pi(tw) and Pe(tw).

The rate equation describing Pi is

Ṗi = −(Γe + Γg)Pi.

We can solve this equation to get

Pi(tw) = ǫie
−Γttw (B.1)

where Γt = Γe + Γg is the total rate at which electrons tunnel onto the quantum

dot and ǫi = Pi(tw = 0) is the ionization efficiency, which describes how effective the

ionization pulse is at emptying the dot. Thus the probability that the dot remains

empty decreases exponentially with increasing tw.

Having found Pi(tw), we now consider Pe. The rate equation is given by

Ṗe = ΓePi + GPg − WePe

= (Γe − G)Pi − (We + G)Pe + G

where we use Pg = 1 − Pe − Pi to eliminate Pg from the equation. Substituting in

Eqn. B.1 and solving for Pe gives

Pe(tw) = Pe,0e
−Wtw +

G

W
(1 − e−Wtw) +

ǫi(Γe − G)

Γt − W
(e−Wtw − e−Γttw) (B.2)

where W = We + G is the spin relaxation rate and Pe,0 = Pe(tw = 0). We note that

G/W = G/(G + We) = (1 + We/G)−1 = (1 + e∆/kBT )−1, where we use the fact that
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We/G = e∆/kBT as shown in Appendix A.

We can simplify Eqn. B.2 further with some approximations. Pe,0 should be

small because, before the ionization pulse, the dot is in thermal equilibrium and the

probability the electron is in the excited spin state is approximately e−∆/kBT . When

the ionization pulse is applied, most of these electrons should then tunnel off the dot.

If we assume 1 that Γoff, ↑ ∼ Γoff, ↓, then we have Pe,0 ≈ (1 − ǫi)e
−∆/kBT . In our

experiments ǫi ≈ 0.95 and at the lowest field of B = 1 T, e−∆/kBT ≈ 0.1 so that

Pe,0 . 5 × 10−3. This is much smaller than the second term in equation Eqn. B.2

because G/W = (1+e∆/kBT )−1 > e−∆/kBT , so we can neglect the first term in equation

Eqn. B.2.

The second approximation we make is that G ≪ Γe. This is justified because for

most measurements, ∆ ≫ kBT and hence G ≈ We−∆/kBT is exponentially suppressed.

At the lowest magnetic fields e−∆/kBT ≈ 0.1 but at these fields W ∼ 1 Hz, so G is

still small compared to Γe. With these approximations we have

Pe(tw) =
1 − e−Wtw

1 + e∆/kBT
+ ǫi

Γe

Γt

Γt

Γt − W
(e−Wtw − e−Γttw) (B.3)

where we can safely neglect the first term when ∆ ≫ kBT .

1Both the field dependence measurements of W are made at Vshape settings where χ & 0.5 and
the shape dependence of W is measured at B = 3 T, where χ ≈ 1.
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B.2 Probability distribution for tunnel-off events

in the read-out state

Γoff

Γb

W

Figure B-2: Diagram of the processes that can occur during the read-out of the spin
state in the spin relaxation measurement experiments.

In this section we consider tunnel-off events, like the one shown in Fig. 5-3(a), that

occur when the dot is in the read-out configuration of the spin relaxation measurement

sequence. This configuration is illustrated above in Fig. B-2. The goal of this section

is to calculate the probability distribution Pro of the times toff at which electrons

tunnel off the dot. This distribution will describe the histograms shown in Fig. 5-5.

In this calculation we neglect the transition rate G from the ground to the excited

spin state because it is very slow compared to the other rates in the problem, and so

we can approximate We = W .

First we consider the probability Pro,e(toff ) that a time toff after we enter the

read-out state the electron is still in the excited spin state. The rate equation for

Pro,e is given by

Ṗro,e = −ΓoffPro,e − WPro,e = −(Γoff + W )Pro,e.

Solving this gives

Pro,e(toff ) = Pee
−Rtoff

where R = Γoff + W . We note that Pe = Pro,e(toff = 0) = Pe(tw) is just the

probability that the dot is in the excited spin state at the end of the charging pulse. We

can also write down the rate equations for the probability Pro,g(toff ) that the electron
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is in the ground spin state at a time toff after we enter the read-out configuration.

The rate equation is

Ṗro,g = −ΓbPro,g + WPro,e

= −ΓbPro,g + WPee
−Rtoff .

