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Abstract

In this thesis nanometer scale charge sensors are used to study charge transport in
two solid state systems: Lateral GaAs quantum dots and hydrogenated amorphous
silicon (a-Si:H). In both of these experiments we use time-resolved charge sensing to
study electron transport in regimes that are not accessible to traditional transport
measurements.

For the lateral GaAs quantum dot experiments, we use a GaAs quantum point
contact integrated with the dot as a charge sensor. We use this sensor to observe
single electrons hopping on and off the dot in real time. By measuring the time
intervals for which the dot contains one and zero electrons, we probe the rate Γ at
which electrons tunnel on and off the dot from the leads. We measure Γ as a function
of the drain source bias Vds and gate voltages Vg applied to the dot. At zero magnetic
field, we show that the dependencies of Γ on Vds and Vg can be understood in terms
of a simple quantum mechanical model which takes into account variations in the
electron energy relative to the top of the tunnel barriers separating the dot from the
leads. We also show that the tunneling is dominated by elastic processes. At high
magnetic fields, we show that tunneling into the excited spin state of the dot can be
completely suppressed relative to tunneling into the ground spin state. The extent
of the suppression depends on the shape of the electrostatic potential defining the
quantum dot.

For the a-Si:H experiments, we pattern a nanometer scale strip of a-Si:H adja-
cent to a narrow silicon MOSFET (metal-oxide-semiconductor field-effect transistor),
which serves as an integrated charge sensor. We show that the MOSFET can be used
to detect charging of the a-Si:H strip. By performing time-resolved measurements of
this charging, we are able to measure extremely high resistances (∼ 1017 Ω) for the
a-Si:H strip at T ≈ 100 K. At higher temperatures, where the resistance of the a-Si:H
strip is not too large, we show that the resistances obtained from our charge detection
method agree with those obtained by measuring current. Our device geometry allows
us to probe a variety of electron transport phenomena for the a-Si:H, including the
field effect and dispersive transport, using charge detection. We extract the density
of localized states at the Fermi level for the a-Si:H and obtain consistent results. We
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discuss the effect of screening by the substrate on the sensitivity of the MOSFET to
charge in the a-Si:H, and show that the MOSFET can detect switching noise in the
a-Si:H.

Thesis Supervisor: Marc A. Kastner
Title: Donner Professor of Science and Dean of the School of Science
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Chapter 1

Introduction

One of the most important properties of semiconducting materials is their sensitivity

to relatively small changes in charge density. For a pure semiconductor crystal, the

Fermi level lies in the middle of the band gap, so that the charge density in the

conduction and valence bands is very small, and the conductivity of the material

is very low. What distinguishes such a material from an insulator is that for a

semiconductor, a modest change in the electrostatic environment of the crystal, in

the form of an applied electric field, a small number of impurity atoms introduced

into the crystal, or exposure to electromagnetic radiation, creates a change in the

charge density in the conduction or valence band that has a dramatic effect on the

conductivity. This sensitivity leads directly to the wide variety of semiconductor

transistors, diodes, and photovoltaic devices that, since the invention of the solid

state transistor [1], have come to dominate modern electronics [2].

As semiconductor technology has matured and miniaturized, techniques for sculpt-

ing materials on smaller and smaller length scales have developed. Empowered by this

technology, physicists have explored the behavior of electrons confined to nanometer

scale semiconductor devices. Electrons confined to small solid state structures, re-

ferred to as quantum dots, behave much like electrons occupying the orbitals of single

atoms [3]. A variety of experiments have explored aspects of this atomic behavior

[4, 5, 6, 7, 8]. Electrons occupying quantum dots can be coupled through tunnel bar-

riers to a Fermi sea, and this has lead to the observation of other interesting physical

13



phenomena, including the single electron transistor functionality of quantum dots [9],

and many-body electron interactions involving electrons on the quantum dot and in

the leads [10, 11]. In addition to quantum dots, where the electronic wavefunction is

confined in all three dimensions, structures that confine electrons in only two dimen-

sions have also been studied extensively, revealing a number of interesting effects to

solid state physicists [12, 13].

The conductivity through all nanoscale semiconductor devices is enormously sen-

sitive to the electrostatic environment of the device. This fact was reported almost

as soon as physicists began fabricating semiconducting devices of a sufficiently small

size [14] and is fairly obvious to any experimentalist who has observed the “switch-

ing” behavior evident to some extent in all of these devices [15, 16]. In fact, the

electric field generated by a single electron in the immediate vicinity of a nanoscale

semiconductor device creates a measurable change in the device conductivity. For

example, for a nanoscale MOSFET (metal-oxide-semiconductor field-effect transis-

tor), the conductivity is sensitive to the occupation of single defects in the oxide near

the oxide-semiconductor interface. This sensitivity can be used to study electrons

confined to these defects, and has been utilized to observe a wide range of interesting

effects, from many body electron-electron interactions [17] to the spin resonance of a

single electron spin [18].

As nanometer semiconductor devices were further developed, it was demonstrated

that they could function as ultra-sensitive electrometers, capable of detecting not only

single electron fluctuations within the device itself, but also in structures adjacent to

the device [19]. Nanometer scale semiconductor devices functioning as electrometers,

patterned adjacent to a structure of interest, are called integrated charge sensors. In

the work reported in this thesis, we use integrated charge sensors to study two very

different systems: Lateral GaAs quantum dots and hydrogenated amorphous silicon

(a-Si:H). Specifically, in Chapters 2 and 3, we report measurements of single electron

tunneling in GaAs quantum dots obtained using a GaAs quantum point contact

as an integrated charge sensor, and in Chapters 4 and 5 we report measurements

of electron transport in a-Si:H obtained using a nanometer scale MOSFET as an
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integrated charge sensor.

Lateral GaAs quantum dots are one of the most well understood nanometer scale

semiconducting devices [20]. Integrated charge sensors were first demonstrated for this

system [19], in the form of a nanometer scale conducting channel, or quantum point

contact (QPC), positioned adjacent to the dot. Recently, some time after the initial

report of the integrated charge sensor, a number of research efforts have demonstrated

that integrated charge sensors can be used to study aspects of the quantum mechanical

behavior of electrons confined to GaAs quantum dots that are impossible to observe

by directly measuring the current flowing through the dot [21, 22, 23, 24, 25]. The

work reported in Chapters 2 and 3 constitute part of this initiative. Specifically,

we use integrated charge sensors to reveal fundamental aspects of the way in which

electrons tunnel on and off a GaAs quantum dot.

In Chapter 2, we discuss the techniques we have developed for using integrated

charge sensors to study GaAs quantum dots, and use them to study the tunneling

process at zero magnetic field. We demonstrate that the tunneling is dominated by

elastic processes, and that variations in the tunnel rate as the drain-source-bias and

gate voltages applied to the quantum dot are changed can be described by a simple

quantum mechanical model that takes into account variations in the electron energy

relative to the tunnel barrier potential.

In Chapter 3, we examine the tunneling process in the presence of a large magnetic

field. Surprisingly, we find that as the magnetic field is increased, tunneling into the

excited spin state can be completely suppressed relative to tunneling into the ground

spin state. The extent of this suppression varies as the shape of the quantum dot is

changed. While the phenomenology of this effect is clear, these results have not as

of yet been explained theoretically. The experiments presented in Chapters 2 and 3,

enabled by the integrated charge sensing technique, contribute to a full understanding

of the physics of tunneling in quantum dots, a process that is central to all applications

of these devices. Having seen the substantial impact of the integrated charge sensor

on transport studies of quantum dots, we sought to use these sensors to study electron

transport in other solid state systems.
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One aspect of the integrated charge sensing technique that stands out in contrast

to the measurement of current is its ability to measure extremely slow electron dy-

namics. Current, a measure of charge per unit time, becomes immeasurably small for

systems where electrons move slowly. Replacing the measurement of current with a

time-resolved measurement of charge, one obtains a probe of electron transport that

is ideally suited for the study of slow electron dynamical processes. It is in part this

aspect of the integrated charge sensing technique that has resulted in its large impact

on the study of GaAs quantum dots, as it allows the experimenter to study transport

in dots that are almost completely isolated from the Fermi sea in their leads.

In Chapters 4 and 5 we exploit the ability of integrated charge sensors to measure

slow electron dynamics, and use this technique to probe electron transport in highly

resistive materials for which traditional transport techniques fail. As a resistive ma-

terial, we use a nanometer scale strip of a-Si:H, cooled to a temperature where the

resistance is very high. Having demonstrated the application of integrated charge

sensing to the study of a-Si:H, a material for which the electronic structure has been

studied extensively [26], we anticipate that our work will be extended to characterize

the electronic properties of other technologically significant materials for which a high

electrical resistance inhibits the measurement of current.

Chapter 4 is the most technical chapter of this thesis. It covers the fabrication,

instrumentation, and electrical characteristics of the narrow MOSFET sensor and a-

Si:H strip. Since over the past five years many studies of electron transport in GaAs

quantum dots utilizing a QPC as an integrated charge sensor have been reported, and

technical aspects of such experiments are now well documented [27, 28, 29]. However,

our work with a-Si:H is the first utilization of integrated charge sensors for the study

of resistive materials, so a presentation of the technical aspects of these experiments

is well warranted.

In Chapter 5, we present our measurements of transport in a-Si:H, obtained using

a narrow MOSFET as an integrated charge sensor. We are able to measure incredibly

high resistances (∼ 1017 Ω) for the a-Si:H strip, using only moderate voltages (∼ 1

volt). Our technique allows us to probe a variety of transport phenomena, including
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the temperature, electric field, and time dependence of the transport, using charge

sensing. We extract the density of states at the Fermi level for the a-Si:H and obtain

consistent results. Our measurements are also consistent with the standard model

for electron transport in a-Si:H [26]. The work presented in this chapter constitutes

a fundamentally new way of measuring electrical resistance that is ideally suited to

the study of electron transport in highly resistive thin film materials.

In Chapter 6, we discuss the broader implications of the work presented in this

thesis, and present ideas for future experiments.
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Chapter 2

Energy Dependent Tunneling at

Zero Magnetic Field

In this chapter we discuss time-resolved measurements of single electron tunneling in

a GaAs quantum dot at zero magnetic field. In Section 2-1, we give an introduction

to lateral GaAs quantum dots. In Section 2.2 we describe how we measure the charge

on the dot using a quantum point contact (QPC) charge sensor, and show how we

use time-resolved charge detection to measure the tunneling rate Γ between the dot

and its leads. In Section 2.3, we measure the dependence of Γ on drain-source bias

Vds, and show that this dependence can be explained in terms of elastic tunneling

at a rate set by the difference between the electron energy and the height of the

tunnel barrier, a process we will refer to as energy dependent tunneling. In Section

2.4, we measure the dependence of Γ on plunger gate voltage Vg, and show that this

dependence can also be understood in terms of energy dependent tunneling. Parts of

the results presented here appear also in K. MacLean et al. [30].

2.1 Introduction: GaAs Quantum Dots

A quantum dot is a nanometer scale region of semiconductor to which a small number

of electrons are localized, and for which both the Coulomb energy EC required to add

an additional electron, and the energy splitting between different quantum orbital
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states EQ play an important role. Because EC = e2/C, where C is the capacitance

of the dot, and EQ ∼ ℏ
2/2m∗L2, where m∗ is the electron effective mass and L is

the size of the dot, EQ and EC become larger the smaller L and C, which are both

reduced by making the dot smaller. Quantum dots are therefore constructed using

nanofabrication techniques.

The variety of ways in which quantum dots can be fabricated can roughly be

divided into two categories. For the first category, small chunks of semiconductor of

various sizes and shapes are grown using chemical processes. For the second category,

the quantum dot is patterned using nanolithographic techniques. These two categories

can overlap. For instance, a number of groups have studied surface gated carbon

nanotubes [31, 32]: For these devices, the carbon nanotube is grown by chemical

vapor deposition, and the gates are then patterned around the nanotube using electron

beam lithography.

Very small nanostructures can be made with chemical processes, and the energy

scales EC and EQ for quantum dots made with these processes can be quite large.

The effect of quantum confinement can be observed at room temperature and can

play an important role in how these dots interact with electromagnetic radiation in

the optical and infrared frequency ranges [33, 34]. Quantum dots fabricated with

nanolithography are generally larger, so that EC and EQ are smaller, and the effects

of quantum confinement and Coulomb repulsion are observable only at cryogenic

temperatures. Transitions between the quantum energy levels of these dots are usually

driven with lower frequency radiation, in the microwave range [35, 36].

For quantum dots fabricated with nanolithography, surface gates patterned adja-

cent to the dot can be used to tune the properties of the quantum dot. This tunablity

has enabled a wide variety of experiments. For instance, for lateral GaAs quantum

dots, one can control in-situ the rate of tunneling Γ coupling the dot to its leads: Γ

can be adjusted over more than ten orders of magnitude by changing the voltages

applied to the gates that define the tunnel barriers of the quantum dot. Because of

this tunability, this type of quantum dot has been used to study correlated-electron

physics [10, 11], which becomes important when the coupling of the dot to its leads
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is strong, and also the coherence of electron charge and spin states [7, 22, 37], which

can be maintained only when the coupling to the leads is weak.

The experiments discussed in this chapter are performed with a lateral GaAs

quantum dot (Fig. 2-1) fabricated with electron beam lithography. To make such a

device, we start with a heterostructure grown by molecular beam epitaxy consisting

of GaAs topped with a thin (110 nm) layer of AlGaAs (more precisely, Al0.3Ga0.7As),

as depicted in Fig. 2-1(a). Within the AlGaAs, a distance dd = 60 nm from the

GaAs/AlGaAs interface, there are a small number of silicon atoms (less than one

atomic layer). The silicon acts as an electron donor in GaAs. Because the conduction

band of AlGaAs lies above the conduction band of GaAs by an amount eVbo ≈ 240

meV, a number of electrons donated by the silicon atoms will move into the GaAs.

The positively charged ionized silicon donors left behind in the AlGaAs create a strong

electric field that pulls these electrons to the GaAs/AlGaAs interface. These electrons,

confined to within ∼ 5 nm of the GaAs/AlGaAs interface, form a two dimensional

electron gas (2DEG). The number of electrons per unit area ne in the 2DEG is given

by the amount of charge required to charge the capacitance Cd between the silicon

donor layer and the GaAs/AlGaAs interface up to a voltage equal and opposite to

the potential difference between the AlGaAs and GaAs conduction bands:

ene = CdVbo (2.1)

Here Cd = �0�A/dd, where here �A is the dielectric constant of AlGaAs. For the

heterostructure used in our experiments, ne = 2.2 × 1011 cm−2.1 The conductance

per square of the 2DEG is given by:

� = ene� (2.2)

Here � is the mobility of the 2DEG, which for our sample is equal to 6.4× 105

cm2/Vs [38]. A high mobility reflects a small amount of scattering for electrons in the

1This value was obtained from Hall effect data by G. Granger [38]. The value calculated from
Eqn. 2.1 differs by only 25 %.
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2DEG, which leads to a high conductance. The GaAs/AlGaAs structures discussed

here have mobilities that are quite high compared to 2DEGs in other semiconductor

structures (Chapter 4). This is a result of the fact that AlGaAs and GaAs are lattice

matched, so that there are very few dangling bonds, dislocations, or other defects

near the AlGaAs/GaAs interface, and the fact that the silicon dopants are physically

separated from the 2DEG.2 There are therefore few potential fluctuations off of which

to scatter. Because of their high mobility, these type of heterostructures are used in

high electron mobility transistors (HEMT) and other devices designed to operate at

high frequencies for which a high conductivity is desired [40, 41].

The heterostructure provides one dimension of confinement. To confine the elec-

trons in the other two dimensions, we pattern nanometer scale metallic gates on the

surface of the heterostructure.3 A micrograph of the gate structure is shown in Fig.

2-1(b). We apply negative voltages to the top five gates (SG1, LP1, PL, LP2, and

SG2) and to the gate OG. This depletes the electrons in the 2DEG underneath these

gates. As the voltages are made more negative, the electrons in the regions between

OG and SG1 and between OG and SG2 are depleted, forming two tunnel barriers.

The region between the two tunnel barriers, indicated by the blue oval in Fig. 2-1(b),

constitutes the quantum dot.

The potential as a function of position taken along the dashed green curve in Fig.

2-1(b) is shown in Fig. 2-1(c). There are two tunnel barriers where the potential

rises above the Fermi level in the 2DEG. These barriers separate the potential well

in between them from the two Fermi sea leads, forming the quantum dot confining

potential. The potential at the bottom of the well can be shifted relative to the Fermi

level in the leads by adjusting the voltages applied to the three gates LP1, PL, and

LP2, so that the number of electrons on the dot can be controlled. We refer to these

three gates as the plunger gates, and we apply approximately the same gate voltage

Vg to each of them for all of the experiments discussed here. This is done so that

there is only one potential minimum between the two tunnel barriers.

2This type of doping is referred to as modulation doping [39].
3The nanofabrication for our devices was performed by I. P. Radu and D. M. Zumbühl [29].
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Figure 2-1: (a) Cross section of the GaAs/AlGaAs heterostructure and a nanopat-
terned metallic gate, as discussed in the main text. The top of the heterostructure
has a thin 10 nm capping layer of GaAs. The gates consist of gold on top of a thin
titanium layer, the latter of which adheres well to the GaAs cap [29]. (b) Electron
micrograph of our lateral GaAs quantum dot gate structure. The gates with pink
x’s over them are kept grounded for all of the experiments discussed here and can
be ignored. Negative voltages are applied the gates OG, SG1, LP1,PL, LP2, and
SG2, forming a quantum dot at the position of the blue oval. A negative voltage
is also applied to the gate QG2 to create a quantum point contact charge sensor as
discussed in Section 2.2. (c) Sketch of electrostatic potential U(x) in the 2DEG along
the dashed green curve in (b). The Fermi seas in the two leads are separated from
the quantum dot by two tunnel barriers. The one and two electron states of the
quantum dot are indicated by the lower and upper solid blue lines. The dashed black
line indicates a single electron excited orbital state. The dashed green line indicates
the single electron excited spin state in the presence of a magnetic field. (d) Simple
model for localization of electrons on a quantum dot, as discussed in the main text.
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The relevant energy scales for the quantum dot system are sketched in Fig. 2-

1(c). The largest energy scale is the Fermi level EF relative to the bottom of the

conduction band, which can be calculated from the electron density in the 2DEG, and

is approximately 7 meV. Next largest is the Coulomb energy EC ≈ 4 meV required to

add an additional electron to the quantum dot. This energy is given by the difference

in energy between the one and two electron states, sketched as the solid blue lines in

Fig. 2-1(c). For all of the experiments discussed here, the two electron state is above

EF , so that there is either one or zero electrons on the quantum dot.

The next largest energy scale is the quantum confinement EQ, which is given by

the difference between the energy of an excited orbital state (dashed black line in Fig.

2-1(c)) and the ground state. Of course, there are a number excited orbital states.