We can solve this equation and we obtain

Pro,g(toff ) = Pge
−Γbtoff + Pe

W

R − Γb

(e−Γbtoff − e−Rtoff )

where Pg = Pg(tw). The first term in this equations are from electrons that start in

the ground spin state at the beginning of the read-out step, while the second term

is caused by electrons relaxing from the excited to the ground spin state during the

read-out.

We can now calculate the probability distribution Pro(toff ). The probability that

an electron tunnels off the dot between toff and toff + ∆t is

Pro(toff )∆t = Γoff∆t Pro,e(toff ) + Γb∆t Pro,g(toff ).

To understand this equation, we note that given the electron is in the excited spin state

at time toff (which happens with probability Pro,e(toff)), the probability it tunnels

off between toff and toff + ∆t is just Γoff∆t. Similarly, the probability of tunneling

off the dot given the electron is in the ground state at toff is Γb∆t. Substituting

our results for Pro,e(toff ) and Pro,g(toff ) into the above equation and simplifying, we

obtain

Pro(toff) =

(

1 −
W

R − Γb

Γb

Γoff

)
Γoff

R
PeR e−Rtoff +

(

Pg +
W

R − Γb

Pe

)

Γb e−Γbtoff .

(B.4)

There are a couple of important things to note about this equation. First,
∫∞

0
Pro(toff )dtoff = Pe + Pg, which is just the total probability that an electron

is on the dot after the charging pulse. The first exponential in the equation has rate
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R = Γoff + W and corresponds to electrons leaving the excited spin state by tunnel-

ing off the dot or relaxing to the ground state. The area under this first exponential

is Pe multiplied by a factor η = (1 − W
R−Γb

Γb

Γoff
)

Γoff

R
, which describes the fraction of

excited state electrons that tunnel off before they relax. In the limit Γoff ≫ (W, Γb)

we have that η ≈ 1. We can simplify the expression for η further. At low magnetic

fields W ≪ Γoff and Γb/Γoff ≈ 0.1, so that W
R−Γb

Γb

Γoff
≪ 1. At high magnetic fields

W ∼ Γoff so W/R ∼ 1. But at these fields the Zeeman splitting is large so that

Γoff ≫ Γb so again W
R−Γb

Γb

Γoff
≪ 1. Thus we can simplify the expression for η to

η ≈ Γoff/R.

The second exponential in Eqn. B.4 corresponds to electrons tunneling out of the

ground state. There are two contributions: one from electrons initially in the ground

state and a second from electrons that relax to the ground state before tunneling off.

In the limit where Γb ≪ R, then e−Γbtoff is approximately constant over the scale of

e−Rtoff . Thus

Pro(toff ) = ηPeR e−Rtoff +

(

Pg +
W

R − Γb

Pe

)

Γb (B.5)

which is the form we fit to in Chapter 5.
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Appendix C

Spin Relaxation in a Rotated

Anisotropic Quantum Dot

We consider a quantum dot with coordinate system x and y such that we can ap-

proximate the confining potential by an anisotropic 2D harmonic oscillator potential

U(x, y) = 1
2
m∗(ω2

xx
2 + ω2

yy
2), where m∗ is the effective mass. We assume that the

z-axis is along the [001] crystallographic axis but that the x and y axes are rotated by

an angle φc with respect to the crystallographic axes x′ = [100] and y′ = [010]. The

goal of this calculation is to show that the spin relaxation rate W0 at T = 0 takes the

form W0 = Ax(~ωx)
−4 + Ay(~ωy)

−4.

The form of the spin-orbit Hamiltonian will depend on how the x and y axes are

oriented with respect to the GaAs crystallographic axes. The most general spin-orbit

Hamiltonian has the form

HSO =
∑

i,j=x,y

Bijpiσj = Bxxpxσx + Bxypxσy + Byxpyσx + Byypyσy

where we assume the Bij are real. For the quantum dot in this thesis, we have

x = [110] and y = [110] so Bxx = Byy = 0, Byx = (β − α), and Bxy = (β + α), where

β and α are the Dresselhaus and Rashba spin-orbit parameters. But we shall proceed

with the most general form of HSO to derive the spin relaxation rate W0.

In the absence of spin-orbit coupling the eigenstates of the dot are 2D harmonic
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oscillator eigenstates |nx, ny, s〉 where nx and ny are the orbital states of the harmonic

oscillator potential and s = +,− are the spin-up and spin-down states along the

magnetic field direction B̂. The energy difference between the spin states is the

Zeeman energy for spin splitting ∆ = |g|µBB. We treat the spin-orbit interaction in

perturbation theory. Then the effective states to first order in HSO are:

|00+〉SO = |00+〉 +
∑

nx,ny ,s

|nx, ny, s〉〈nx, ny, s|HSO|00+〉

E00+ − Enx,ny ,s

and

|00−〉SO = |00−〉 +
∑

nx,ny ,s

|nx, ny, s〉〈nx, ny, s|HSO|00−〉

E00− − Enx,ny ,s

For an electron-phonon interaction Ue−ph the matrix element to first order in HSO

is

M = SO〈00−|Ue−ph|00+〉SO

= 〈00−|Ue−ph|00+〉

+
∑

nx,ny ,s

〈00−|Ue−ph|nx, ny, s〉〈nx, ny, s|HSO|00+〉

E00+ − Enx,ny ,s

+
∑

nx,ny ,s

〈00−|HSO|nx, ny, s〉〈nx, ny, s|Ue−ph|00+〉

E00− − Enx,ny ,s

Now Ue−ph cannot flip the electron’s spin [45], so 〈00−|Ue−ph|00+〉 = 0 and

M =
∑

nx,ny

〈00−|Ue−ph|nx, ny,−〉〈nx, ny,−|HSO|00+〉

E00+ − Enx,ny ,−

+
∑

nx,ny

〈00−|HSO|nx, ny, +〉〈nx, ny, +|Ue−ph|00+〉

E00− − Enx,ny ,+

In the limit where the phonon wavelength is much larger than the size of the dot we

can use the dipole approximation for the interaction and we have Ue−ph = −eEq,α·r

where α = t, l refers to the two transverse phonon modes and the one longitudinal

mode. From the form of Ue−ph we have that Eq,α = Eq,αq̂. Thus we can write

Ue−ph = −eEq,α(q̂xx + q̂yy + q̂zz) where q̂ = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) and θ
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and φ are the polar and azimuthal angles of the wave-vector q in the x-y coordinate

system.

For the anisotropic harmonic oscillator potential, we have x =
√

~

2m∗ωx
(a†

x + ax),

px = i
√

m∗~ωx

2
(a†

x − ax), and similarly for y and py where a† and a are raising and

lowering operators. This gives

M = −eEq,α sin(θ)[

〈00| cos(φ)x |10〉Bxx〈10| px |00〉〈−|σx |+〉

−(~ωx + ∆)

+
〈00| cos(φ)x |10〉Bxy〈10| px |00〉〈−|σy |+〉

−(~ωx + ∆)

+
〈00| sin(φ)y |01〉Byx〈01| py |00〉〈−|σx |+〉

−(~ωy + ∆)

+
〈00| sin(φ)y |01〉Byy〈01| py |00〉〈−|σy |+〉

−(~ωy + ∆)

+
Bxx〈−|σx |+〉〈00| px |10〉〈10| cos(φ)x |00〉

−(~ωx − ∆)

+
Bxy〈−|σy |+〉〈00| px |10〉〈10| cos(φ)x |00〉

−(~ωx − ∆)

+
Byx〈−|σx |+〉〈00| py |01〉〈01| sin(φ)y |00〉

−(~ωy − ∆)

+
Byy〈−|σy |+〉〈00| py |01〉〈01| sin(φ)y |00〉

−(~ωy − ∆)
]

so

M =
ei~

2
Eq,α sin(θ)[

cos(φ)Bxx〈−|σx |+〉

~ωx + ∆
+

cos(φ)Bxy〈−|σy |+〉

~ωx + ∆

+
sin(φ)Byx〈−|σx |+〉

~ωy + ∆
+

sin(φ)Byy〈−|σy |+〉

~ωy + ∆

−
Bxx〈−|σx |+〉 cos(φ)

~ωx − ∆
−

Bxy〈−|σy |+〉 cos(φ)

~ωx − ∆

−
Byx〈−|σx |+〉 sin(φ)

~ωy − ∆
−

Byy〈−|σy |+〉 sin(φ)

~ωy − ∆
]
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Using ∆ ≪ ~ωx, ~ωy, we have