For lateral quantum dots, the confinement created by the heterostructure along the

direction perpendicular to the GaAs/AlGaAs interface is typically much stronger than

the confinement created by the gates. For low energy excitations, one can therefore

model the quantum dot confining potential as a two dimensional harmonic oscillator

potential well. For our device, the excited state of this harmonic oscillator with the

smallest energy is ∼ 2 meV above the ground state, as we will see in the following

sections.

For the experiments discussed in the following chapter, we apply a magnetic field

B in the plane of the 2DEG. For these experiments, where typically B is a few Telsa,

there is an excited spin state ∼ 100 �eV above the ground spin state. This state is

sketched as the dashed green line in Fig. 2-1(c). Finally the smallest energy scale is

kT . This energy scale determines the broadening of the Fermi distribution function

in the leads (not shown in Fig. 2-1(c)). All of the experiments discussed here are

performed in an Oxford 75 �W dilution refrigerator, at an electron temperature T ≈
120 mK so that kT ≈ 10 �V is much smaller than any of the other relevant energy

scales.

In the following sections, we use time resolved single electron charge sensing to

study the tunneling process by which electrons move on and off the quantum dot. For

these experiments, the tunnel barrier resistances Rb are very large. Before turning to
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a discussion of these experiments, we discuss a fundamental question: How resistive

do the tunnel barriers need to be in order for charge to be localized on the quantum

dot in the first place? To provide an intuitive answer to this question, we consider

a quantum dot connected to a grounded, Fermi Sea lead through one tunnel barrier

of resistance Rb (Fig. 2-1(d)). The time it takes to charge the quantum dot is given

by � ∼ RbC, where here C is the capacitance of the dot to ground. In order for

localization to occur, the Coulomb charging energy of the dot, EC = e2/C, must be

larger than the time-energy uncertainty �E ∼ ℎ/� ∼ ℎ/RbC. From this we obtain

the minimum barrier resistance necessary for localization to be Rb ∼ ℎ/e2, the inverse

of the quantum conductance.

2.2 Charge Detection Measurement

For the experiments discussed in the following sections, we utilize time-resolved single

electron charge detection. Our measurement circuit is shown Fig. 2-2(a). Applying

a negative voltage to the gate QG2, we form a quantum point contact (QPC) be-

tween the gates QG2 and SG2. The device characteristics of quantum point contacts

will be discussed in Section 3.3. For now, we regard the QPC simply as a narrow

conduction path, which, because of its nanoscale dimensions, is extremely sensitive

to its electrostatic environment. In particular, the QPC is sensitive to the charge on

the quantum dot: Adding an electron to the quantum dot has the same effect on the

QPC resistance as making the voltage on either QG2 or SG2 slightly more negative.

We can therefore use the resistance of the QPC as a measure of the charge on the

quantum dot. To measure the resistance of the QPC, we source a current I = 1 nA

through the QPC and measure the voltage Vqpc across the QPC.

An example of time-resolved charge sensing data is shown in Fig. 2-2(c). For

these data, we apply a negative voltage bias Vds to one of the two leads coupled to

the quantum dot so that the one electron state is between the Fermi levels of the two

leads, as sketched in Fig 2-2(b). We refer to the two Fermi seas as lead 1 and lead 2,

as labeled in Fig. 2-2(a). Leads 1 and 2 are connected to the quantum dot through
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Figure 2-2: (a) Electron micrograph of the gate geometry and schematic of the mea-
surement circuit. Gates with pink x’s are grounded and can be ignored. We apply a
negative voltage to the gates QG2 and SG2, forming a quantum point contact (QPC)
between these two gates. The resistance Rqpc of the QPC is sensitive to the charge
on the quantum dot, as discussed in the main text. We measure Rqpc by sourcing a
current through the QPC and monitoring the voltage Vqpc across the QPC. (b) When
a voltage bias Vds is applied across the quantum dot a small current flows and the
number of electrons on the dot fluctuates between 0 and 1. For the negative voltage
bias shown here, electrons from lead 1 tunnel onto the dot through b1 and then off
of the dot and into lead 2 through b2. (c) As the electrons hop on and off the dot,
Vqpc jumps up and down. We measure the time intervals ton (toff ) that the electron
is on (off) the dot using the automated triggering system described in the main text
and in Fig. 2-3. The offset in the trace is caused by the AC coupling of the volt-
age preamplifier. (d) Histogram of ton times from data such as in (c). Fitting this
histogram to an exponential yields Γoff as described in the main text.
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the two tunnel barriers, which we will henceforth refer to as b1 and b2, respectively.

For all of the experiments discussed here, lead 2 is kept grounded, and Vds is applied

to lead 1, as shown in Fig. 2-2(a). For negative Vds, electrons tunnel onto the dot

from lead 1 and off of the dot into lead 2. As this happens, the number of electrons

on the quantum dot fluctuates between 0 and 1, causing the QPC resistance and thus

Vqpc to fluctuate between a low and a high value. We measure Vqpc as a function of

time, and from these time series we measure the times that the electron is on (ton)

and off (toff ) the dot, as shown in Fig 2-2(c).

From the statistics of the time intervals ton and toff , we can measure the rates

Γoff and Γon at which electrons tunnel off and on the dot, respectively. To measure

Γoff , we histogram the times ton that the electron spends on the dot as shown in Fig.

2-2(d). Because tunneling is a Poisson process, these time intervals are distributed

exponentially, and we fit the histogram to an exponential Ae−Γoff ton to obtain the

tunnel rate Γoff [42]. We obtain Γon from the time intervals toff in the same manner.

In the following sections, we use the charge detection technique presented here to

measure Γon and Γoff as a function of drain-source bias Vds and plunger gate voltage

Vg in order to probe the underlying physics of the tunneling process. Before discussing

these measurements, we give an overview of the more important details of our mea-

surement circuit and technique. A sketch of the circuit used for our measurements is

shown in Fig. 2-3(a). We amplify the voltage across the QPC with a Signal Recovery

5184 voltage preamplifier. This amplifier, which sits at room temperature near the

top of the dilution refrigerator dewar, is connected to the QPC through a coaxial

cable of capacitance C ≈ 500 pF. When the QPC resistance Rqpc changes by a small

amount, the voltage across the QPC Vqpc takes a time � = RqpcC ≈ 50 �s to respond,

where here we have used a typical value for the QPC resistance Rqpc = 100 kΩ. The

time intervals ton and toff must be longer than � in order for them to be measurable.

For all of the data reported here, we have used simulations to check that the finite

bandwidth of our measurement does not substantially affect our results [43]. The

few small effects that the finite measurement bandwidth has will be noted below. In

Section 2.4 and in the following chapter, we quickly modulate the energy of the one
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Figure 2-3: (a) Sketch of circuit used for performing time-resolve measurements of
the charge on the quantum dot. A current I = 1 nA is sourced through the QPC
resistanceRqpc and the voltage across the QPC Vqpq is amplified with a Signal Recovery
5184 voltage preamplifier. The bandwidth for this measurement is limited by the
combination of the point contact resistance Rqpc and the capacitance C of the coaxial
cable connecting the input of the preamplifier to the QPC, as discussed in the main
text. To quickly modify the energy of the one electron state relative to the Fermi
level, we add a small, high speed voltage Vp to the voltage applied to the gate LP2.
(b) Example of automated triggering software. Starting with a voltage vs. time series
such as the one shown in Fig. 2-2(c), we first determine where the data exceeds a
specified threshold, shown here as a dashed black line, and retain data only in the
immediate vicinity of where the threshold is exceeded (green sections of the time
series). We then determine where the charge transitions from 0 to 1 (1 to 0) electrons
are within these subsections of the data by determining where the derivative of the
time series has a large positive (negative) value. We save only the times when the
electron tunnels on and off the dot. These times are indicated by the blue circles:
The upper value corresponds to an electron tunneling on, the lower value corresponds
to an electron tunneling off.
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electron state relative to the Fermi level. This is done by adding a small, high speed

voltage Vp to the voltage applied to the gate LP2. Vp can be varied on a microsecond

time scale.

To measure the rates Γon and Γoff accurately, we must measure many time in-

tervals toff and ton. For instance, for the histogram shown in Fig. 2-2(d), we have

measured almost 10,000 time intervals. The time series shown in Fig. 2-2(c), which

contains 10,000 data points, contains only 6 such time intervals. Therefore, the

number of data points required for this measurement is approximately 20,000,000, re-

quiring about 0.2 GB of memory. While performing one such measurement does not

require too much memory, performing a large number of these measurements results

in an unmanageable amount of data.

In order to reduce the amount of data acquired for our measurements, we devel-

oped an automated triggering and acquisition system (Fig. 2-3(b)). For each time

series that we acquire, our data is passed through a series of triggering algorithms

before it is stored. The first algorithm determines when Vqpc exceeds a specified

threshold. Only data close to where the threshold is exceeded are processed further

(green regions in Fig. 2-3(b)). Following the threshold trigger, the data is passed

through a second algorithm which finds the times at which Vqpc jumps up or down

suddenly. This is done by taking the derivative of the time series. Our derivative

algorithm is modified so that it works properly for noisy data sets. We take the dif-

ference between the average of two sets of data points separated by a specified delay

time, and determine when this difference is sufficiently positive or negative, which

tells us when an electron tunnels on or off the dot, respectively. The only data that

we save are the time and type (tunneling on or off) of each of these charge transitions.

Thus, the number of data points we actually save for a 10,000 point trace like the

one shown in Fig. 2-3(b) is only 24. Our algorithms work fairly quickly so that the

data acquisition time is not dominated by computation. In particular, the threshold

trigger is implemented for the purpose of increased speed: It quickly cuts down on the

amount of data that must be processed by the more time consuming differentiation

algorithm. Our data acquisition system randomly saves a few voltage vs. time series
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during the coarse of an experiment so that we can check that the triggering is working

properly.

2.3 Energy Dependent Tunneling: Drain-Source

Bias Dependence

Using the charge sensing technique described in the previous section, we measure the

rate for tunneling on Γon and off Γoff the dot as a function of drain-source bias Vds

(Fig. 2-4(a)). These data are taken such that at Vds = 0, the one electron state is

just above the Fermi level in the leads. In the top panel of Fig. 2-4(a), we see that

as Vds is made more negative, Γoff increases exponentially.

To understand the exponential dependence of Γoff on Vds, we start with the WKB

formula [44] for an electron tunneling at an energy E through a potential barrier U(x):

Γ = f0e
− 2

ℏ

∫ √
2m∗(U(x)−E)dx (2.3)

Here m∗ is the effective mass, f0 can be regarded semiclassically as an attempt rate,

and the integral in the exponent is taken over the classically forbidden region of length

w where U(x) > E. We linearize this formula for a small a perturbation �E to the

electron energy E and a small deviation �U of the tunnel barrier potential U(x):

Γ = Γ0e
−�(�U−�E) (2.4)

Here � and Γ0 depend on the details of the barrier potential. For a quantum dot,

for small perturbations to the plunger gate voltage or drain-source bias �Vg and

�Vds about arbitrary but fixed Vds and Vg values, the energy states on the dot vary

linearly as �E = −e�dsE�Vds − e�gE�Vg.
4 Similarly, �U varies linearly as �U =

−e�dsU�Vds − e�gU�Vg, where �dsU and �gU give the coupling of Vds and Vg to the

4Here, following the standard capacitor model for a quantum dot [38], �dsE is the ratio of the
drain-source capacitance to the total dot capacitance, and likewise �gE is the capacitance ratio for
the three plunger gates.
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barrier potential. There will, of course, be different parameters �dsU , �gU , �, and

Γ0 for the two barriers b1 and b2. Note that Γ depends exponentially on �U − �E,

and therefore depends exponentially on Vds and Vg: One can show that this holds

independent of the particular shape U(x) of the barrier potential, or the shape of the

perturbation to the potential induced by the change �Vg or �Vds.

Using this linearization, we can write down equations for the Vds dependence of

Γoff and Γon, considering only the one electron ground state of the dot. We include

the Fermi statistics in the leads by assuming that Γon (Γoff ) is the sum of two terms,

proportional to the number of electrons (holes) in leads 1 and 2 at the ground state

energy E. From the arguments given above, each term must also depend exponentially

on Vds, so that we obtain:

Γoff = Γ2,0e
−�2�Vds(1− f2(E)) (2.5)

+Γ1,0e
�1�Vds(1− f1(E))

Γon = �Γ2,0e
−�2�Vdsf2(E) (2.6)

+�Γ1,0e
�1�Vdsf1(E)

Here �1,2 = �1,2∣�dsU1,2 − �dsE∣. The energy of the ground state relative to the Fermi

level EF is given by E = −e�dsEVds−e�gEΔVg, where ΔVg is the shift in Vg from the

0 to 1 electron transition. f2 and f1 are the Fermi distribution functions for the two

leads f2(E) = f(E), f1(E) = f(E + eVds), and � is the ratio between the tunnel rate

onto and off of the dot for a given lead when the one-electron ground state is aligned

with the Fermi level in that lead. We expect that � = 2 because of spin degeneracy

[24, 45], and use this value in the calculations below.

To understand Fig. 2-4(a), we note that whether Γ increases or decreases with

Vds depends on whether lead 1 is better coupled to the barrier or the dot, that is,

whether �dsU or �dsE is larger. Since b1 is closer to lead 1 than the dot, and b2 is

farther from lead 1 than the dot, it follows that �dsU1
> �dsE > �dsU2

(see Fig. 2-4(c))

[46]. Therefore, tunneling through b1 (b2) increases (decreases) exponentially with

increasing Vds. This is reflected in the signs of the exponentials appearing in Eqn.
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Figure 2-4: (a). Γon and Γoff as a function of Vds for large negative Vds. The solid
line in the upper panel is based on a theoretical fit to the data discussed in the main
text. e1 and e2 indicate where the Fermi level in lead 1 is aligned with the 1st and
2nd orbitally excited states, respectively. (b) Sketch of the energy configuration of
the quantum dot at the position e1 noted in the lower panel of (a). The solid blue line
indicates the ground state of the quantum dot, and the dashed black line indicates
the orbitally excited state e1. After tunneling into the orbitally excited state e1,
the electron quickly relaxes to the ground state (green arrow), as discussed in the
main text. (c) Differential conductance vs. Vds and Vg, showing the 0 to 1 electron
transition. The tunnel rates for this case are made large enough so that the differential
conductance can be measured using standard transport techniques. The data shown
in (a) are taken at the position of the dashed line: At Vds = 0, the 1 electron state is
close to the Fermi level in the leads. The zero and one electron Coulomb blockaded
regions are noted.
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2.5 and Eqn. 2.6.

The solid line through the the Γoff data in Figure 5-4(a) is a fit to Eqn. 2.5,

which for large negative bias reduces to Γ2,0e
−�2�Vds , since electrons only tunnel onto

the dot from lead 2. The rate Γon is shown as a function of Vds in the lower panel of

Fig 2-4(a). At the two points marked e1 and e2 in the figure Γon increases rapidly

as the Fermi energy in lead 1 is aligned with an excited orbital state of the dot [47],

as depicted in Fig. 2-4(b). The higher-energy orbital states are better coupled to

the leads and thus Γon rises rapidly when these states become available. From the

positions of these rises and a measurement of �dsE, we find the energies of the 1st

and 2nd excited orbital states to be 1.9 and 2.9 meV, respectively, above the ground

state. These energies can also be measured, with larger tunneling rates through b1

and b2, using standard transport techniques [20] (Fig. 2-4(c)), and the results are

consistent.5

We note that Γoff does not show any special features at the points e1 and e2.6 This

is because the electron decays rapidly out of the excited orbital states via emission of

acoustic phonons [6, 48], and subsequently tunnels off the dot from the ground state

[49]. We can therefore continue to use Eqn. 2.5 when there are multiple orbital states

in the transport window.

In the regions between the points e1 and e2, Γon is seen to decrease exponentially

as Vds is made more negative, as expected from Eqn. 2.6. Note that this decrease in

Γon, with increasingly negative Vds, occurs even though the number of electrons that

could tunnel onto the dot inelastically from lead 1 is growing. This is strong evidence

that the tunneling is predominantly elastic, dominated by states very close to the dot

energy E. There is, however, an apparent flattening of Γon above the extrapolated

5We will not discuss the standard model for Coulomb blockade diamonds as it is covered ex-
tensively elsewhere [20, 38]. From these diamonds, measured either with charge detection or with
traditional transport techniques, one can measure �gE and �dsE .

6There is a very small kink in the Γoff data at the position of e2. This is caused by the finite
measurement bandwidth discussed in Section 2.2. When Γon suddenly becomes very large, some
time intervals toff will become too short to be measured. When a time interval toff is missed
entirely, the two adjacent time intervals ton are measured as a single interval, which has the effect
of decreasing the measured rate Γoff relative to its actual value. We have performed simulations of
this effect, and find that it accounts for the observed kink in the Γoff data.
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exponential decrease near Vds = -4 mV, close to the second excited orbital state. We

find that this line shape is consistent with broadening of the second excited state

by a Lorentzian of full-width at half-maximum 
 ∼ 10 �eV. Calculated line shapes

are shown for the broadening of the first excited state in Fig. 2-5 and are discussed

below.

If a square tunnel barrier is assumed, one can compute an effective barrier height

U2 and width w2 for b2 from the fit in Fig. 5-4(a). For a square barrier Γ =

f0e
−2w2

√
2m∗(U2−E)/ℏ2 [44]. Linearizing the square root in the exponential and esti-

mating �dsE − �dsU2
∼ �dsE and f0 ∼ EQ/ℎ ∼ 1 THz, where EQ is the level spacing

of the dot, we obtain w2 ≈ 130 nm and U2 − EF ≈ 5 meV at Vds = V0. These values

are only logarithmically sensitive to f0 and thus depend very little on our estimate

of this parameter. If the barrier is assumed to be a different shape, for instance

parabolic (as drawn in Fig. 2-4(b)), similar values are obtained (7 meV and 120 nm

for the height and width of the barrier, respectively). The voltages we apply to the

gates to create the tunnel barriers are the same order of magnitude as the voltages

at which the 2DEG depletes and thus it is reasonable that U2 − EF is found to be

comparable to the Fermi energy (EF ≈ 7.7 meV). The value for w2 is also reasonable

given the dimensions of our gate pattern and heterostructure.

We next examine, in Fig. 2-5, the dependence of Γon and Γoff on Vds for both

positive and negative Vds. The data are taken with Vg adjusted so that E is ∼ kT

away from the 0 to 1 electron transition at Vds = 0. The solid blue and red lines in

Fig. 2-5 are calculated from Eqn. 2.5 and Eqn. 2.6 and are in good agreement with

the data. Eqn. 2.5 agrees with the Γoff for all Vds, while Eqn. 2.6 agrees with the Γon

data only for small Vds. This is to be expected because Equations 2.5 and 2.6 only

take into account the ground orbital state of the quantum dot. As shown above, the

orbitally excited states into which electrons can tunnel when Vds is made sufficiently

positive or negative increase Γon but do not affect Γoff . We note that the value of �1

is very close to the value of �2. If the height and width of b1 and b2 are comparable

one can show that �1 ∼ �dsU1
−�dsE

�dsE−�dsU2

�2, and it is therefore expected that �1 ∼ �2.

At Vds ≈ -3 mV, Γon rapidly increases as electrons can tunnel into the first excited
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Figure 2-5: Γon (closed squares) and Γoff (open circles) as a function of Vds. The
solid red and blue curves are calculations of Γon and Γoff that include only the
contribution of the ground state to the tunneling as described in the main text. The
dashed and solid green lines are calculations of Γon including the contribution of one of
the orbitally excited states to the tunneling for Vds < 0 with and without Lorentzian
broadening, as discussed in the main text. The step features near Vds = 0 result from
the Fermi distribution. (Inset) Rate of tunneling into the ground state (open circles)
and orbitally excited state e1 (closed squares) as a function of the energy E of the
state relative to the Fermi level in the lead from which the electron is tunneling. The
orbitally excited state data are taken from the drain-source bias dependence shown
in the main part of this figure. The ground state data are taken by modulating the
ground state energy relative to the Fermi level using the gate voltages as is discussed
in the following section. The data are scaled vertically so that they agree for E < 0.
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state e1 of the quantum dot from lead 1. In order to extend our model to account for

this we add a term �Γ̂1,0e
�̂1�Vdsf1(E + E1) to Eqn. 2.6. Here E1 is the energy of e1

relative to the ground state. Eqn. 2.6 with this addition is plotted as the solid green

line in Fig. 2-5. We see that, for Vds slightly more positive than Vds ≈ -3 mV, where

e1 is just above the Fermi level in lead 1, the Γon data is substantially larger than the

solid green line. In order to account for this enhancement of Γon when e1 is just above

the Fermi level, we included broadening of the state e1 by a Lorentzian of full-width

at half-maximum 
 = 13 �eV. This calculation is plotted as a dashed green line in

Eqn. 2.6, and agrees well with the data. Γon also deviates from the solid curve for

Vds ≳ 2 mV: This deviation may be caused by broadening of the first excited state as

well. Though the lineshape including Lorentzian broadening of e1 agrees quite well

with the data, it is not clear what this broadening could come from. Relaxation from

e1 to the ground state via acoustic phonon emission leads to energy broadening of e1.

However, from the time-energy uncertainty principle, the energy broadening observed

here corresponds to a lifetime of �e1 = 50 ± 30 ps, and while emission of acoustic

phonons can lead to lifetimes ∼ 100 ps, for our device parameters we expect much

slower relaxation from this mechanism [6, 48, 50]. The tunneling process, which as

shown above is much slower than the acoustic phonon relaxation, leads to a negligible

amount of energy broadening. The enhancement of Γon could alternatively be caused

by inelastic processes, which might begin to contribute significantly to Γon when the

ground state of the dot is sufficiently far below the Fermi energy.

An obvious question with regards to this apparent broadening of the excited state

e1 is whether the same broadening is observed for the ground state. As is shown in

the inset to Fig. 2-5 the answer appears to be no. Using the data in the main plot, we

plot Γon as a function of the difference between the energy of e1 and the Fermi level

in lead 1. In a separate experiment, we vary the energy E of the ground state relative

to the Fermi level using the gates (as discussed in the following section), and we plot

Γon vs. E for this data set in the inset at well. As the ground state is brought above

the Fermi level, Γon drops exponentially over almost four orders of magnitude as the

number of electrons in the leads at the energy of the ground state drops. In contrast,
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for the excited state e1, Γon drops exponentially by about two orders of magnitude

but then decreases only very slowly as e1 is brought further above the Fermi level in

lead 1. Thus, while there is an apparent excess of tunneling into the dot when the

excited state e1 is just above the Fermi level, there is no excess tunneling into the

dot when the ground state is just above the Fermi level.

2.4 Gate Voltage Dependence

We now turn to the dependence of the rates Γon and Γoff on the plunger gate voltage

Vg applied to LP1, PL, LP2. For these measurements, the voltages applied to the

gates defining the tunnel barriers (OG, SG1 and SG2) are tuned so that the tunneling

through b1 is negligible. The dot can therefore be regarded as a localized state

coupled to a single Fermi sea in lead 2 through the tunnel barrier b2. In the region

near ΔVg = 0 (where the energy of the one electron state is close to the Fermi level, so

that E ∼ kT), the electron hops on and off the dot spontaneously because there are

both electrons and holes in the lead at these energies, as depicted in Fig. 2-6(a). In

this region we measure the rates Γon and Γoff in the same way as for the drain-source

bias dependence.

A pulsed technique (Fig. 2-6(b) and Fig. 2-6(c)) is used to measure Γoff when

ΔVg is made sufficiently negative that the one electron state is far above the Fermi

level and thermally assisted electron tunneling ceases. We begin with the electron

energy, determined by ΔVg, well above EF . We then apply a positive voltage pulse

to the gate LP2 to bring the ground state near EF , so that an electron can hop onto

the dot. A short time after the pulse the electron will hop off the dot because it is

above EF . We record the time at which this occurs, Δt, measured relative to the end

of the gate pulse. This process is repeated and we make a histogram of the number

of tunnel-off events vs. Δt (Fig. 2-6(d)); an exponential fit to this histogram yields

Γoff . An analogous technique is used to measure Γon when the one-electron state is

well below EF .

Using these techniques, we measure Γon and Γoff as functions of ΔVg (Fig. 2-7).
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Figure 2-6: (a) When the one electron state is within kT of the Fermi level, electrons
spontaneously hop on and off the dot, and the tunnel rates Γon and Γoff can be
measured in the same way as illustrated in Fig. 2-2 and Fig. 2-3 . (b) When the one
electron state is far above the Fermi level, we use a pulsed technique to measure Γoff .
We quickly bring the one electron state close to or below the Fermi level so that an
electron can tunnel on (i). We then quickly change the gate voltage applied to LP2 so
that the one electron state is above the Fermi level, and watch for when the electron
tunnels off (ii). (c) Pulsed technique used to measure Γoff as sketched in (b). The
top panel shows the pulsed modulation of the one-electron state energy E relative to
the Fermi level. The bottom panel shows a sample time trace. The dashed vertical
lines indicate when the gate pulse begins and ends: The QPC responds to the gate
pulse because of direct capacitive coupling to LP2. When the electron energy level
is brought near EF an electron tunnels onto the device (indicated by a i). When the
electron level is brought back above EF the electron tunnels off the device (indicated
by a ii) We measure the time interval Δt between when the the pulse ends and
when the electron tunnels off of the dot. The fact that the charge transitions i and
ii appear to be rounded in time rather than instantaneous is a result of the finite
measurement bandwidth discussed in Section 2.2.(d) We measure a large number of
time intervals Δt using our automated triggering system and histogram them. We fit
to an exponential (solid black line) to obtain Γoff , as described in the main text.
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To understand the Vg dependence of Γ, we note that �U2 = �gU2
�Vg, and �gU2

< �gE

because the three plunger gates are closer to the dot than they are to b2. Starting at

the far left of Fig. 2-7, we see that Γoff decreases exponentially as ΔVg is made less

negative: This happens because the electron energy is being moved farther from the

top of the tunnel barrier b2. Γoff decreases rapidly at the 0 to 1 electron transition

as the ground state is brought below EF .
7 Γon increases rapidly as the ground state is

brought below the Fermi level, but then as ΔVg is made more positive, Γon decreases

exponentially as the one electron state is brought farther below the top of the tunnel

barrier. This decrease in Γon is further evidence that the tunneling is elastic because as

the one-electron state is brought farther in energy below EF there are more electrons

that could tunnel onto the dot inelastically at energies closer to the top of the barrier.

Γon, however, decreases because elastic tunneling onto the dot happens at a lower

energy relative to the barrier height.

We can model the data in Fig. 2-7 by writing down equation similar to Equations

2.6 and 2.5:

Γoff = Γ0e
−�ΔVg(1− f(E)) (2.7)

Γon = �Γ0e
−�ΔVgf(E) (2.8)

The solid lines in Fig. 2-7 are fits to these equations and describe the data well. Here

again we take � = 2, although the fit is improved with a smaller value for � [24]. We

note that the value for � obtained from the ΔVg dependence is smaller than the value

for �2 obtained from the Vds dependence: This is expected because �gE < �dsE.

In the inset to Fig. 2-7(a) we plot the probabilities that the electron is on and off

the dot, given by pon = Γon/(Γon + Γoff ) and poff = Γoff/(Γon + Γoff ), respectively.

We compare pon and poff to the expected Fermi statistics f(E, �) = 1
1+ 1

�
eE/kT and

7For some experiments, our data acquisition system periodically measures the rate Γoff with the
one electron state just below the Fermi level (or Γon when the one electron state is just above the
Fermi level). One of the three plunger gates is automatically adjusted to keep the measured rate
constant. Because of the exponential sensitivity of Γoff to the energy of the ground state below the
Fermi level, this feedback system very accurately compensates for any drift or switches caused by
electrostatic fluctuations in the heterostructure [27].
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Figure 2-7: Γon and Γoff as a function of ΔVg. Closed (open) circles are Γoff (Γon)
measured by observing spontaneous hopping caused by thermal broadening in the
leads as depicted in Fig. 2-6(a) and discussed in the main text. Closed (open)
triangles are Γoff (Γon) measured using the pulsed gate technique depicted in Fig.
2-6(b-d) and discussed in the main text. The solid lines are calculations described
in the main text. (Inset) pon (triangles) and poff (circles) compared to f(E, �) and
1− f(E, �) (solid lines), respectively, as described in the text.
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1−f(E, �), respectively, and find good agreement [49]. These fits are consistent with

an electron temperature of T = 120 mK.

Thus we see that almost all aspects of tunneling at zero magnetic field can be

described in terms of our simple model for energy dependent tunneling. In the fol-

lowing chapter, we extend this model to investigate tunneling in large magnetic fields,

a situation in which, surprisingly, we find that the tunneling is highly spin dependent.

41



42



Chapter 3

Spin Dependent Tunneling in

Large Magnetic Fields

In this chapter we extend the measurement techniques and theoretical models pre-

sented in the previous chapter to study tunneling in large magnetic fields. In Section

3.1 we show how we use our tunneling rate measurements to extract the spin depen-

dent tunneling parameter �, defined as the ratio of the rate for tunneling into the

excited spin state of the dot to the rate of tunneling into the ground state when both

states are below the Fermi level. We then show that, for large magnetic fields, � can

be very close to zero, so that tunneling into the excited spin state is almost com-

pletely suppressed. In Section 3.2, we show that at large magnetic fields � depends

very strongly on the shape of the potential landscape defining the quantum dot. We

then end our discussion of single electron tunneling, and, in Section 3.3, we discuss

charge detection with GaAs quantum point contacts more generally, in order to mo-

tivate the chapters that follow. Parts of the work presented in this chapter appear

also in Amasha et al. [25, 51].
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3.1 Measurement and Magnetic Field Dependence

of �

Using the same techniques described in Section 2.4, we measure the rate Γon of tun-

neling into a lateral GaAs quantum dot containing zero electrons as a function of the

voltage ΔVLP2 applied to the plunger gate LP2, in the presence of a magnetic field

applied in the plane of the 2DEG.1 Here ΔVLP2 is the voltage relative to the value

for which the ground spin state is aligned with the Fermi level. As in Section 2.4, for

all of the experiments discussed in this chapter, tunneling through the barrier b1 has

been made to be negligibly small compared to the tunneling through b2.

In Fig. 3-1(c), we measure Γon as a function of ΔVLP2 at B = 5 T. As ΔVLP2 is

made more positive, Γon increases at two points labeled by ↑ and ↓, which correspond

to when the ground spin state is aligned with EF (Fig. 3-1(a)) and when the excited

spin state is aligned with EF (Fig. 3-1(b)), respectively. Other than at these two

points, Γon decreases exponentially with increasing ΔVLP2 as the two spin states are

brought farther below the top of the tunnel barrier b2, as discussed in Section 2.4.

To model this tunneling lineshape quantitatively, we add a term corresponding to

tunneling into the excited spin state to Eqn. 2.8:

Γon = Γ0e
−�ΔVLP2(f(E) + � ⋅ f(E +Δ)) (3.1)

Here the energy splitting between the excited and ground spin states is given by

Δ = g�BB, where g is the g-factor for electrons in the 2DEG and �B is the Bohr

magneton. The factor � describes any possible spin dependence to the tunneling.

Specifically, � is the ratio of the rate of tunneling into the excited spin state to the

rate of tunneling into the ground spin state when both spin states are far below EF .

A fit to Eqn. 3.1 is given by the solid line in Fig. 3-1(c), and agrees well with the

data. From fits such as this one, and a measurement of the coupling of LP2 to the

dot energy �LP2, we obtain a value for g consistent with previous reports [52]. The

1Specifically, referring to Fig 3-4(a) below, the magnetic field points along the y direction.
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Figure 3-1: Measurement of �. We measure Γon as a function of the ΔVLP2, the
voltage applied to LP2 (relative to a much larger offset), in the presence of a magnetic
field B applied in the plane of the 2DEG. (a) As ΔVLP2 is made more positive, Γon

grows as the one electron ground state is brought below the Fermi level. Here, the
solid blue line indicates the energy of the ground spin state of the dot, and the dashed
green line indicates the energy of the excited spin state of the dot. (b) Γon grows again
when the excited spin state is brought below the Fermi level. (c) Measurement of
Γon vs. ΔVLP2 at B = 5 T. The solid and dashed lines are theoretical calculations
described in the main text. The ΔVLP2 values for which the ground and excited spin
states are aligned with the Fermi level are indicated by ↑ and ↓, respectively. (d)
Potential landscape as seen by the ground (left) and excited (right) spin states. The
Fermi level is the same for the two spin states, but the potential is shifted, as discussed
in the main text. The height and width of the tunnel barrier for each spin state are
indicated by the dashed vertical and horizontal lines with arrows at the ends.
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same calculation, but with � set to zero, is plotted as the dashed line in Fig. 3-1(c).

By fitting tunneling lineshapes like the one shown in Fig. 3-1(c) to Eqn. 3.1 we

can extract the spin dependent tunneling parameter �. Graphically ,the value of �

extracted from the fit is given by the ratio of the solid line to the dashed line at a

fixed value of ΔVLP2 more positive than the value indicated by ↓.

Based on simple considerations, we expect � = 1. The reasoning behind this

expectation is not immediately obvious. Because the excited spin state is higher in

energy, one might expect faster tunneling into the excited spin state than into the

ground spin state based on the arguments in Chapter 2. However, a more careful

consideration of the problem reveals that this is not the case, as is depicted in Fig.

3-1(d). Here we plot the potentials U↑(x) and U↓(x) for the ground and excited spin

states, respectively. They are not the same: The potential for the excited spin state is

shifted relative to the potential for the ground spin state, so that U↑(x) = U↓(x)+Δ.

This shift in the conduction band potential is the same shift that is responsible for

Pauli paramagnetism [53] in metals. Pauli paramagnetism can be seen explicitly in

Fig. 3-1(d): Because the Fermi level is the same for each spin state, but the potential

for the excited spin state is larger, there are more ground state spins than excited

state spins in the Fermi sea lead. Because of this potential shift, the excited spin

state sees a tunnel barrier which is shifted up by Δ relative to the ground state

tunnel barrier. This shift cancels exactly the increased energy Δ of the excited spin

state. The effective heights and widths of the tunnel barriers for elastic tunneling

into the two spin states are indicated in Fig. 3-1(d): They are exactly the same, and

thus we expect � = 1.

In Fig 3-2 we plot � as a function of B. For low fields B ≈ 3 T, we see that as

expected � ≈ 1. However, as the field is increased, � gets smaller, and at B = 7.5 T

we have � = 0 to within the resolution of the experiment, so that tunneling into the

excited spin state is completely suppressed relative to tunneling into the ground spin

state. This spin dependent tunneling effect is very clear from looking at the Γon vs.

ΔVLP2 traces, as is shown in the insets to Fig 3-2. At B = 3 T, there is a clear rise

in Γon when the excited spin state is brought below the Fermi level, whereas at B =
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Figure 3-2: Measurement of � as a function of B, as described in the main text. The
multiple values for � at a single value of B are obtained by measuring the lineshape
and fitting to obtain � multiple times. The data from which � is extracted for B =
3 T and B = 7.5 T are shown in the two insets. For each of these insets, the ΔVLP2

values for which the ground and excited spin states are aligned with the Fermi level
are indicated by ↑ and ↓, respectively. At B = 3 T there is a clear rise in Γon when
the excited state is aligned with the Fermi level. However, at B = 7.5 T, there is no
feature in the tunneling lineshape when the excited state is aligned with the Fermi
level, showing that tunneling into the excited spin state is completely suppressed. For
these data, Vsg1 ≈ -1350 mV, as is discussed in the main text.
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7.5 T there is no such rise.

Our tunneling lineshapes allow us to extract the ratio � of tunneling into the

excited spin state to tunneling into the ground spin state. However, from these

lineshapes, as � approaches zero at large magnetic fields, we cannot determine whether

tunneling into the excited state is getting slower or whether tunneling into the ground

state is getting faster. This is because for each magnetic field we have adjusted the

voltages applied to SG2 and OG so that for each data set the value of Γ0 is roughly

the same. This is done for two reasons. First, though Γ0 is usually stable over the

coarse of a given lineshape measurement, it sometimes drifts or switches suddenly over

the course of many days, in particular during Helium transfers. The data for each

of these lineshape takes ∼ 4 hours to acquire, and generally we acquired a number

of lineshapes at each field in order to check that the lineshape is stable, and not

corrupted by any possible switching events during the course of the measurement.

Therefore, the data shown in Fig. 3-2 takes a number of days to acquire, during

which time Γ0 cannot be expected to remain stable.

The second reason we retuned Γ0 at each field is that Γ0 decreases with increasing

field, and performing the lineshape measurements with very slow tunneling rates is

very time consuming. This decrease in Γ0 may be caused by the effect of the magnetic

field on the orbital degrees of freedom of the quantum dot. Though the magnetic field

is aligned to be in the plane of the 2DEG,2 it is possible that at high magnetic fields

there is a small component of the magnetic field perpendicular to the 2DEG caused

by misalignment, which would tend to increase the strength of the confinement of the

electron in the dot [54]. We expect that Γ0 would be exponentially sensitive to such

an effect. However, we do not expect that a perpendicular field could be responsible

for the decrease in the spin dependent tunneling ratio �. The picture presented in

Fig. 3-1 can be extended to include the effects of a perpendicular magnetic field,

including Landau quantization in the lead, and one would still expect equal tunnel

barrier heights and widths for the two spin states in the presence of a perpendicular

magnetic field. Thus, while any observed dependence of Γ0 on magnetic field could

2To within 5 degrees [51]
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simply be caused by field misalignment, the observed decrease in � defies such a

simple explanation.

Currently there is no established theoretical model for this unexpected spin depen-

dent tunneling effect. In the following section, we present more of the phenomenology

of spin dependent tunneling, and then speculate as to what could be possible causes

of this effect.