M = −ei~∆Eq,α sin(θ)[

cos(φ)Bxx〈−|σx |+〉

(~ωx)2
+

sin(φ)Byx〈−|σx |+〉

(~ωy)2

+
cos(φ)Bxy〈−|σy |+〉

(~ωx)2
+

sin(φ)Byy〈−|σy |+〉

(~ωy)2
]

To evaluate the matrix elements of the σ matrices, we use the spin eigenstates

in the B̂ direction in the σz basis: |+〉 = (cos(ϑ/2)e−iϕ/2, sin(ϑ/2)eiϕ/2) and |−〉 =

(sin(ϑ/2)e−iϕ/2,− cos(ϑ/2)eiϕ/2), where ϑ and ϕ are the polar and azimuthal angles

of the magnetic field with respect to the x and y axes. Then it is easy to compute

that 〈−|σx |+〉 = i sin(ϕ) − cos(ϑ) cos(ϕ) and 〈−|σy |+〉 = −i cos(ϕ) − cos(ϑ) sin(ϕ).

So we have

M = −ei~∆Eq,α sin(θ)

[
cos(φ)Mx

(~ωx)2
+

sin(φ)My

(~ωy)2

]

with Mx = Bxx〈−|σx |+〉 + Bxy〈−|σy |+〉 and My = Byx〈−|σx |+〉 + Byy〈−|σy |+〉.

The spin relaxation rate is given by Fermi’s Golden Rule [45]:

W0 =
∑

α

2π

~

∫
d3q

(2π)3
|M(q, α)|2δ(~sαq − ∆)

where sα is the sound velocity of phonon mode α. The δ function arises from energy

conservation. Let’s consider the relaxation rate for one phonon mode W0,α; the total

rate will be the sum of the contributions from the two transverse and one longitudinal

modes. We have

W0,α =
2π

~

∫
d3q

(2π)3
|M(q, α)|2δ(~sαq − ∆)

=
q2

(2π)2~2sα

∫

sin(θ)dθdφ|M(q, α)|2
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where q = ∆/(~sα) from energy conservation. Then

W0,α =
e2∆2q2

(2π)2sα

∫

dθdφ sin3(θ)|Eq,α|
2

∣
∣
∣
∣

Mx cos(φ)

(~ωx)2
+

My sin(φ)

(~ωy)2

∣
∣
∣
∣

2

=
e2∆2q2

(2π)2sα

∫

dθdφ sin3(θ)|Eq,α|
2

[
|Mx|

2 cos2(φ)

(~ωx)4
+

|My|
2 sin2(φ)

(~ωy)4

]

+
e2∆2q2

(2π)2sα

∫

dθdφ sin3(θ)|Eq,α|
2

(
2ℜe(MxM

∗
y ) cos(φ) sin(φ)

(~ωx)2(~ωy)2

)

.

To integrate over Eq,α we must consider the details of piezoelectric phonons in

GaAs. The electron-phonon interaction is given by [45]:

Uq,α
e−ph =

√

~

2ρω
exp(iq·r − iωt)eAq,α + c.c.

with Aq,α = q̂i′ q̂k′βi′k′j′e
j′

q,α where eq,α is the phonon polarization vector (ej′

q,α are the

components of this vector), and βi′k′j′ = h14 when the i′, k′, j′ are different and 0

otherwise. The components of the vectors are to be taken in the crystallographic

coordinate system given by the x′ and y′ axes. ρ is the mass density. Following

a dipole expansion, we have that Eq,α = Eq,αAq,α, with Aq,α = 2h14(q̂x′ q̂y′ez′

q,α +

q̂x′ q̂z′e
y′

q,α + q̂y′ q̂z′e
x′

q,α) containing all the angular dependence for Eq,α while Eq,α =

−iq
√

~

2ρω
depends only on the magnitude of q.

Substituting,

W0,α = Cα

(
|Mx|

2Ix,α

(~ωx)4
+

|My|
2Iy,α

(~ωy)4
+

ℜe(MxM
∗
y )Ixy,α

(~ωx)2(~ωy)2

)

(C.1)

where Cα = e2∆2q2

(2π)2sα
|Eq,α|

2, q = ∆/(~sα), and the integrals are given by:

Ix,α =

∫

dθdφ sin3(θ)|Aq,α|
2 cos2(φ)

Iy,α =

∫

dθdφ sin3(θ)|Aq,α|
2 sin2(φ)

and

Ixy,α =

∫

dθdφ sin3(θ)|Aq,α|
2 sin(2φ)
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We now consider these integrals for each of the phonon modes. For longitudinal

phonons, eq,l = q̂ so ej′

q,l = q̂j′ and

Aq,l = 6h14(q̂x′ q̂y′ q̂z′) = 6h14 sin2(θ′) cos(θ′) cos(φ′) sin(φ′)

where θ′ and φ′ are the polar and azimuthal angles with respect to the crystallo-

graphic axes. Since the z axis is the z′ = [001] crystallographic axis, we have θ = θ′.