3.2 Shape Dependence of Spin Dependent Tunnel-

ing

In addition to depending strongly on magnetic field as was shown in the previous

section, the spin dependent tunneling parameter � depends strongly on the shape of

the potential defining the quantum dot. In order to probe the shape of the confining

potential, we measure the energy level structure of the quantum dot. Specifically, we

measure the energy of the first two excited states relative to the ground state using the

technique shown in Fig. 3-3. In order to measure these energies, we simply measure

Γon vs. ΔVLP2 at B = 0. The results are shown in Fig. 3-3(c): We see two clear rises

in Γon with increasing ΔVLP2 labeled e1 and e2, which occur when the 1st and 2nd

excited states are aligned with the Fermi level, respectively. Other than at these two

points, Γon decreases with increasing ΔVLP2 as the energy levels are brought further

below the top of the tunnel barrier. The positions of these two rises, combined with

a measurement of �LP2, give us the energies of e1 and e2 relative to the ground state.

However, because the tunnel rates shown in Fig. 3-3(c) are well above the bandwidth

of our measurement circuit (Section 2.2), we cannot use the techniques presented in

Section 2.4 to obtain this data.

To measure the lineshape shown in Fig. 3-3(c), we use the technique illustrated

in Fig. 3-3(a). We start with the ground state of the dot so that it is above the Fermi

level, so that an electron tunnels off, ionizing the dot. We then pulse the ground

state below the Fermi level, for a time tload. During this time period, an electron can
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Figure 3-3: Measurement of the excited orbital state energies at zero field. Tunneling
into the excited orbital states can be very fast, so we use a pulsed gate technique. (a)
We bring the ground state of the dot above the Fermi level to ionize the dot. Here
the solid blue line is the ground state and the dashed black line is an excited orbital
state. (b) We pulse the gate voltage ΔVLP2 so that the ground state is brought below
the Fermi level for a time tload, and an electron hops on the dot. (c) We bring the
ground state just below the Fermi level. If an electron hopped on the dot in step (b),
another one cannot hop on. If the dot is still ionized, an electron will hop on, and
we detect this with our QPC. (c) Histogram of the number of times Nion the dot is
ionized at the start of the read-out state vs. tload. The solid line is a theoretical fit
from which we extract Γon as described in the main text. (c) Γon as a function of
ΔVLP2. The values of ΔVLP2 where the first and second excited states are aligned
with the Fermi level in the lead are indicated. The data shown in these examples are
taken with VSG1 = -856 mV
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tunnel either directly into the ground state of the dot, or, if an excited state is below

the Fermi level, into an excited state from which it relaxes rapidly to ground state.

After the pulse, we align the ground state just below the Fermi level. If an electron

tunneled onto the device during the loading pulse, another electron cannot tunnel

on. However, if the dot remained ionized during the loading pulse, an electron can

tunnel onto the dot, and we detect this with the QPC. We iterate this sequence a

large number of times, and count the number of times the dot remains ionized Nion

after a loading pulse of length tload. We repeat this experiment for different values

of tload, and plot Nion as a function of tload (Fig. 3-3(b)). For small tload, the pulse

is not long enough for an electron to tunnel onto the dot, and the dot is usually

ionized after the loading pulse. For large tload, an electron usually tunnels onto the

dot during the loading pulse so that Nion is small. We fit the Nion vs. tload data to

an exponential Nion = Ae−Γontload to obtain the tunnel rate Γon. The maximum rate

Γmax that can be measured using this pulsed gate method is limited by the minimum

pulse time tload, which for our circuit is a few microseconds, so that Γmax ∼ 100 kHz.

This is considerably faster than the maximum rate that can be measured using the

technique presented in Section 2.4. The method presented in Section 2.4 is limited

by the RC time constant of our measurement circuit � ≈ 50 �s (Section 2.2), and

cannot be used to measure rates faster than about 10 kHz.

In order to change the shape of the dot, we vary the voltages applied to the three

plunger gates (LP1,PL, and LP2) and SG1. Starting with SG1 very negative, and the

plunger gates less negative, we expect that the confining potential is stronger along

the x direction as shown in Fig. 3-4(a). If we model the confining potential as a two

dimensional harmonic oscillator U(x, y) = 1
2
m∗!xx

2 + 1
2
m∗!yy

2, the lowest energy

excited state corresponds to an orbital excitation along the y direction having an

energy Ey = ℏ!y relative to the ground state. Next, we make the voltage applied to

SG1 less negative, and the voltages applied to the three plunger gates more negative,

so that the energy of the ground state relative to the Fermi level is left unchanged.

For this case, we expect that the lower energy excited state is an orbital excitation

along x of energy Ex = ℏ!x. If VSG1 is made slightly more positive than the most
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positive value used in these experiments VSG1 ≈ -690 mV, then the tunneling rate

through the barrier b1 starts to become appreciable: It is necessary to stretch the

electron wavefunction out along the x direction in order for the tunnel rates through

b1 and b2 to be comparable.

We measure the energies of the first two excited states using the methods discussed

above as a function of the voltage applied to SG1 while simultaneously changing the

voltages applied to the three plunger gates, and the results are shown in the top

panel of Fig. 3-3(b). We see that one of the excited state energies increases and

the other one decreases as SG1 is made less negative, and we therefore determine

these states to be the y and x orbital excitations, respectively.3 For the most positive

voltage applied to SG1, we can make a small change in VSG1 so that tunneling through

b1 is appreciable, and determine the excited state energies from a drain-source bias

dependence (Section 2.3). The results agree with the energies obtained from the

pulsed gate method as expected. We note that in order to change the energy level

spectrum of the quantum dot appreciably, we need to change the voltage applied to

SG1 as well as to the three plunger gates by ∼ 200 mV. The changes in the voltage

applied to LP2 ΔVLP2 we use to perform tunneling lineshape measurements are much

smaller than this, so that for each tunneling lineshape, the energy level spectrum is

well defined.

At each value of VSG1, in addition to measuring the energy level spectrum of the

quantum dot, we measure the spin dependent tunneling factor � at B = 7.5 T, and

this is plotted in the bottom panel of Fig. 3-4(b).4 For the most negative value of

SG1, the regime in which the data in Fig. 3-2 were taken, � = 0. However, as VSG1

is made more negative, � grows, peaking at � ≈ 1 when the confining potential is

3Further evidence that this interpretation is correct is given in Amasha et al. [25]. In this paper
we measure relaxation from the excited spin state to the ground spin state, which for the direction
of the magnetic field used in our experiment, is theoretically predicted to be sensitive to the energy
ℏ!y, but not to the energy ℏ!x.

4Here, as in Section 3.1, we measure only the ratio of the rates for tunneling into the two spin
states from the tunneling lineshapes, and not the absolute rates. Γ0 changes drastically as we
manipulate the shape of the dot by making large changes in the voltages applied to SG1 and the
plunger gates, and we therefore retune Γ0 to roughly the same value at each VSG1 by adjusting the
voltages applied to OG and SG2.
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gates are made more positive, the dot is confined more strongly along the x direction,
so that the lower energy excited state is Ey. The shape of the electron wavefunction
is indicated by the blue oval. When VSG1 is made more positive (right hand side) and
the voltages applied to the plunger gates are made more negative, the dot is confined
more strongly along the y direction, so that the lower energy excited state is Ex. The
shape of the electron wavefunction, indicated by the blue oval, is now more extended
along the x direction than along the y direction (b) Excited state energies and �
as a function of the shape of the dot at B = 7.5 T. The multiple values for � at a
single value of VSG1 are obtained by measuring the lineshape and fitting to obtain �
multiple times. The green squares and purple triangles in the upper plot indicate Ey

and Ex, respectively. The inset shows the data from which we obtain � ≈ 1 at VSG1

= -987 mV, the solid line is the theoretical fit from which we extract � as discussed
in the main text. The ΔVLP2 values for which the ground and excited spin states are
aligned with the Fermi level are indicated by ↑ and ↓, respectively. There is a clear
rise in Γon as the excited state is brought below the Fermi level.
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approximately circular (ℏ!x ≈ ℏ!y). An example of the tunneling lineshape in this

regime is shown in the inset to Fig. 3-4(b): The rise in Γon when the excited spin state

is brought below the Fermi level is clearly visible. As SG1 is made more positive,

� decreases. Thus, we see that � depends strongly on the shape of the potential

landscape defined by the voltages applied to the gates. It is important to note that

it is likely that we are changing aspects of the potential landscape other than the

energy level spectrum as we vary the gate voltages. For instance, as VSG1 is made

more positive the position of the minimum in the electrostatic potential moves in

the negative x direction. We observe this directly: �LP2 decreases as VSG1 is made

more positive, indicating that the average position of the electron wavefunction is

being moved farther away from the gate LP2. It is possible that this change, or other

changes which we cannot directly measure, is responsible for the variations in �,

rather than the changes in the energy level spectrum. However, the fact that there is

a peak of � ≈ 1 when the dot is circular does seem to suggest that the spin dependent

tunneling is correlated directly with the energy level spectrum.

The mechanism of the spin dependent tunneling observed in our experiments is

not clear. We have left a number of effects out of the simple picture which lead us

to expect � = 1 (Fig. 3-1d)), for instance, spin-orbit effects and electron-electron

interactions. We find it unlikely that the spin-orbit interaction plays an important

role in the spin-dependent tunneling we observe. We would expect spin-orbit effects

to become more important as the strength of the spin-orbit interaction is made larger

in comparison to Δ. However, the spin dependent tunneling we observe becomes

important at large Δ rather than at small Δ. It is possible that electron-electron

interactions, in particular the exchange interaction which is sensitive to spin [55],

play some role, but a microscopic picture of the mechanism is not clear.
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3.3 Closing Remarks on Charge Detection with

GaAs Nanostructures

The results presented in this chapter and in the previous chapter could not be obtained

by measuring current. In order for an appreciable current to flow through a quantum

dot, the rates for tunneling in and out of the dot must be very fast. For most

current amplifiers, the current noise over a 1 Hz bandwidth is ∼ 100 fA.5 The smallest

tunneling rate for which there is a measurable current is therefore Γ ∼ 100 fA/e

∼ 1 MHz. This is only ∼ 100 times slower than the rate of relaxation between

different orbital states [6]. We therefore expect that for the measurement of current,

an interpretation of variations in the tunneling rates would be complicated by the fact

that the tunneling rate is not always slower than the other time scales of the system.

Furthermore, accurate measurements of such small currents are not trivial, and if

the current is made significantly larger ∼ 1 nA, a number effects, such as lifetime

broadening of the energy states on the dot [56] as well as cotunneling processes [57],

can start to become important. In contrast, the measurement of charge allows us to

easily probe the quantum dot when the tunnel rates are extremely slow compared to

other processes.6

Charge detection also allows separate measurements of the tunneling rates through

barriers b1 and b2. Because the drain-source bias has a different effect on b1 than on

b2 (Section 2.3), the ability to measure the tunnel rates through b1 and b2 separately

is a significant advantage. It is possible to extract the tunnel rates for individual

tunnel barriers from measurements of current for three terminal quantum dots [58].

However, these measurements are significantly more complicated than those presented

here, and for the usual two terminal devices, only the series combination of the

tunnel rates is accessible. Furthermore, charge detection in combination with pulsed

gate techniques (Section 2.4) enables the measurement of the tunnel rate when the

5Current amplifier noise is discussed more extensively in Section 4.4.
6One exception is the relaxation rate from the excited spin state to the ground spin state, which

can be very slow [25]. This makes an investigation of the dependence of Γoff on Vg and Vds in
the presence of a magnetic field very complicated because the electron can tunnel out of either the
ground spin state or the excited spin state.
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quantum dot is Coulomb blockaded, a regime that is inaccessible when measuring of

current.

Having seen the significant impact charge detection has had on the study of quan-

tum dots, in the following chapters we use this technique to probe a very different

solid state system, hydrogenated amorphous silicon (a-Si:H). Before beginning our

discussion of these experiments, it is important that we determine under what condi-

tions the charge sensing technique actually works. In particular, for the experiments

presented in Chapters 2 and 3, we use as a charge sensor a QPC fabricated from a

high mobility 2DEG and cooled to very low temperatures. We now question which

aspects of these experiments contribute to the high sensitivity of our charge detector.

The following arguments lead us to believe that while the high mobility material

and low temperature used in our experiments are necessary conditions for the study of

GaAs quantum dots (Section 2-1), they are not necessary conditions for the operation

of a sensitive charge detector. Consider a field effect transistor (FET), where the

distance between the gate and the channel is 100 nm. As an example, consider a

particular variety of FET, a high electron mobility transistor (HEMT). A HEMT can

be fabricated by patterning a metallic gate on top of the heterostructure shown in Fig.

2-1, and measuring the conductance through the 2DEG between two contacts located

on either side of the gate. If we change the voltage applied to the gate by ΔVg ≈ 60

mV, this is equivalent to changing the charge density on the gate by 1 electron per

50 nm square. Now, a 60 mV change in gate voltage will have a measurable effect

on the conductivity of a HEMT, or on the conductivity of a wide variety of lower

mobility transistors. If we reduce the size of the HEMT gate to a 50 nm square,

this means that one electron added to the gate of the HEMT will have a measurable

effect on its conductivity. From this argument, we expect that any FET for which

a change in gate voltage ΔVg ≈ 60 mV has a measurable effect should have single

electron sensitivity if it is sufficiently small. Of course, we would expect devices with

a stronger gate effect to be more sensitive, but the point here is that sensitivity to a

∼ 60 mV change in gate voltage is not a very stringent requirement for an FET.

Next we consider whether or not temperature should strongly effect the sensitivity

56



of a charge detector. For this discussion, it is useful to specialize to a particular

detector. We choose a QPC created by confining a 2DEG along one dimension,

which we will call x. For electrons in the QPC, the contribution to the energy from

motion along the x direction is quantized, and current flows along the y direction. We

consider a QPC for which only the lowest energy wavefunction along the x direction

is energetically accessible, and has energy E0 relative to the Fermi level. We apply

a bias Vds symmetrically between two Fermi seas to which the QPC is connected

at either end, and measure the current I flowing through the QPC. We write the

standard result for the current flowing through this one dimensional channel [59]:

I =
2e2

ℎ

∫ ∞

E0

(f(E − eVds/2)− f(E + eVds/2))dE (3.2)

Here we integrate over E, the energy of an electron in the QPC, and the two Fermi

functions give the electron occupation factors for the two Fermi seas. The minimum

energy of an electron in the QPC is E0, and E−E0 is the kinetic energy of an electron

in the QPC along y, the direction of current flow. Higher energy electrons travel

faster, so one might expect them to be weighted more heavily in their contribution

to I. However a decrease in the density of states with increasing E cancels exactly

with this increase in velocity.

If we differentiate Eqn. 3.2 with respect to Vds, we find that at zero temperature,

the conductance G(E0) = dI/dVds is a step function that jumps from 2e2/ℎ to 0 at

E0 = 0.7 At finite temperature, the step is not infinitely sharp but instead has a

width ∼ kT . E0 varies linearly with the gate voltages Vg applied to the QPC, so this

step can be observed by measuring the G vs. Vg characteristics of the QPC. Because

the width of the step decreases with decreasing temperature, the conductance G is

more sensitive to Vg the lower the temperature. However, this does not imply that

the quantity that we actually measure, in this case the current I, is more sensitive to

Vg as the temperature is reduced. To see this, we compute the transconductance of

7This result can be generalized to include multiple quantum wavefunctions along the x direction,
from which follows the quantization of the conductance of the QPC in units of 2e2/ℎ [59].
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the QPC, defined as the derivative of I with respect to Vg, or equivalently E0:

∂I

∂E0

=
2e2

ℎ
(f(E0 + eVds/2)− f(E0 − eVds/2))) (3.3)

This function decreases monotonically with Vds, and no matter what the value of kT

or E0, approaches ±2e2/ℎ when ∣Vds∣ >> kT , where here the sign is opposite to the

sign of Vds. Therefore the maximum sensitivity of the current to changes in Vg is the

same no matter what the temperature.

To understand this result, we note that although ∂G/∂Vg ∼ G/kT gets larger with

decreasing temperature, the maximum bias one can apply to the QPC before the I

vs. Vds characteristics become sub-linear is Vmax ∼ kT . The transconductance, which

is of order the product of ∂G/∂Vg and Vmax, is therefore temperature independent.

Here we have limited our discussion to a QPC containing a single mode, but we

expect that this argument should hold more generally: As temperature is decreased,

the conductance of a charge sensor may become more sensitive to gate voltage, but

the maximum bias one can apply in order to measure the conductance is reduced,

so that the sensitivity of the current to gate voltage does not depend strongly on

temperature.

From these arguments, we expect that using a QPC cooled to very low tempera-

tures as a charge sensor is probably not necessary. In fact, the characteristics of the

QPC used in our experiments departed significantly from the quantized behavior ob-

served for ideal QPCs, as did the characteristics of QPCs used in similar experiments

conducted by other groups [60], so it is clear that an ideal QPC is not necessary for

a high charge sensitivity. Furthermore, in a large number of studies of narrow MOS-

FETs (metal-oxide-semiconductor field-effect transistors), discrete telegraph noise,

associated with single electron tunneling into and out of traps, is observed [14, 15],

even at room temperature. The origin of this switching noise is within the MOSFET

itself, and its presence does not guarantee that the MOSFET has a high sensitivity

to charge located in a nearby structure. However, in the following chapters, we will

see that we can indeed use a narrow MOSFET as a sensitive charge detector.
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Chapter 4

Charge Detection Using a Narrow

MOSFET

As we have seen in Chapters 2 and 3, charge detection is a powerful technique for

studying electrons confined in lateral GaAs quantum dots. In this chapter we discuss

technology we have developed for using an integrated charge sensor, in the form of

a narrow MOSFET, to study charge transport in a highly resistive material, hydro-

genated amorphous silicon (a-Si:H). In Section 4.1 we give a brief introduction to the

physics of MOSFETs. In Section 4.2 we give an overview of the fabrication of our

charge detector. In Section 4.3 we discuss our procedures for patterning a-Si:H ad-

jacent to our detector. Details for both of these fabrication procedures can be found

in Appendix A. In Section 4.4, we discuss the instrumentation we use for our charge

sensing experiments. In Section 4.5 and 4.6 we give an overview of the electrical char-

acteristics and noise characteristics of our narrow MOSFET detectors. In Section 4.7,

we briefly compare our MOSFETs to GaAs quantum point contacts. In Chapter 5,

we apply or MOSFET integrated charge sensor to the study of electron transport in

a-Si:H.
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4.1 Introduction: MOSFET Physics

In this section we give a very brief introduction to the physics of MOSFETs. When

designing, fabricating, and measuring these devices, a much more detailed knowledge

of semiconductor device fundamentals is required than what is presented here. A

more thorough introduction to semiconductor devices can be found in Streetman’s

textbook [2] and many more details are reviewed in Sze’s textbook [40]. An overview

of the electronic properties of MOSFET inversion layers can be found in Ando et al.

[61].