As discussed earlier, we assume the x-y axes are rotated an angle φc from the crys-

tallographic axes so that φ′ = φ + φc. Then we can evaluate the integrals to find

that

Ix,l = Iy,l = 16πh2
14/35

and

Ixy,l = 0.

This last integral results because

Ixy,l ∝

∫

dφ cos2(φ′) sin2(φ′) sin(2φ)

= 1/4

∫

dφ sin2(2φ′) sin(2φ)

= 1/8

∫

dφ(1 − cos(4φ′)) sin(2φ)

= 1/8

∫

dφ(1 − cos(4φ) cos(4φc) + sin(4φ) sin(4φc)) sin(2φ)

= 0.

For the transverse modes, we have to pick the phonon polarization vectors. Nat-

ural vectors to choose are êq,t1 = (− sin(φ′), cos(φ′), 0) = (ẑ′ × q̂)/ sin(θ′) and êq,t2 =

(− cos(φ′) cos(θ′),− sin(φ′) cos(θ′), sin(θ′)) = q̂ × êq,t1. Then

Aq,t1 = 2h14 sin(θ′) cos(θ′)(cos2(φ′) − sin2(φ′))

and

Aq,t2 = 2h14 sin(θ′) cos(φ′) sin(φ′)(1 − 3 cos2(θ′))
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What is usually done [45, 96, 127] is to take the average transverse mode given by

|Aq,t|
2 = (|Aq,t1|

2 + |Aq,t2|
2)/2 which gives

|Aq,t|
2 = 2h2

14[sin
2(θ′) cos2(θ′) + cos2(φ′) sin2(φ′) sin4(θ′)(1 − 9 cos2(θ′))].

Using this average gives equivalent results to considering the modes independently.

For the transverse modes, we have

Ix,t = Iy,t = 32πh2
14/105

and

Ixy,t = 0.

This last integral results because

Ixy,t ∝

∫

dθdφ[sin2(θ′) cos2(θ′) + cos2(φ′) sin2(φ′) sin4(θ′)(1 − 9 cos2(θ′))] sin(2φ)

=

∫

dθdφ[cos2(φ′) sin2(φ′) sin4(θ′)(1 − 9 cos2(θ′))] sin(2φ)

∝

∫

dφ[cos2(φ′) sin2(φ′)] sin(2φ)

= 0.

The total relaxation rate is obtained by summing Eqn. C.1 over the phonon modes:

W0 = C

(
|Mx|

2

(~ωx)4
+

|My|
2

(~ωy)4

)

(C.2)

Mx = Bxx(i sin(ϕ) − cos(ϑ) cos(ϕ)) + Bxy(−i cos(ϕ) − cos(ϑ) sin(ϕ))

My = Byx(i sin(ϕ) − cos(ϑ) cos(ϕ)) + Byy(−i cos(ϕ) − cos(ϑ) sin(ϕ))

and using the fact that Ix,α = Iy,α, we have C =
∑

α CαIx,α ∝ h2
14ρ

−1∆5(s−5
l + 4

3
s−5

t ).

Equation C.2 is the form of W0 we wanted to demonstrate.

Finally, to check our work, we compare our results to those in Khaetskii et al. [45]

for the anisotropic harmonic oscillator potential. The result in [45] are for x = [100]
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and y = [010] and only Dresselhaus spin-orbit coupling so Bxx = −β, Byy = β,

and Bxy = Byx = 0. Then we have Mx = −β(i sin(ϕ) − cos(ϑ) cos(ϕ)) and My =

β(−i cos(ϕ) − cos(ϑ) sin(ϕ)), so |Mx|
2 = β2(sin2(ϕ) + cos2(ϑ) cos2(ϕ)) and |My|

2 =

β2(cos2(ϕ) + cos2(ϑ) sin2(ϕ)). Substituting into Eqn. C.2 we have

W0 ∝
sin2(ϕ) + cos2(ϑ) cos2(ϕ)