A sketch of an n-channel MOSFET is shown in Fig 4-1(a). The conductance of

the MOSFET (GM) is measured between the two n+ regions. The p-type substrate

is kept grounded, and GM is measured as a function of the voltage VG applied to the

metallic gate, which is electrically insulated from the n+ regions and p-type substrate

by the silicon dioxide, of thickness dox. With VG = 0, the p-type silicon extends all

the way up to the silicon-oxide interface below the gate. Therefore GM is very small,

as the device consists effectively of two pn junction diodes with opposing polarities in

series. However, if a positive voltage is applied to the gate, the conduction band at the

Si/SiO2 interface under the gate is pulled downward toward the Fermi level as shown

in Fig 4-1(b). For smaller positive gate voltages, this has the effect of depleting the

p-type carriers under the gate. The depth Ld to which this depletion region extends

from the silicon-oxide interface grows as the gate voltage is made more positive as

�LdNAeCs = �VG. Here NA is the acceptor density and Cs is the series capacitance

of the gate oxide Cox = �ox�0/dox and depletion layer CSi = �Si�0/Ld, where here

�ox ≈ 3.9 and �Si ≈ 11.9 are the oxide and silicon dielectric constants, respectively.

However, once the gate voltage is made sufficiently positive so that the Fermi level

is close to the conduction band, the depletion region width saturates, and when the

voltage is made still more positive an inversion layer, a very thin (∼ 5 nm [2]) layer

of negative charge at the silicon-oxide interface, is formed. Because the inversion

layer is n-type, it provides a conduction path between the two n+ regions, and GM

grows. Further increases in VG above the threshold voltage for inversion (VT ) increase
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the charge density per unit area ninv in the inversion layer as ninv = Cox(VG − VT )/e.

Expressions for threshold voltage VT can be found in the textbooks [40]. It depends on

the metal-semiconductor work function difference and the amount of trapped charge

in the oxide. The conductance of the device for VG > VT is given approximately by:

GM = (w/L)e�ninv = (w/L)�Cox(VG − VT ) (4.1)

Here L and w are the width and length of the inversion layer channel, respec-

tively, and � is the mobility of the inversion layer. Just like the electrons at the

AlGaAs/GaAs interface discussed in Chapter 2, the electrons in the inversion layer

constitute a two dimensional electron gas [62, 61]. Using electron beam lithography,

we can create a narrow constriction in the inversion layer to make a charge sensor,

just like the QPC discussed in Chapter 2. The design of the gates for this narrow

MOSFET are different than for the QPC, because for the MOSFET the gate defines

where there are electrons in the 2DEG, where as for the QPC the gates define where

there are no electrons in the 2DEG, but each device consists essentially of a narrow

constriction in a 2DEG.

Using a narrow MOSFET as opposed to a GaAs quantum point contact as a charge

sensor has advantages and disadvantages. Though the semiconductor fabrication

processes utilized to make GaAs quantum point contacts is well understood [29, 63],

CMOS fabrication procedures are undoubtably the most well developed processes in

the semiconductor industry [64]. Furthermore, while fabrication of quantum point

contacts requires a high quality AlGaAs/GaAs heterostructure, the fabrication of

silicon MOSFETs requires only a silicon substrate. Utilizing state of the art CMOS

fabrication facilities, one can therefore reproducibly fabricate large numbers of silicon

MOSFETs. There are of course potential disadvantages to using MOSFET charge

detectors. Though the development of CMOS technology was driven in part by the

high electrical quality of the silicon-oxide interface, the inversion layer formed at the

silicon-oxide interface generally has a far lower mobility � than the 2DEG formed at

the interface of a AlGaAs/GaAs heterostructure. For example, for our MOSFETs
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Figure 4-1: (a) Vertical sketch of an n-channel MOSFET, where here a positive
voltage applied to the gate forms an inversion layer at the silicon-oxide interface
underneath (inv.). The device is not drawn to scale. (b) Band diagram for the
MOSFET, taken along the dashed black line in (a), showing the valence band energy
(Ev), conduction band energy (Ev), and Fermi level (EF ). The red shaded region
represents the inversion layer.
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� ≈ 1200 cm2V/s at T = 4.2 K, comparable to what is typically found for n channel

MOSFETs [12, 17], as compared to � ≈ 6.4 × 105 cm2V/s, the mobility of the GaAs

2DEG used in the single electron tunneling experiments discussed in Chapters 2 and

3. However, as was discussed in Section 3.3, it is not clear that a very large mobility

is necessary for a high charge sensitivity. In Section 4.7 we compare our GaAs and

MOSFET charge sensors, and find that while it does seem that the GaAs sensors

have a somewhat higher charge sensitivity, the difference between the two is not so

dramatic, and the narrow MOSFET has a sufficiently high charge sensitivity for our

purposes.

4.2 MOSFET Fabrication

In this section we discuss our procedure for fabricating narrow n-channel MOSFETs.

In this discussion we will only outline the fabrication process. Details of the fabrica-

tion steps can be found in Appendix A. We start with a p-type silicon wafer, doped

with Boron NB ≈ 3 × 1015 cm−3. We grow a thick (≈ 650 nm) layer of SiO2 on the

wafer, using a wet thermal oxidation process.1 This oxide serves as the field oxide

for the MOSFET. We then etch holes in the SiO2 using photolithography followed by

an HF based etch, forming what will become the active region of the device. After

another photolithography step, the wafers are sent out for phosphorous ion implan-

tation, defining the n+ regions. Following ion implantation, we grow 100 nm of SiO2

using a dry thermal oxidation process, which serves as our gate oxide. This step also

causes the phosphorous implants to diffuse ∼0.5 �m into the silicon substrate. We

then deposit ≈ 80 nm of n+ polysilicon using LPCVD (low pressure chemical vapor

deposition), which serves as the gate material of our narrow MOSFET. Following the

LPCVD deposition, we anneal the wafers, which increases the conductivity of the

polysilicon. A sketch of the device following this step is shown in Fig. 4-2.

The next step is to nano-pattern our gate. We start by spinning a thin film of

1For wet thermal oxidation, steam is introduced into the furnace. Relative to dry thermal ox-
idation processes, where only oxygen is present, wet oxidation grows oxide of a lower electrically
quality, but at a much faster rate [64].
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Figure 4-2: Vertical sketch of device following polysilicon deposition and anneal (not
drawn to scale). The regions marked “S” are where “stringers” can form, as discussed
in the main text.

HSQ [65], a negative ebeam resist, onto our wafer. We pattern this film using electron

beam lithography and develop it in a TMAH based developer. After this step, the

HSQ remains only where it has been exposed to the electron beam: These regions will

serve as a mask for the small features of our gate. After another photolithography

step to define the larger parts of the gate, we remove the exposed polysilicon using

reactive ion etching with a Cl2/HBr chemistry, thus creating the gate of the MOSFET.

The etch is anisotropic, which is important because any undercut could destroy the

narrowest portion of the gate. We then perform another photolithography step that

covers the entire MOSFET gate in photoresist, and reactive ion etch the wafers with

an HBr chemistry at low RF power. This step ensures that there are no so called

“stringers,” residual polysilicon left at the edge of the active region (Fig. 4-2). Since

the polysilicon is vertically thicker here, it takes a longer time to remove with an

anisotropic etch. Because the Cl2/HBr etch will etch HSQ and SiO2 somewhat, one

cannot overetch too much when defining the gate. The low power HBr etch is much

more selective, and so can be used to safely remove any residual polysilicon without

damaging the device. Following this etch step, we grow a thin layer of oxide on the

wafer using a short dry thermal oxidation process, which has the effect of growing

∼ 8 nm of oxide on the polysilicon gate.2

Next we make electrical contact to the gate and inversion layer of the MOSFET.

2This step was intended to insulate the gate from any material that is touching it, which would
in principle have allowed us to deposit the material we wished to study with our integrated charge
sensor right on top of the gate. We found however that this thin oxide leaked a little bit, so that
this intended functionality was not realized.
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First, we cut holes in the gate oxide above the n+ regions and in the thin oxide on

top of the polysilicon gate, using a photolithography step followed by an HF based

etch. We then sputter 350 nm of aluminum over the entire sample, and pattern

the aluminum with photolithography followed by a PAN wet etch. The aluminum

contacts are then sintered in forming gas.

The narrow MOSFET is now complete. Before dicing up the wafer, we add a

pair of gold contacts, which serve as contacts for the resistive material we wish to

probe with our charge sensor. This is accomplished by a photolithography step using

a negative resist, followed by electron beam evaporation of Ti/Au and lift off in

acetone. An electron micrograph and optical micrograph of the resulting structure

are shown in Fig. 4-3. Following lift-off, we spin a protective layer of photoresist

on the wafer, and cut out individual devices using a diesaw. We then mount, bond,

and test some of the narrow MOSFETs to obtain their electrical characteristics. To

perform our charge sensing experiment, we need to pattern an amorphous material in

close proximity to the narrowest portion of the MOSFET. We tried patterning both

doped hydrogenated amorphous silicon (a-Si:H) and amorphous germanium (aGe)

adjacent to our charge sensor. Because the measurements discussed in the following

chapter were performed with an a-Si:H device, we describe the fabrication procedure

for patterning a-Si:H adjacent to our MOSFET in the following section.

4.3 Patterning Hydrogenated Amorphous Silicon

The electronic properties of a-Si:H are introduce in detail in Chapter 5. Here we

discuss only the practical issues involved in depositing and patterning these films. A

step by step fabrication procedure for patterning a-Si:H is given in Appendix A.2.

At a first glance, patterning hydrogenated amorphous silicon (a-Si:H) adjacent to

our narrow MOSFET seems straightforward, using electron beam lithography com-

bined with either reactive ion etching or a lift-off procedure. There are, however, a

number of issues which make it a challenging task. Reactive ion etching is not ap-

propriate for our process, because one would need to reactive ion etch a-Si:H with a
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Figure 4-3: (a) Optical micrograph of device following lift-off. The dashed green
squares indicate the n+ regions (where the silicon substrate is phosphorous doped).
Electrical contact is made to the inversion layer and gate with the aluminum contacts
through holes etched in the oxide. The aluminum contact coming from the right side
of the figure contacts the p-substrate, but we instead made contact to the p-substrate
through the back of the chip and left this contact floated as discussed in the text.
The central aluminum contact of the five extending from the top of the figure is kept
grounded, and does not affect any of the experiments discussed in this thesis. (b)
An electron micrograph of the narrowest portion of the MOSFET gate and two gold
contacts.
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very high selectivity to all of the exposed materials on the surface of the MOSFET

structure shown in Fig. 4-3, in order not to damage the MOSFET with the etch. As

this would be a daunting task, we chose instead to develop a lift-off process.

In order to deposit a-Si:H films of decent quality, one must use plasma enhanced

chemical vapor deposition (PEDVD) of silane [26], as sputtered or electron beam

evaporated samples typically have much higher defect densities. Furthermore, the

deposition must be performed with the substrate heated, ideally with 200 C < Ts <

300 C, where here Ts is the substrate temperature. The heat is required in order to

promote reconstruction of the silicon-hydrogen bonding network during growth, which

reduces the defect density in the resulting film [26]. The elevated Ts required for a-

Si:H deposition is problematic because the glass transition temperature of PMMA,

the most commonly used positive ebeam resist, is Tg ≈ 120 C. We found that films

of doped hydrogenated amorphous silicon deposited below this temperature, at tem-

peratures Ts ≈ 100 C, had much lower room temperature conductivities (∼ 10−8

Ω⋅cm) than films deposited under the same conditions at higher temperatures (∼
10−4 Ω⋅cm). Presumably, this is because the films deposited at lower temperatures

have such a high defect density that the doping efficiency is becomes very low, as

all of the electrons added by the donor atoms are trapped in defect states (Chapter

5). We tried various annealing procedures [66] at temperatures greater than 200 C to

increase the conductivity of films deposited at Ts ≈ 100 C, but were unsuccessful. In

contrast to the a-Si:H films we deposited at low temperatures, the films we deposited

at higher temperatures had electron transport properties similar to those commonly

reported in the literature. For instance, for films deposited at Ts ≈ 180 C, it was

trivial to dope the a-Si:H by adding phosphine gas to the deposition chamber [67].

Our results are shown in Fig. 4-4.

In order to pattern films deposited at Ts ≈ 200 C, we used an alternative electron

beam resist, PMGI. This resist, produced by Mirochem and typically used for various

lift-off processes, has a high glass transition temperature Tg ≈ 190 C. Furthermore, it

has recently been shown to be sensitive to electron beam exposure, using either solvent

[68] or basic developers [69]. We chose the former, as we found that the base TMAH
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Figure 4-4: Doping effect for ≈ 100 nm thick a-Si:H films deposited at Ts ≈ 180 C.
For each film, the silane flow rate is 80 Sccm, the pressure is 300 mtorr, the RF power
is 20 W (resulting in a deposition rate of ≈ 10 nm/minute), and the deposition time is
10 minutes. For each film, a variable flow rate of a mixture of phosphine and hydrogen
gas (PH3/H2 = 0.02) is added to the deposition chamber, and the room temperature
conductivity of the resulting films are plotted as a function of their phosphine to
silane gas phase doping ratio, PH3/SiH4.

in many developers gradually corroded the metalization of our MOSFET. We found

that increasing Ts to 200 C did not seem to affect the PMGI despite being slightly

above its nominal glass transition temperature, so we performed some depositions at

200 C.

Having found a solution to the problem of having to use an elevated deposition

temperature, the next challenge is to implement a lift off step for a film that has been

deposited isotropically, as are films deposited with PECVD. Because of the isotropic

deposition process, the lift-off must be aided with ultrasonic agitation, which serves

to tear off pieces of a-Si:H that will inevitably be stuck to the edges of the pattern3.

However, if the film is too thick, the ultrasound will simply rip the pattern off the

substrate rather than tear the film at the edges of the pattern. Therefore, one must

deposit fairly thin films for this lift-off process to work. We used a film thickness

3This agitation is normally not necessary for lift off processes using, for instance, electron beam
evaporation, because the the anisotropy of the deposition process combined with a slight under-cut
in the resist profile produces a break in the film at the edge of the pattern.
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Figure 4-5: (a) a-Si:H test pattern. The pattern tapers down to a minimum width of
100 nm (b) Test pattern with a defect

of ≈ 50 nm, below which we found the film conductivity drops rapidly, presumably

because of surface effects [70]. The pattern will also be ripped off the substrate if

there are any adhesion problems, which can arise if there is any organic material on

the substrate surface prior to deposition. To ensure that this does not happen, the

sample is cleaned in O2 plasma immediately before the film is deposited.

After the PECVD deposition the lift-off procedure is completed as follows: We

transfer the chip into a heated bath of Microchem’s PG resist remover. The chip

is left for about 1 day in the remover. At this stage, viewed under a microscope,

the film will look puffy, as there is liquid between the film and the substrate. The

beaker of PG remover is then transfered to an ultrasonic bath. It is important not

to take the chip out of the remover and let it dry during this process. The ultrasonic

agitation of the resist remover underneath the film is what tears it from the pattern

most efficiently. If the chip is allowed to dry, the remover flows out from underneath

the film, making it very difficult to remove.

Some a-Si:H test patterns fabricated in this manner are shown in Fig. 4-5. As

is shown in the figure, for some devices there are defects consisting of extra flakes
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200 nm

Figure 4-6: Electron micrograph of MOSFET gate and a-Si:H strip. Either side of
the a-Si:H strip overlays a gold contact not shown in this micrograph. The narrowest
portions of the MOSFET gate and a-Si:H strip are separated by ≈ 70 nm.

of a-Si:H that are not torn off of the pattern, but by and large the process works

well for our purposes, and can be used to pattern a-Si:H with feature sizes ∼ 100

nm. When patterning the a-Si:H adjacent to a charge sensor, it is important to have

very good alignment between the gate of the MOSFET and the a-Si:H pattern. The

Raith is perfectly capable of overlaying patterns with a tolerance < 50 nm, but the

procedure required to actually accomplish this is somewhat involved, and is discussed

in Appendix A. Using our a-Si:H patterning procedure, we pattern a strip of a-Si:H

adjacent to a MOSFET charge sensor. An electron micrograph of such a structure

is shown in Fig 4-6. The narrowest portion of the strip is located ≈ 70 nm from the

narrowest portion of the MOSFET. The application of this structure to the study of

electron transport in a-Si:H will be discussed in Chapter 5: In the following section,

we discuss the instrumentation used to measure these devices.

4.4 Instrumentation

Following the fabrication sequence described in the Section 4.2, we clean the device in

acetone and methanol, glue it to a chip carrier with silver epoxy, and wire bond to it.

To contact the p-type substrate, we wire bond to the back of the chip carrier, which

contacts the substrate through the conductive silver epoxy. We then load the device
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into a Janis He4 flow cryostat. For this cryostat, the sample space is a sealed cylinder

filled with He4 exchange gas. A small flow of Liquid helium from a pressurized dewar

goes through a constriction, and the resulting gas flows out to atmosphere through

an annulus that is concentric with with the sample space. This cold gas cools the

walls of the sample space, which cools the sample through the exchange gas. Two

silicon diodes, one mounted near the constriction, and the other mounted next to the

sample, are used to monitor the temperature. The temperature is controlled using

a resistive heater near the constriction and a Lakeshore 331 Temperature Controller.

The sample and constriction thermometers are generally in agreement, the sample

thermometer of course taking longer to respond to the heater than the constriction

thermometer. As they do however sometimes sit at slightly different temperatures,

we quote the sample thermometer in all temperature dependencies discussed here.

Using this cryostat, and by pumping on the He4 exhaust to cool the sample below

4.2 K, we can stabilize the temperature of the sample anywhere between 300 K and

2.4 K, and the time required to go from one extreme of the temperature range to

the other is only ∼ 20 minutes. The cryostat is retrofitted with 12 coaxial cables 4.

All electrical contact to the sample is made through these cables, which ensures that

there is very little cross-capacitance between the electrical connections to the sample.

This is important when implementing the pulse sequences and fast read-outs that will

be discussed the following chapter.

The circuit used for measuring our a-Si:H charge sensing device is shown in Fig. 4-

7. A positive voltage VG is applied to both of the MOSFET gate contacts, forming an

inversion layer underneath. The MOSFET (inversion layer) resistance is measured by

applying a small bias voltage Vb to one of the n+ contacts, and measuring the current

flowing from the other n+ contact using a Femto 400 kHz bandwidth amplifier. This

small amplifier, as well as the voltage dividers/filters for the bias voltage, is mounted

only a few feet away from the coaxial connections at the top of the flow cryostat

in order to minimize the size of the measurement circuit loop, and thus minimize

the noise, as well as to reduce the shunt capacitance at the current amplifier input

4This retrofitting was done by Tamar Mentzel
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Figure 4-7: Measurement set up

for reasons that will be discussed below. With our circuit, the measurement of the

MOSFET conductance can be performed using either an AC or DC excitation. For

high speed measurements of the MOSFET resistance, we used a DC excitation. For

a DC voltage bias, we supply/monitor a voltage using NI’s 6703/6251 output/input

voltage cards (this voltage is divided and filtered next to the current amp as mentioned

above). The output of the current amplifier, after being further amplified and filtered

if necessary with an Ithaco 1201 voltage pre-amplifier, is fed into a high speed voltage

card, the NI-6110, which can read in time series with a minimum time step of 200

ns. For AC measurements, we add an AC excitation to the bias voltage through a

transformer, and the output of the current amplifier is monitored with an Stanford

Research 830 lock-in amplifier.

For the pulsing measurements described in Chapter 5 we needed to pulse the volt-

age VaSi (Fig. 4-7) applied to the a-Si:H contacts. To accomplish this, we combined

the output of the 6110 voltage card with the voltage supplied by a Yokagawa 7651
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Figure 4-8: Noise Characterization (a) Low frequency noise (b) Increase in noise
at higher frequencies caused by voltage noise at the current amplifier input driving
currents through the shunt capacitance, as described in the main text. The solid
line is a theoretical fit described in the main text. (c) Standard model for amplifier
noise. The noise sources in and vn in the dashed green box are intrinsic to the current
amplifier.

voltage source with a ± 30 V range. This allowed us to add small high speed voltage

pulses (≈ 5 �s rise time, after low pass-filtering) to a large offset. The voltage applied

to the p-type substrate and MOSFET gate were supplied by either a Yokagawa or

voltage card, divided and filtered as necessary.

For high speed measurements of the MOSFET conductance, we need to measure

the current from our MOSFET over a large bandwidth, and it is therefore important

to understand sources of current noise in our measurement set-up. To accomplish

this we replace the MOSFET in Fig. 4-7 with an 80 kΩ resistor, cooled to 4.2 K to

eliminate Johnson noise. We monitor the current as a function of time, and digitally

fast Fourier transform this time series to obtain the noise spectrum. The results

are shown in Fig. 4-8. For f < 1 kHz (Fig. 4-8(a)), the current noise N(f) is
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approximately constant at ≈ 120 fA/Hz1/2, with a few spikes at various frequencies

caused by coherent noise sources (at 60 Hz, for instance). At higher frequencies f ∼
30 kHz (Fig. 4-8(b)), N grows with f : Specifically, N2 grows quadratically with f .

This effect can be understood in terms of the standard model for noise in current

amplifiers [71], a cartoon for which is shown in Fig. 4-7(c). The current amplifier is a

source of both current noise in and voltage noise vn. The current noise in always flows

into the amplifier CA, and is therefore always present on the amplifier output, where

it is measured (multiplied by the gain). The voltage noise, on the other hand, drives

a current into to amplifier CA that depends inversely on the impedance Z to ground

of whatever is connected to the current amplifier input. In our case, this impedance

is given by the resistor R = 80 kΩ, in parallel with the shunt capacitance C of the

coaxial cable between the current amplifier input and the resistor. We have therefore

1/Z = j2�fC +1/R. Provided in and vn are incoherent and thus add in quadrature,

we have then for the total noise current N flowing into the amplifier input:

N2 = i2n + (vn/R)2 + (vn2�fC)2 (4.2)

Thus we have that N2 grows quadratically with f , as more current driven by vn flows

through the shunt capacitance and into the amplifier input at higher frequencies. We

fit the data in 4-8(b) to Eqn. 4.2, and, estimating C ≈ 150 pF from the length and

specifications of the cables between the resistor and the current amplifier, obtain vn ≈
7 nV/Hz1/2 and in ≈ 70 fA/Hz1/2, which are roughly consistent with the manufactur-

ers specifications of 5 nV/Hz1/2 and 65 fA/Hz1/2, respectively. As mentioned above,

we minimized the shunt capacitance C, by mounting the current amplifier very close

to the cryostat, in order to reduce the current noise at higher frequencies. These

measurements fully characterize the noise background of our instrumentation, the

telegraph noise inherent to our MOSFET charge sensors themselves is investigated in

Section 4.6.
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4.5 Electrical Characteristics

In this section, we give an overview of the electrical characteristics of our MOSFET

charge sensors. In general, our narrow MOSFETs behaved similarly to those studied

in previous reports [12, 14], so in this section, we will focus on the aspects of their

performance that are most pertinent to their use as charge sensors. The following

chapter will discuss the application of our MOSFET charge sensors to the study of

charge transport in amorphous semiconductors.

Typically, as soon as a narrow device was loaded into our cryostat, we checked

to make sure that the heavily doped polysilicon gate was continuous, in particular

because we judged that this was the most likely part of the device to be damaged by

electrostatic discharge during sample preparation. This was accomplished by mea-

suring the resistance between to two contacts to the polysilicon gate shown in Fig.

4-3. This resistance was typically ≈ 7 kΩ. Using the polysilicon film resistivity � ≈
1.5 mΩ⋅ cm, measured with a four point probe, and the number of squares in series

calculated for our gate geometry, we would expect the gate resistance to be a bit

smaller ≈2 kΩ, but the result is fairly close to what we expect. We found that, tak-

ing reasonable precautions, the MOSFET gate was fairly robust against electrostatic

discharge5

On each wafer, in addition to the narrow MOSFET charge sensors, we fabricated

simultaneously a variety of test structures, including structures for measuring the

contact resistance between the aluminum electrodes and the phosphorous implanted

regions as well as the polysilicon gate, diodes, and transistors with wide (10 �m)

gates. For a few wafers, we did not successfully make contact to the phosphorous

implanted regions, a result which may have been caused by surface damage of the

silicon substrate during the ion implantation process (Appendix A), but all of the

devices studied here came from wafers with negligible contact resistances.

In Fig. 4-9, we show the GM vs. VG (MOSFET conductance vs. gate voltage)

5We tried depositing films of PbS nanocrystals on some of our devices in a nitrogen glove box.
In this very dry environment, we found that we had to be much more careful with the grounding of
the device, or the narrow gate was damaged.
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characteristics of a wide and narrow channel MOSFET from the same wafer at T =

4.2 K. For the wide MOSFET, from the slope of the GM vs. VG curve, along with

the capacitance of the gate oxide and length and width of the gate and thus inversion

layer, we extract the 4.2 K mobility of our inversion layer � ≈ 1200 cm2V/s using Eqn.

4.1, a typical value for an n-channel MOSFET [12, 17]. For the narrow MOSFET, we

see two obvious changes in the GM vs. VG curve from the wide gate case. The first is

that the narrow MOSFET turns on at a larger voltage than does the wide MOSFET.

The increase in threshold voltage is caused by the fact that the gate tapers down to a

width (≈ 70 nm) that is less than the thickness of the gate oxide (dox = 100 nm). At

its narrowest point therefore, the gate capacitance is less than the parallel plate value

C = �ox�0/dox, so that a larger voltage must be applied to create the inversion layer

[72]. The second change is that for the narrow MOSFET GM oscillates with VG. Note

that traces for sweeping VG both in the positive and negative direction are both shown

on the graph: They are nearly indistinguishable, indicating that these oscillations are

highly reproducible. These oscillations vanish as the temperature is increased to T ∼
20 K. Conductance oscillations in narrow MOSFETs have been studied extensively

[73, 72]. They are caused by localization effects induced by disorder. When its

76



conductance is made < e2/h, the 1 dimensional inversion layer is effectively made

into a series of quantum dots by random fluctuations in the local potential, so that

the GM vs VG characteristics reveal complicated oscillations. Overall, the slope of

the GM vs. Vg curve for the narrow MOSFET is only a factor of ≈ 2 less than that

of the wide MOSFET. This means that the number of squares in series Nsq for the

Narrow MOSFET inversion layer is only about twice as large as that of the wide

gate inversion layer, from which we obtain for our Narrow MOSFET Nsq ≈ 5. This

number agrees roughly with the number of squares in series of our narrow MOSFET

gate pattern, which makes sense. Our gate pattern was intentionally designed to have

a relatively low value for Nsq, which is accomplished by having the gate taper rapidly

to its narrowest point, as can be seen in Fig. 4-3. Because of the low value for Nsq,

the narrowest part of the inversion layer contributes substantially to its resistance,

so that changes in the local electrostatic environment of the narrowest part of the

transistor create measurable changes in GM .

One problem we encountered with our MOSFETs was parasitic surface leakage.

We will describe this effect in some detail here, because it is a problem that, as

will be discussed below, is somewhat specific to our device geometry, and so is not

frequently mentioned in the literature. To characterize this effect, we studied devices

where the gate was discontinuous, so that without any surface leakage, the transistor

should always be off. For these devices, we found that there was a substantial room

temperature conductivity (∼ 100 kΩ) between the n+ contacts. This leakage was

not present at low temperatures, and could also be eliminated by applying a negative

voltage bias Vsub to the p-type substrate relative to the n+ contacts. This effect can be

understood in terms of surface leakage as follows. The SiO2 of a MOSFET typically

has some trapped charge per unit area within it nox. The charge may have a number

of components, for instance mobile ionic charge from alkali impurities or other defects,

but the sign of the net charge is typically positive [40]. For an n-channel device, this

positive charge lowers the threshold for inversion [40], and if there is enough of it, can

create an inversion layer at the silicon-oxide interface even where there is no gate. In

order for this to happen, nox must be at least as large as the amount of charge in the
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depletion layer of the transistor in inversion: nox > nmin = NBLinv, where NB is the

Boron acceptor density and Linv is the width of the depletion layer at inversion, given

by Linv = 2
√

�0�oxkT ln(NB/Ni)/(e2NB), where Ni is the intrinsic carrier density

(number of charges activated from the valence band to the conduction band ) of

silicon [40]. We therefore see that nmin ∝
√
NB (neglecting the weak logarithmic

dependence on NB), so the higher the doping level in the p-type substrate, the higher

the charge required to form an inversion layer. Because our substrate doping level

was low (NB ≈ 3 × 1015 cm−3), for our wafers nmin ≈ 1.5 × 1011 cm−2 which is not

an unusual amount of trapped charge for oxide grown under typical conditions [72],

and so for our devices we had parasitic surface leakage.6

Fortunately, the parasitic surface leakage was easily eliminated by applying a re-

verse bias to the substrate Vsub ≈ -3 V. Applying a reverse bias makes the depletion

region width LD larger than Linv which increases nmin [40], and thus eliminates the

parasitic conduction path. To verify this, we applied a reverse substrate bias to a

device with a discontinuous gate, and measured a very low room temperature conduc-

tance between the n+ contacts. The parasitic conduction path was also not present

at low temperatures, as evidently for the parasitic inversion paths in our devices

the Fermi level was below the conduction band, so that the carriers could be frozen

out. All of the data shown in this thesis were taken in a regime where the surface

conduction was negligible.

At a first glance, it seems unusual that the problem of parasitic surface leakage is

not frequently encountered with commercial MOSFET devices. The reason it is not

is that for a typical MOSFET geometry, there are straightforward isolation methods

that ensure there is no parasitic surface leakage. Because the gate extends all of

the way across the active region, dividing it in half, one only needs to eliminate

parasitic surface conduction under the field oxide. This can easily be accomplished

using a LOCOS (Local Oxidation of Silicon) process, where the silicon under the field

oxide is heavily doped p+, or one of the more modern trench isolation techniques

6We tried to measure nox directly for oxides grown under the same conditions as we grew our field
and gate oxides using a surface charge analyzer [74], and the results seemed to indicate that indeed
for our oxides nox > nmin though further work would be required to verify this more precisely.
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[64]. Trapped charge in the gate oxide can shift the threshold of the transistor,

but it cannot form a parallel conduction path. For our devices however, the gate

does not divide the active region in half (Fig. 4-3(a)), so that parasitic conduction

paths under the gate oxide become possible. The only way to eliminate these in the

fabrication sequence, other than carefully analyzing the sources of trapped charge in

the oxide and eliminating them, is to start with a more heavily doped wafer, which is

somewhat undesirable because this will tend to increase screening from the substrate

and therefore reduce the charge sensitivity of the device (Chapter 5). In any case,

using a negative substrate bias allowed us to circumvent having to fix this problem.

4.6 Noise Properties

Having seen that the electrical characteristics of our transistors are what we expect,

we now give an overview of the MOSFET noise properties. Ralls and collaborators

first observed telegraph noise in the conductance of a nanometer scale MOSFET,

which they attributed to electrostatic fluctuations involving a single electron charge.

[14]. The 1/f noise observed in larger devices was attributed to a large ensemble of

these fluctuators. Many others have observed similar effects since this report [15],

and, as discussed in Chapter 1, have used this phenomenon to investigate a variety

of interesting physical effects [17, 18].

The standard model for this phenomenon is very similar to the model for the

telegraph noise we studied in Chapter 2, and is presented in Fig. 4-10(a). By applying

a positive voltage VG to the metallic gate of the MOSFET, an inversion layer is formed

at the silicon-oxide interface. We assume there is an electron trap in the oxide located

some distance xt away from the silicon-oxide interface. When the energy of the trap

Et is above the Fermi level as is shown in the figure, the trap is empty. However, if the

gate voltage is made slightly more positive, Et will be brought below the Fermi level,

and the trap will fill with an electron, which will decrease the conductance through

the inversion layer GM . If the gate voltage is adjusted so that Et is brought to within

kT of the Fermi level, the electron will spontaneously hop on and off of the trap,
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Figure 4-10: (a) Sketch of the standard model for telegraph noise in MOSFETs. The
red shaded region represents the inversion layer formed at the silicon-oxide interface.
(b) Telegraph noise observed for one of our devices at T = 11 K with a transistor
bias Vb ≈ 1 mV (c) Measurement of Pon and Poff as a function of ΔVG obtained from
measurements of telegraph noise as in (b) at T = 11 K with a transistor bias Vb ≈ 1
mV. The solid lines are theoretical fits described in the main text. The range of ΔVG

at which Pon and Poff can be measured is limited by variations in the telegraph switch
signal size as well as other switches which appear as ΔVG is varied and interfere with
the measurement.
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producing telegraph noise. An example of such telegraph noise measured for one of

our devices is shown in Fig. 4-10(b). This noise can be analyzed using exactly the

same techniques discussed in Chapter 2. Using our automated triggering software,

we measure a large number of intervals ton (toff ) for which an electron is on (off)

of the trap (Fig. 4-10(b)), and from these intervals determine the rates Γoff (Γon).

From these rates we can determine the probability that an electron is on or off of the

trap poff = Γoff/(Γoff + Γon), pon = Γon/(Γoff + Γon). These quantities are plotted

in Fig. 4-10(c). As one would expect, the probabilities obey Fermi statistics: If we

set E = Et −EF then we have Pon(E) = f(E), where here f(E) = 1/(eE/kT + 1) is a

Fermi function, so we can write Pon(VG) = f(−e�ΔVG), Poff (VG) = 1−f(−e�ΔVG),

where � is the conversion factor gate voltage and energy (Here ΔVG is the gate voltage

measured relative to an arbitrary offset) The solid lines in Fig. 4-10(c) are fits to these

equations.

The conversion factor � is determined by xt, the distance between the trap and the

inversion layer [14]. The difference between the trap energy Et and the the conduction

band energy Ec at the silicon-oxide interface is given by the product of the electric

field in the oxide and the trap depth, Et −Ec = −extF = −extVG/dox. To determine

∂E/∂VG = ∂(Et − EF )/∂VG, we note that EF − Ec is proportional to the inversion

layer electron density which is proportional to the gate oxide capacitance and the

gate voltage, from which we obtain:

∂(EF − Ec)

∂VG

=
2�Cℏ

2

e'meff

≈ 1.3 meV/Volt (4.3)

Here ' and meff are the degeneracy and effective mass, respectively, for electrons

in the inversion layer. We can therefore write for �:

� = xt/dox + 1.3× 10−3 (4.4)

From the fits shown in Fig. 4-10(c) we can determine � from which we obtain xt ≈
0.5 nm for this particular trap, which falls within the range of values measured using

the same method by Ralls and coworkers [14].
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Figure 4-11: (a) Tunneling Lineshape for a single MOSFET trap measured at T =
2.3 K, with a MOSFET bias voltage Vb ≈ 5 mV. Red (blue) circles are Γon (Γoff )
measured from spontaneous tunneling events. Red (blue) triangles are Γon (Γoff )
measured using a pulsed gate technique. (b) The same trap studied in (a) at T =
2.3 K, but using a smaller voltage bias Vb ≈ 1 mV. Red (blue) circles are again Γon

(Γoff ) measured from spontaneous tunneling events.

Given the similarities between the standard model for telegraph noise in MOS-

FETs and the results discussed in Chapter 2, one might be tempted to apply our

model for energy dependent tunneling to telegraph noise in MOSFETs. However,

the literature suggests that the tunneling process for MOSFET traps is somewhat

more complicated than for GaAs quantum dots. Ralls and collaborators reported

that the tunneling process has an activated component [14]. Specifically, if we write

Γon(E) = Γ0f(E), it follows from their results that Γ0 varies with temperature, with

an activation energy ∼ 1 meV [14]. One might think that this activated behavior

corresponds to hopping over the oxide tunnel barrier, and that the activation energy

corresponds to the oxide barrier height. However, for a barrier of height ∼ 1 meV

and width xt ≈ 1 nm, one finds that a direct tunneling process would be much faster

than the tunneling rates observed in the experiments, and furthermore this energy

scale would be surprisingly small for the energy of the lowest unoccupied molecular

orbital in the oxide relative to the Fermi level in the inversion layer. It has therefore

been suggested that the observed activation energy is associated with a distortion in

the SiO2 bonding configuration near the trap that occurs when the trap is occupied
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[14]. Given the more complicated nature of the MOSFET trap tunneling process,

one would not expect to be able to describe the tunneling lineshapes measured for

MOSFET traps using the same model developed in Chapter 2.

Despite these reservations, we have measured the tunneling lineshape for a MOS-

FET trap, and the results are shown in Fig 4-11(a). These results are obtained using

the exact same techniques used to obtain tunneling lineshapes for GaAs dots in Chap-

ter 2: When Et is far from EF , we use a pulsed gate technique to measure the tunnel

rates, and when Et is close to EF we measure the rates from spontaneous tunneling

events. This tunneling lineshape is clearly more complicated than the ones shown

and discussed in Chapter 2 (Fig. 2-7). We see that Γon and Γoff both have a peak

near ΔVG = 0. Sufficiently far from ΔVG = 0, Γon (Γoff ) gets faster as ΔVG is made

more positive (negative).

The data shown in Fig. 4-11(a) are taken with a large MOSFET bias, which heats

the inversion layer electrons a bit above the cryostat temperature. To resolve finer

features in the tunneling lineshape, we apply a smaller bias, allowing the electrons

to achieve a colder temperature, and measure the rates from spontaneous tunneling

events (Fig. 4-11(b)). We see now two clear peaks in the tunneling lineshape. Cobden

and collaborators observe similar peaks in Γon and Γoff as a function of gate voltage

[75]. They ascribe this phenomena to a two-state system located near the silicon-

oxide interface: The peak in the tunneling rates occurs when the two states are

aligned. Multiple peak structures have also been observed and have been explained

by postulating that the two-state system is electrostatically coupled to a separate very

fast switch. It is possible that in Fig. 4-11 we are observing the same effect. The

fact that the rate begins to grow once ΔVG is made sufficiently positive or negative

may be caused by inelastic processes. However, Cobden and collaborators observed

two-state system behavior only for a fraction of traps in electrically stressed devices,

where as we observed aspects of the anomalous behavior shown in Fig 4-11 for all of

the traps we have studied in detail. It may be that this behavior is instead caused by

the localization of electrons in the inversion layer as discussed in Section 4.5, which

could lead to peaks in the local density of states in the inversion layer into which an
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electron in an oxide trap must tunnel.