(~ωx)4
+

cos2(ϕ) + cos2(ϑ) sin2(ϕ)

(~ωy)4

∝
1 − cos(2ϕ) + cos2(ϑ)(1 + cos(2ϕ))

(~ωx)4
+

1 + cos(2ϕ) + cos2(ϑ)(1 − cos(2ϕ))

(~ωy)4

=
1 + cos2(ϑ) − sin2(ϑ) cos(2ϕ)

(~ωx)4
+

1 + cos2(ϑ) + sin2(ϑ) cos(2ϕ)

(~ωy)4

= (1 + cos2(ϑ))((~ωx)
−4 + (~ωy)

−4) − sin2(ϑ) cos(2ϕ)((~ωx)
−4 − (~ωy)

−4)

This is precisely the form of the result in Eqn. 7 of Khaetskii et al. [45] when we note

that αxx ∝ (~ωx)
−2 and αyy ∝ (~ωy)

−2.

We can also compare our results to those in Golovach et al. [46], for x = [100],

y = [010] and ~ωx = ~ωy. Then Bxx = −β, Bxy = α, Byx = −α, and Byy = β which

gives

Mx = −β(i sin(ϕ) − cos(ϑ) cos(ϕ)) + α(−i cos(ϕ) − cos(ϑ) sin(ϕ))

My = −α(i sin(ϕ) − cos(ϑ) cos(ϕ)) + β(−i cos(ϕ) − cos(ϑ) sin(ϕ))

Then we have

W0 =
C

(~ωx)4
|(β cos(ϕ) − α sin(ϕ)) cos(ϑ) − i(α cos(ϕ) + β sin(ϕ))|2

+
C

(~ωx)4
|(α cos(ϕ) − β sin(ϕ)) cos(ϑ) − i(β cos(ϕ) + α sin(ϕ))|2

=
C

(~ωx)4
[(β cos(ϕ) − α sin(ϕ))2 cos2(ϑ) + (α cos(ϕ) + β sin(ϕ))2]

+
C

(~ωx)4
[(α cos(ϕ) − β sin(ϕ))2 cos2(ϑ) + (β cos(ϕ) + α sin(ϕ))2]

=
C

(~ωx)4
[(α2 + β2) cos2(ϑ) − 4αβ cos(ϕ) sin(ϕ) cos2(ϑ)

+ (α2 + β2) + 4αβ cos(ϕ) sin(ϕ)]
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so that

W0 =
C

(~ωx)4
[(α2 + β2)(1 + cos2(ϑ)) + 2αβ sin(2ϕ) sin2(ϑ)].

For ϑ = π/2 and α = 0, we have W (ϑ = π/2, α = 0) = Cβ2

(~ωx)4
so that C

(~ωx)4
= W (ϑ =

π/2, α = 0)/β2 and we have

W =

(
W (ϑ = π/2, α = 0)

β2

)

[(α2 + β2)(1 + cos2(ϑ)) + 2αβ sin(2ϕ) sin2(ϑ)].

This is the result in Golovach et al. [46].

147



148



Bibliography

[1] M. A. Kastner, Reviews of Modern Physics 64, 849 (1992).

[2] M. A. Kastner, Physics Today 46, 24 (1993).

[3] R. C. Ashoori, Nature 379, 413 (1996).

[4] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Wester-

velt, and N. S. Wingreen, Electron transport in quantum dots, in Mesoscopic

Electron Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön,

volume 345 of NATO ASI Series E, pp. 105–214, Kluwer, Dordrecht, 1997.

[5] L. Kouwenhoven and C. Marcus, Physics World 11, 35 (1998).

[6] C. B. Murray, D. J. Norris, and M. G. Bawendi, Journal of the American

Chemical Society 115, 8706 (1993).

[7] M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, and C. M. Marcus, Nano

Letters 5, 1267 (2005).

[8] C. Fasth, A. Fuhrer, M. T. Björk, and L. Samuelson, Nano Letters 5, 1487

(2005).

[9] J. H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge

University Press, Cambridge, 1998).

[10] T. K. Ng and P. A. Lee, Physical Review Letters 61, 1768 (1988).

[11] L. I. Glazman and M. E. Raikh, JETP Letters 47, 452 (1988).

149



[12] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-Magder, U. Meirav,

and M. A. Kastner, Nature 391, 156 (1998).

[13] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281,

540 (1998).
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