4.7 GaAs QPCs and Narrow MOSFETs: A Brief

Comparison

It is difficult to determine, quantitatively, whether GaAs or silicon based charge

sensors are better. The performance of a charge sensor depends critically upon the

nature of background charge noise within the sensor itself. In MOSFETs, as discussed

in the previous section, this noise is caused by the charging of traps in the SiO2 near

the silicon-oxide interface. For GaAs/AlGaAs structures, quantitative studies seeking

to explain the microscopic origin of switching noise are quite recent, and the origin of

the noise is much less well understood [76]. In any case, the frequency spectrum and

amplitude of charge noise for either of these two types of sensors can vary substantially

with temperature and the voltage applied to the gate(s), and nominally identical

devices measured under similar conditions can have quite different noise spectra.

We will not provide a thorough comparison between the background charge noise

properties of GaAs and MOSFET charge sensors.

Here we will compare the sensitivity of the MOSFET and GaAs charge sensors,

as deduced from their current vs. gate voltage characteristics. Our results are shown

in Fig. 4-12. There we show measurements of current vs. gate voltage for a narrow

MOSFET and a GaAs QPC, with the same fixed bias voltage of 5 mV. For very

large bias voltages ∼ 1 V, the MOSFET is in the pinch-off regime [40] where the

conductance is limited by the region of the inversion layer closest to the n+ contact

to which the bias is applied. Clearly in this regime the MOSFET would not function

as a charge sensor, so one must be somewhat careful about how high a bias is applied

to the device. There are oscillations in the current vs gate voltage characteristics

(Section 4.5) with Vb ∼ 5 mV. Because oscillations in the conductance (or current)

as a function of gate voltage only occur for narrow MOSFETs, we are assured that

for this bias voltage, the conductance of the MOSFET is limited by the inversion
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Figure 4-12: I vs VG characteristics (blue) and current sensitivity ΔI (red) of (a)
MOSFET and (b) GaAs QPC, measured with Vb = 5 mV, at T = 4.2 K, as discussed
in the main text. For the GaAs device, the gate voltage VG is applied to each of the
two gates forming the constriction.

layer under the narrow portion of the gate. We note that there are no oscillations

in the I vs VG characteristics of the GaAs QPC measured over the same range of

current: The current monotonically rises with increasing VG. There is less disorder

in the GaAs 2DEG than in the MOSFET inversion layer, as reflected by its higher

mobility (Section 4.1). Because oscillations in the MOSFET current as a function of

gate voltage are caused by localized states, which result from disorder in the inversion

layer, it is not surprising that these oscillations are absent in the QPC current vs.

gate voltage trace.

We compare the charge sensitivities of the two devices as follows. We wish to

compute the amount by which the current changes for given amount of charge added

to the gate. For the amount of charge added, we choose �100 = 1 electron per 100

nm square. We first compute the change in gate voltage ΔVG necessary to add this

amount of charge to the gate: ΔVG = �100/C. Here for the MOSFET C is the gate

oxide capacitance, and for the GaAs sensor C is the capacitance between the gates

and the 2DEG. The change in current for 1 electron added per 100 nm square to the

gate is then given by

ΔI = (∂I/∂VG)ΔVG = (∂I/∂VG)�100/C (4.5)

85



We calculate ΔI for each device using ∂I/∂VG computed from the I vs VG data,

and this quantity is plotted as a function of VG in Fig. 4-12. We see that, while ΔI

smoothly rises for the GaAs QPC as VG is increased, for the MOSFET ΔI oscillates

as a function of VG. This is caused by the disorder induced localization effects, as the

MOSFET becomes insensitive to charge near maxima and minima of the conductance

oscillations. The maximum ΔI is approximately 5 times smaller for the MOSFET

than for the GaAs QPC measured under these conditions. We therefore see that

although the QPC is somewhat more sensitive to gate voltage, and therefore charge,

than the MOSFET, the difference between the two is not very dramatic.
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Chapter 5

Detecting Charge in an

Amorphous Semiconductor

In this chapter we demonstrate the application of integrated charge sensing to the

study of resistive materials, using a nanometer scale MOSFET to study electron

transport in hydrogenated amorphous silicon (a-Si:H), a material that is central to a

variety of thin film semiconductor technologies. In Section 5.1 we give an introduction

to the standard model for electron transport in a-Si:H, and discuss in general the mea-

surement of electron transport in highly resistive materials. In Sections 5.2 and 5.3

we describe our charge detection technique and our theoretical model for extracting

conductance from our measurements. In Sections 5.4, 5.5, and 5.6, we use our charge

detection technique to measure the a-Si:H conductance as a function of temperature,

gate voltage, and time, respectively, and show that our results are consistent with the

standard model for electron transport in a-Si:H. In the final two sections we discuss

a number aspects of our charge detection technique that are currently only partially

understood. Specifically, we discuss variations in the charge sensing signal size, the

potential insensitivity of the charge sensing technique to blocking contacts, and the

application of charge sensing to the detection of switching noise in the a-Si:H. Parts

of this work appear also in K. MacLean et al. [77].
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5.1 Introduction

5.1.1 Electronic Properties of a-Si:H

We now review the electronic properties of amorphous semiconductors, focusing on a-

Si:H. What will be presented here are aspects of the generally accepted model for the

electronic structure and transport properties of a-Si:H. Many experimental techniques

are used to investigate the electronic properties of a-Si:H, including spin resonance,

thermopower measurements, and a variety of electron transport and optical methods:

We will not discuss these experiments her; a thorough overview is given in Street’s

textbook [26].

To understand the electronic properties of amorphous semiconductors, we start by

considering a crystalline semiconductor (Figure 5-1, left hand side). For a crystalline

semiconductor, the atoms lie on a perfectly ordered lattice. A band gap, where the

density of states is zero, separates the valence and conduction bands. The density

of states terminates sharply in a Van Hove singularity [53] at the edge of valence

and conduction bands, and all of the states within the valence and conduction bands

are Bloch wavefunctions that extend throughout the entire crystal. For undoped

material, the conduction mechanism is via activation of electrons from the valence to

the conduction band, and, because of charge neutrality, which dictates that there are

the same number of holes and electrons, the Fermi level lies near the center of the

band gap. Because the density of states at the Fermi level is very small, the position

of the Fermi level will change by a large amount if a very small amount of charge

carriers are added to the crystal. This results in a high sensitivity to substitutional

doping, and a large field effect.

The electronic structure of an amorphous semiconductor retains some of the char-

acteristics of that of a crystalline semiconductor, but with some important differences

(Figure 5-1, middle). For an amorphous semiconductor, the atoms still prefer to re-

tain the same number of bonds as in the crystalline case (four, in the case of Silicon).

There are still a valence and conduction band, which can be thought of as correspond-

ing to bonding and anti-bonding electron wavefunctions. However, for an amorphous
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material, the atoms do not lie on a perfect lattice, and there is no long range order.

This results in what is called Anderson localization [78]. Rather than a sharp cut-

off in the density of states at the conduction band edge, there are states below the

conduction band, the density of which falls off exponentially as the energy is moved

farther into the band gap as �(E) ∼ e−E/kTBT . The same holds for the valence band.

These states are referred to as the band tail, and TBT is the band tail slope, and is

typically of order 300 K. The states in the band tail do not extend throughout the

crystal, but are instead localized. The conduction band energy Ec, sometimes referred

to as the mobility edge, denotes the energy above which the states are extended, and

below which the states are localized. Likewise, states above the valence band energy

Ev are localized, and states below Ev are extended.

In addition to the localized states in the band tail, there are another type of

localized state in amorphous semiconductors. Because of the disorder, some atoms

cannot form bonds with four other atoms, and instead may be bonded to only three,

resulting in what are referred to as dangling bonds. The dangling bonds result in

localized states near the center of the band gap. As in the crystalline case, the Fermi

level lies close to the center of the band gap. In the amorphous case however, there

is a large density of states at the Fermi level resulting from dangling bonds. The

electron transport is often dominated by tunneling between these localized states,

a process known as hopping conduction [79, 80]. Because of the large density of

states, adding charge to such an amorphous material does not change the position

of the Fermi level very much. This results in a very small field effect, and a very

low sensitivity to substitutional doping. There is in fact another reason why one

might expect substitutional doping to be ineffective for amorphous semiconductors.

For substitutional doping in a crystalline semiconductor, for instance doping silicon

with phosphorous, the phosphorous dopant atom is constrained by the lattice of the

crystal to have only four bonds. The fifth electron in the phosphorous atom outer

shell is therefore not involved in a making a bond and can reside in the conduction

band. However, in the case of an amorphous semiconductor, there is no ordered lattice

forcing the phosphorous atom to make four bonds. In fact, one would expect it to be
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Figure 5-1: Sketch of density of states �(E) as a function of energy, and bonding
configuration for crystalline, amorphous, and hydrogenated amorphous semiconduc-
tors. For each density of states plot, the dashed blue lines indicate the valence and
conduction band energies Ev and Ec, respectively, and the dashed green line indicates
the position of the Fermi level EF in undoped material. For the bonding sketches,
the red lines indicate dangling bonds, and the gray circles are Hydrogen atoms.
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energetically preferable for the phosphorous to make five bonds and not donate any

electrons to the conduction band.

For these reasons, before the development of hydrogenated amorphous materials, it

was believed by many that amorphous semiconductors would never achieve any of the

same functionalities as crystalline materials. Fortunately, amorphous semiconductors

alloyed with Hydrogen, in particular a-Si:H, have defied these low expectations (Fig-

ure 5-1, right). For these materials, when deposited under optimum conditions [26],

many dangling bonds are electrically passivated by bonding with Hydrogen atoms,

which lowers the density of states near the center of the band gap by many orders

of magnitude. Because of the low density of states in the band gap, the conduction

mechanism is via activation of electrons from below the Fermi level to the conduction

band and there is a considerable field effect, similar to the crystalline case.

There is also a doping effect in a-Si:H, though its mechanism is more complicated

and its effect is much weaker than in the crystalline case. For instance, when phospho-

rous dopants are introduced into a-Si:H, the vast majority of the dopant atoms simply

make five bonds and therefore do not contribute to an increased carrier density. A

small number of phosphorous dopants make four bonds, but for the vast majority of

these, the random silicon hydrogen bonding network simultaneously forms a dangling

bond, which captures the electron donated by the phosphorous. The bonding net-

work does this because it costs less energy than having the electron donated by the

phosphorous reside in the conduction band. Because of this effect, known as defect

compensation, increasing the number of dopant atoms in a-Si:H has the additional

effect of increasing the number of dangling bonds and hence the density of states

in the band gap. Only a very small fraction of the phosphorous atoms introduced

into a-Si:H, the ones making four bonds and not compensated by a dangling bond,

increase the number of charge carriers. However, such atoms do in fact result in a

doping effect, as was first demonstrated by Spear and Le Comber [81].

Since the first demonstrations of the field effect and substitutional doping, a-

Si:H has found widespread technological use for thin film devices. For instance, thin

film field effect transistors, conceptually identical to the MOSFET as described in

91



Section 4.1, but with the crystalline silicon replaced by a-Si:H and the thermal oxide

replaced by deposited a-Si3N4:H, can be fabricated and are used in many commercial

applications, such as controlling the voltages applied to liquid crystal displays.

The doping effect in a-Si:H is not strong enough to achieve degenerate doping,

where the material becomes metallic. As the number of dopant atoms is increased,

the activation energy decreases, typically reaching a minimum ∼ 100 meV. However,

no one has succeeded in moving the Fermi level into the conduction band or valence

for a-Si:H via substitutional doping. As the phosphorous concentration is increased to

very high levels, the material effectively becomes a silicon-phosphorous alloy, at which

point the activation energy rapidly increases. Because a-Si:H cannot be degenerately

doped, even very highly doped samples are very resistive at low temperatures. The

sample studied in this chapter is in fact heavily doped, but can be made very resistive

by cooling to temperatures ∼ 150 K. Before discussing our techniques for probing

electron transport in the a-Si:H in this highly resistive state, we turn to a brief review

of measurements of electron transport in resistive materials.

5.1.2 Measuring Electron Transport in Resistive Materials

A variety of technologically promising materials and devices have a high electrical

resistance. These materials include arrays of semiconducting nanocrystals, which are

candidates for solar energy harvesting [82] and other photovoltaic applications [83],

and high dielectric constant constant materials [84, 85], which are vital to modern

microprocessors. For materials with excessively large resistance, traditional transport

measurements fail because the current at reasonable voltages becomes too small to

measure. This presents a major problem. The dependence of electrical resistance on

temperature, electric and magnetic fields, light exposure, and other variables is the

most important probe of novel effects in solid state physics and is essential in providing

information about the electronic properties of new materials for specific applications.

It is therefore highly desirable to develop an alternative means of measuring electron

transport in highly resistive materials.

As we have seen in the previous chapters, in the field of single electron devices,
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charge measurement using a sensor integrated with the device has recently been widely

utilized to probe quantum mechanical phenomena that would be impossible to observe

by measuring current. For the study of highly resistive materials scanning probe

techniques have been used to determine the charge distribution and its dynamics [86,

87]. The charge flow transistor (CFT), pioneered by Senturia and coworkers [88], has

enabled the measurement of highly resistive materials by making the resistive material

under investigation the gate metal for a MOSFET. Since its inception, the CFT

has been widely utilized in various sensors, for example, to measure the resistance

of a highly resistive organic material that is sensitive to the presence of nitrogen

dioxide [89, 90]. Despite its considerable utility for such applications, the CFT is not

well suited for detailed studies of electron transport because the resistive material

under investigation and the MOSFET sensor cannot be independently gated. This

inhibits field effect measurements and other transport techniques necessary for the

determination of electronic structure. Prior to the work presented in this chapter,

there have been no attempts to use integrated charge sensors, of the type developed

for the study of single electron devices, to study resistive materials. As we will see,

the integrated charge sensor is in fact ideally suited for detailed transport studies of

highly resistive materials.

In the following sections, we illustrate the power of this charge sensing technique

by investigating transport in hydrogenated amorphous silicon (a-Si:H). By patterning

a strip of a-Si:H thin film adjacent to a nanometer scale silicon MOSFET, we are able

to detect charging of the a-Si:H and measure extremely high resistances (∼ 1017

Ω) using moderate voltages (∼ 1 V). We compare our results with those of current

measurements at high temperatures, where the resistance is not too large, and find

good agreement. The two methods complement each other in that they probe different

ranges of electrical resistance. Our device geometry, in which the MOSFET sensor

and a-Si:H can be gated independently, allows us to investigate a variety of transport

phenomena, including the field effect [91] and dispersive transport [92, 93], using

charge sensing. We use these methods to probe the density of localized states near

the Fermi energy, and obtain consistent results.
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5.2 Charge Detection Technique

Our charge sensor consists of an n-channel MOSFET that is electrostatically coupled

to a strip of a-Si:H. An electron micrograph of the structure is shown in Fig. 5-2(a).

The sample fabrication procedure is discussed in detail in Chapter 4; here we quickly

review aspects of the device that are vital to an understanding of our charge detection

technique. Because of its narrow width, the MOSFET is extremely sensitive to its

electrostatic environment [14]. Furthermore, the MOSFET has a relatively thick gate

insulator (SiO2, with a thickness of dox = 100 nm), which ensures that the metallic

polysilicon gate does not effectively screen the inversion layer from nearby electrostatic

fluctuations. Adjacent to the MOSFET, we pattern a strip of phosphorous doped a-

Si:H. The a-Si:H is deposited by plasma enhanced chemical vapor deposition [26],

with a gas phase doping ratio and hydrogen dilution of [PH3] / [SiH4] = 2× 10−2 and

[H2] / [SiH4 + H2] = 0.5, respectively (Section 4.3). Because we use a relatively large

doping level, we expect a large defect density ND ∼ 1018 cm−3 [26]. The a-Si:H strip is

connected to two gold contacts (separated by ≈ 2 �m), and the MOSFET inversion

layer is contacted through two degenerately doped n+ regions, none of which are

shown in Fig. 5-2(a). After sample preparation, the device is loaded into a cryostat,

and kept in Helium exchange gas throughout the course of the measurements discussed

here.

The parameters used to deposit our a-Si:H samples are similar to those studied

previously, and thicker a-Si:H films than those used for our charge sensing mea-

surements, deposited under the same conditions, have conductivities and activation

energies similar to those reported elsewhere [26]. However, the sample studied in this

work is nanopatterned (≈ 100 nm wide at its narrowest point) and also is only ≈
50 nm thick. Thus, although the characteristics reported below are similar to what

one would expect for thick heavily doped films, we expect that for our sample surface

effects may be significant [70], and there may also be differences in morphology and

hydrogen content as compared with thicker films.

Our measurement consists of monitoring the MOSFET conductance GM as a
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function of time after changing the voltage applied to one of the a-Si:H contacts

(Fig. 5-2(c)). We set the voltage of one of the a-Si:H contacts to 0 V relative to the

p-type substrate.1. We rapidly change the voltage VaSi applied to the other a-Si:H

contact from -1.8 V to -2.7 V and back again, as shown in the upper panel of Fig. 5-

2(c). The response of GM to this pulse sequence is shown in Fig. 5-2(c). When VaSi

is changed from -1.8 to -2.7, GM first drops instantaneously by an amount ΔGM−Au

because the negative charge added to the gold contact couples to the MOSFET elec-

trostatically. The change in VaSi also causes additional electrons to move onto the

a-Si:H strip from the gold contacts. The MOSFET senses this change in charge as

well, and GM slowly decreases by an amount ΔGM−aSi. This decrease in GM , caused

by the charging of the a-Si:H strip capacitor, will henceforth be referred to as a charge

transient. When the a-Si:H contact voltage is changed back to its original value of

-1.8 V, an instantaneous response to the gold contact followed by a charge transient

is again observed, but with the opposite sign. A similar response is observed when

the pulse sequence is applied to the other a-Si:H contact, or when the pulse sequence

is applied to both a-Si:H contacts at the same time.

To verify that the charge transient is caused by charging of the a-Si:H strip, we

measure a separate device for which only one of the gold contacts is connected to

a-Si:H close to the MOSFET charge sensor. The results are shown in Fig. 5-2(d).

When we change the voltage applied to the contact connected to a-Si:H close to the

sensor, we observe both an instantaneous response and a charge transient. However,

when we change the voltage applied to the other gold contact, we observe only the

instantaneous response. This verifies that the charge transient and instantaneous

response are indeed caused by charge added to the a-Si:H strip and gold contact,

respectively.

As will be discussed in the following section, the time scale of the charge transient

is a measurement of the resistance of the a-Si:H strip. The size of the charge transient

ΔGM−aSi depends on screening by the underlying p-type substrate, and is discussed

1For all of the data shown in this chapter we set the voltage of the substrate, relative to the
inversion layer, to Vsub = -3 V, unless stated otherwise
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Figure 5-2: (a) Electron micrograph of MOSFET gate and a-Si:H strip. A positive
voltage is applied to the MOSFET gate, forming an inversion layer underneath. (b)
Vertical sketch of the device geometry along the dashed line in (a). The conductance
through the inversion layer formed under the gate is sensitive to the charge on the
a-Si:H strip. (c) Measurement technique (T = 125 K). The upper panel shows the
voltage VaSi applied to one of the a-Si:H contacts as a function of time. The lower
panel shows the resulting time dependence of the transistor conductance GM , which
changes by ΔGM−aSi (ΔGM−Au) when charge is added to the a-Si:H (gold contact),
as described in the main text. For this trace multiple charge transients have been
averaged to improve signal-to-noise ratio. (d) Result of pulsing the gold contacts for
a device where only one of the contacts is connected to a-Si:H close to the MOSFET.
Here we pulse the gold contact not connected to a-Si:H (green) and connected to
a-Si:H (blue) close to the MOSFET from 0 to -9.9 V at t = 0 (T = 79 K), confirming
that the charge transient is caused by charging of the a-Si:H strip, as discussed in the
main text. For this data Vsub = 0.
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in Section 5.7. In order to obtain charge transients with a high signal-to-noise ratio,

multiple traces can be averaged together. For some temperatures, the charge tran-

sients are obscured by large but infrequent telegraph noise switches (Section 4.5). To

alleviate this problem, we implement software in our data acquisition system that

checks whether or not there is a telegraph noise switch in each charge transient trace

by comparing it to the average of the previous charge transient traces. If the current

trace deviates from the average of the previous traces by more than a specified thresh-

old, it is thrown out. If not, the trace is added to the running average. This technique

makes it possible to average large numbers of charge transients without having the

average be corrupted by the few traces that are obscured by large telegraph switches.

5.3 Diffusion Model

To develop a quantitative model for extracting the resistance of the a-Si:H from

charge transients, we consider the strip a-Si:H strip as a distributed RC network [94],

as shown in Fig. 5-3. Here the resistance per unit length dx is given by dR = Rsqdx/w

where w is the width of the strip (measured perpendicular to the plane of Fig. 5-3),

and Rsq is the resistance per square of the a-Si:H film. C is the capacitance per unit

area between the a-Si:H film and the p-type substrate. If �(x, t) is the charge per unit

area as a function of position along the strip x and time t, then the voltage of the

a-Si:H strip relative to the p-type substrate is given by V = �(x, t)/C. Using charge

conservation [95], we obtain:

w
∂�(x, t)

∂t
= −∂I(x, t)

∂x
(5.1)

Here I(x, t) is the current flowing through the strip. If we set dV (x, t) = V (x, t) −
V (x+ dx, t) = −(∂�(x, t)/∂x)dx/C, we have from Ohm’s law:

I(x, t)Rsqdx/w = I(x, t)dR = −dV (x, t) = −(∂�(x, t)/∂x)dx/C (5.2)
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Figure 5-3: Model for charge diffusion along a strip of a-Si:H, as discussed in the main
text. The strip has resistance dR and per unit length dx, and capacitance per unit
area to the p-type substrate C.

Dividing both sides of this equation by dx, differentiating with respect to x, and using

Eqn. 5.1, we obtain a diffusion equation for �(x, t):

∂�(x, t)

∂t
= D

∂2�(x, t)

∂x2
(5.3)

where here the diffusion constant is given by D−1 = RsqC. Because this equation is

independent of the width of the strip w, we do not need to include the gradual taper

of the a-Si:H strip used in our experiments in our model.

The diffusion equation can be solved by separation of variables [96], and for a strip

of length L, the solution is given by:

Δ�(x, t) = �(x, t)− �(x, t → ∞) =
∞
∑

n=1

ansin(n�x/L)e
−Dn2�2t/L2

(5.4)

Here the coefficients an are determined by Fourier decomposition of the difference

between the initial and final charge profiles of the strip Δ�(x, 0). The slowest expo-

nential term, corresponding to n = 1 in the summation, will dominate at sufficiently

long times. The next slowest term is n = 2, which is 4 times faster because of the

factor of n2 in the exponent. Moreover, at the center of the strip (x = L/2), the point

to which our charge sensor is presumably most sensitive, the n = 2 term vanishes,

so that at this point the second slowest term is n = 3, which is 9 times faster than
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the n = 1 term. We can therefore neglect the terms with n > 1 except at very small

times t, and so we approximate:

Δ�(t) ∝ e−D�2t/L2

(5.5)

Now, to lowest order GM varies linearly with Δ� so that we can write for the time

dependence of the transistor conductance:

GM(t) ≈ G∞ +GΔe
−Γt (5.6)

Here the sign of GΔ is opposite to the sign of Δ�, and we define the charging rate

Γ = D�2/L2. As we will see in the following section, we can fit our charge transient

measurements to obtain Γ. From this value, and an estimate of C, we can compute

the conductance of the a-Si:H strip.

GaSi = w/(RsqL) = wLCΓ/�2 (5.7)

As will be discussed in Section 5.7, the p-type silicon underneath the a-Si:H can be

depleted, depending on the voltages applied to the MOSFET gate, a-Si:H contacts,

and p-type substrate. This depletion reduces C below the oxide capacitance Cox =

�0�ox/dox, where dox and �ox are the thickness and dielectric constant of the oxide. As

will be discussed in Section 5.7, we estimate that for the range of voltages used in our

experiments, Cox/5 < C < Cox. For calculations involving C, we use the midpoint of

this range.

If we define �cℎ = Γ−1, RaSi = G−1
aSi and Ceff = wLC/�2, we obtain the relation

�cℎ = RaSiCeff . We see then that the charging of the a-Si:H strip can be viewed ap-

proximately as charging a capacitance Ceff through the resistance of the strip RaSi.

The power of the charge transient technique is derived in part from the fact that, be-

cause of the nanoscale dimensions of our a-Si:H strip, Ceff is very small: We estimate

Ceff ∼ 10 aF, which is many orders of magnitude smaller than the input capacitance

of a voltage amplifier, even when great care is taken to minimize this quantity [54].

Based on the geometry of our device (Figure 5-2(b)), the charge sensor input capac-
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itance, between the a-Si:H strip and the MOSFET gate and inversion layer, is even

smaller. Because Ceff is so small, the charging time �cℎ remains measurably short,

even for very large resistances RaSi.

Clearly our method cannot be used to probe the resistance of materials that are

more insulating than the oxide. In fact, setting aside the obvious practical requirement

that �cℎ be conveniently short, the finite resistivity of the oxide sets the theoretical

limit of how high a resistance we can measure. To include the effect of an oxide

conductance in our model, we add to the model shown in Fig. 5-3 a resistor in

parallel with the capacitance C. It is straightforward to modify Eqn. 5.3 to include

the effect of this leakage resistance:

∂�(x, t)

∂t
= −D

∂2�(x, t)

∂x2
− �(x, t)

�d
(5.8)

Here the dielectric relaxation time is defined as �d = 1/(�ox�ox�0), where �ox is

the resistivity of the oxide. In order for leakage through the oxide to be negligible,

we require that the second term on the right hand side of Eqn. 5.8 be very small

compared with the other terms which is true provided �d >> �cℎ. Our measurement

thus requires that the dielectric relaxation time of the oxide is much larger than the

charging time.

5.4 Temperature Dependence

To extract the charging rate Γ, we measure a charge transient as discussed in Section

5.2, and fit the data to Eqn. 5.6. The results for two charge transients measured

at T = 125 K and T = 140 K are shown in Fig. 5-4(a). Here we show only the

charge transient part of the GM(t) trace immediately after the voltage applied to the

a-Si:H contact is made more negative, and do not show the instantaneous response

to the gold, or the reverse response that is observed when the a-Si:H contact voltage

is changed back to its original value (Fig. 5-2(c)). We see that the data fits well to

Eqn. 5.6, and that as the temperature grows, the charging rate Γ gets faster. From

the value we extract for Γ we can determine the a-Si:H conductance GaSi using Eqn.
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Figure 5-4: (a) GM as a function of time at T = 125 K (closed circles) and 140 K (open
squares), the latter is offset for clarity. At t = 0 the voltage applied to one of the a-Si:H
contacts is changed from -1.8 V to -2.7 V. For these traces multiple charge transients
have been averaged to improve signal-to-noise. The solid lines are theoretical fits
described in the main text. (b) Conductance GaSi obtained from charge transients
(closed triangles) and direct conductance measurements (open circles), measured with
Vds ≈ -2.3 V. For the charge transient measurement, Γ is given on the right hand axis.
The dashed line is a theoretical fit described in the main text.

5.7.

In Fig. 5-4(b) we plot GaSi and Γ and as functions of temperature. GM is weakly

temperature dependent, and for this data we therefore adjust the MOSFET gate

voltage as we vary the temperature to keep GM approximately constant. At higher

temperatures we are able to directly measure GaSi = dI/dVds, where Vds is the voltage

between the a-Si:H contacts, and these results are also shown in Fig. 5-4(b). At

T ≈ 180 K, we can measure GaSi using both techniques, and the results are in

good agreement. The measurements are complementary, in that the charge transient

technique is easier to implement for smaller conductances GaSi because the charging

is slower, while a measurement of current is only possible for larger values GaSi.

The dashed line in Fig. 5-4(b) is a fit to GaSi(T ) = G0e
−Ea/kT . The data are thus

consistent with an activated transport mechanism, with an activation energy Ea ≈
200 meV, as is typically observed for a-Si:H films heavily doped with phosphorous

[26]. We note that at the lowest temperatures, we measure resistances as high as ∼
1017 Ω.
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5.5 Field Effect

We can also measure Γ as a function of gate voltage (Fig. 5-5). For this measure-

ment, we apply the same voltage VaSi to both a-Si:H contacts relative to the p-type

substrate. The effective gate voltage is then Vg = −VaSi. We then add a small voltage

step ΔV ≈ 0.5V to VaSi to produce a charge transient, from which Γ is extracted as

in Fig. 5-4(a). Unlike previous reports [88], our geometry allows us to maintain an

approximately constant value for the MOSFET conductance, and thus to maintain

a high charge sensitivity, as we make large changes in VaSi by applying smaller com-

pensating voltage shifts to the MOSFET gate voltage. This allows us to perform this

field effect measurement for a large range of sample conductances.

In Fig. 5-5 we measure Γ as a function of Vg at three different temperatures.

We see that Γ increases as Vg is increased, indicating n-type conduction through the

a-Si:H, as expected for a phosphorous doped sample. The exponential increase in Γ

with Vg is consistent with the activated conduction found in Fig. 5-4(b), provided we

assume an approximately constant density of localized states. We have:

Γ = !0e
−EA/kT (5.9)

Here !0 is a prefactor that depends only weakly on temperature, and the activation

energy EA is reduced as the gate voltage moves the Fermi level closer to the mobility

edge. The logarithmic slope � = ∂ln(Γ)/∂Vg is then given by � = 1
kT
∂EA/∂Vg =

C/(ekT�(EF )stf ), where �(EF ) and stf are the density of states at the Fermi energy

and Thomas-Fermi Screening length, respectively [97].2 Thus we expect an exponen-

tial increase in Γ with Vg as long as the product �(EF )stf is constant.

At each temperature, we fit the data to obtain � (solid lines in Fig. 5-5), and,

in the inset to Fig. 5-5, we plot � as a function of inverse temperature. The dashed

line is a linear fit (constrained to pass through zero) and is consistent with the data.

From the slope of this fit we obtain stf�(EF ) ≈ 5 × 1013 eV−1cm−2, and, expressing

2For these expressions we have used the T = 0 limit, which is justified provided �(E) does not
vary substantially over a range of energy kT about EF [91].
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stf in terms of �(EF ) and the a-Si:H dielectric constant [97], we solve for �(EF ) ∼
1020 eV−1cm−3. The density of states at the Fermi level for phosphorous doped amor-

phous hydrogenated silicon obtained from more commonly used transport techniques

is typically ∼ 1019 eV−1cm−3 [91]. The fact that our number for �(EF ) is somewhat

high is not surprising, given the large gas phase doping level used in our a-Si:H film

deposition. For the range of voltages used here EF moves by an amount comparable

to values of the band tail width commonly found for a-Si:H films [26], so we expect

that �(EF ) should increase somewhat as Vg is made more positive and the Fermi level

is moved into the band tail. This may cause the observed decrease in logarithmic

slope � for Vg >15 V in Fig. 5-5.

5.6 Dispersive Transport

At lower temperatures, where the time scale for charging is longer, we observe hys-

teretic behavior and dispersive transport. Dispersive transport, where the mobility

of the sample has a power law dependence on time, has been studied extensively in

a-Si:H and other amorphous semiconductors using various optical techniques [92, 93],

and results from localized states with a broad distribution of energies. As we will see

below, here dispersive transport is manifested as a power law time dependence of the

rate at which the charge on the a-Si:H changes following a large change in VaSi.

An example of the hysteretic behavior we observe is shown in Fig. 5-6(a). First,

we sweep the voltage applied to both a-Si:H contacts from 0 to -25 volts. We see

that GM falls as VaSi is made more negative. This is expected because making VaSi

more negative adds additional electrons to the a-Si:H strip. However, when VaSi is

swept back to 0 V, we see that GM does not regain its original value. Evidently the

electrons that were added to the strip are now trapped. The size of this hysteresis

loop shrinks with increasing temperature. After observing hysteretic behavior, we

bring the device back to its original state by warming up the cryostat.

The mechanism underlying the hysteretic behavior shown in Fig. 5-6(a) is illus-

trated in Fig. 5-6(b), which shows a diagram of the charge state of the a-Si:H at
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different points along the hysteresis curve. As VaSi is made more negative, the a-Si:H

conduction band energy Ec is brought closer to the Fermi level in the gold contacts.

This allows electrons to charge the a-Si:H at an appreciable rate. However, as time

elapses, these electrons are retrapped in localized states farther below Ec, from which

they cannot escape on the time scale of the experiment. When VaSi is swept back to

0, these electrons therefore remain in the a-Si:H, and GM does not regain its original

value.

We can make use of this hysteretic behavior to observe dispersive transport, from

which we can extract the density of states at the Fermi level of the a-Si:H. To ac-

complish this, we use the pulse sequence shown in Fig. 5-7. When we quickly step

VaSi from 0 V to -24 V, GM quickly drops. However, when VaSi is stepped back to 0

V, GM rises at slower rate, and does not regain its original value. This behavior can

be understood in the same way as the hysteretic behavior shown in Fig. 5-6: When

VaSi is stepped more negative, the a-Si:H quickly charges, as electrons can enter the

a-Si:H at energies close to the conduction band. However, as time progresses, these

electrons get trapped in localized states deeper in the a-Si:H band gap. When the

voltage is returned to its original value, the a-Si:H therefore takes a much longer time

to discharge: From Eq. (5.9), the time necessary to release electrons from states at an

energy EA below the transport energy is t ∼ Γ−1 = !−1
0 e−EA/kT . As electrons deeper

and deeper in the gap are released, t grows, and thus the transport process becomes

dispersive [92, 93].

We can understand the time dependence following the voltage step quantitatively.

At a time t after the negative voltage step, only electrons in localized states with

energies EA < Emax = kT ln(!0t) [92, 93] are able to escape from the a-Si:H. The

charge on the a-Si:H is then given by �(t) = e
∫ Emax stf�(EA)dEA (up to an additive

constant). Assuming a constant density of states and differentiating with respect to

time we obtain:

d�/dt = estf�(EF )kT/t (5.10)
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applied to both a-Si:H contacts VaSi, measured at T = 57 K. (b) Model for hysteresis,
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In Fig. 5-7(b) we plot the derivative of GM with respect to time on a log-log plot:

A fit to a power law dependence (solid line) yields a power of -1 ± 0.1 as expected for

a constant density of states. Moreover, the prefactor of this power law is estf�(EF )�,

where � is the conversion between � and GM that can be estimated from the decrease

in GM after pulsing VaSi to -24 volts. We obtain �(EF ) ∼ 1020 eV−1cm−3, consistent

with the value extracted from the data in Fig. 5-5.

From the dependence of the a-Si:H charging rate on temperature (Fig. 5-4), gate

voltage (Fig. 5-5), and time (Fig. 5-7), we have established a picture of the transport

in the a-Si:H strip that is consistent with the standard model for transport in heavily

doped hydrogenated amorphous silicon [26]. The Fermi level lies ∼ 200 meV below

the conduction band, where the density of states is ∼ 1020 eV−1cm−3, and conduction

occurs via activation of electrons from the Fermi level to the conduction band. In the

following section, we discuss the magnitude of the MOSFET response to changes in

the a-Si:H charge.
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5.7 Screening Effects

The sensitivity of the MOSFET detector to its electrostatic environment depends on

screening by the underlying p-type silicon substrate. To demonstrate this, we examine

the response of the MOSFET to changes in the charge on the gold contacts. As we

saw in Section 5.2 (Figure 5-2(c)), the MOSFET conductance responds to changes

in the charge on the gold contacts, and, at temperatures of ∼ 100 K, this response

is instantaneous. In fact, the response of the MOSFET to the gold contact would be

much larger were it not screened by the silicon substrate. To see this, we cool down

to lower temperatures ∼ 10 K, where the resistance of the silicon substrate is much

larger. When we then change the voltage applied to the gold contacts, we see a large

jump in the MOSFET conductance which gradually dies away as time progresses (Fig

5-8(a)). This transient response has nothing to do with the amorphous hydrogenated

silicon: At T = 10 K the a-Si:H is too resistive to charge on any reasonable time

scale 3. This response can be understood in terms of screening. When we add charge

to the gold contact, an opposing charge in the p-type substrate is induced, reducing

the over all effect of the charge on the MOSFET conductance. At low temperatures,

where the resistance of the substrate is high, this charge is induced at a measurably

slow rate r. To obtain a value for r, we fit the GM(t) trace to an exponential, as

shown in Fig 5-8(a).

The screening rate r is proportional to the conductance of the p-type substrate.

To see this, we measure r as a function of inverse temperature. The results are shown

in Fig 5-8(b). As the temperature is reduced, r drops, saturating at a minimum value

rmin ≈ 8 Hz. In Fig 5-8(b), we plot Δr = r - rmin as function of inverse temperature,

and fit to an activated temperature dependence Δr ∝ e−Eact/kT . We obtain Eact =

45 meV, which is exactly the Boron acceptor binding energy [40], demonstrating that

conduction through the Boron doped substrate is what determines r.4 Presumably r

3This response is also observed for a device where the gold contact to which the voltage change
is applied is not connected to a-Si:H close to the MOSFET

4In principle, for a p-type silicon substrate with no defects at low temperatures, the Fermi level
lies between the acceptor and valence bands, so that the expected activation energy is closer to
half of the binding energy. However, even a very small number of compensating defects ND ∼ 1010

cm−3 will move the Fermi level into the acceptor band, so that the activation energy is equal to the
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Figure 5-8: (a) Observation of screening effect at T = 9.8 K. Here we pulse the voltage
applied to both gold contacts from 0 to -1 V at t = 0 (top panel). GM drops by a
large amount because of the negative charge added to the gold, but then rises as this
charge is screened by charge in the p-type substrate. The solid black curve is a fit
to an exponential, as discussed in the main text. (b) Screening rate r as a function
of inverse temperature. (c) Change in screening rate Δr from low temperature value
as a function of inverse temperature, as described in the main text. The solid line is
a theoretical fit from which the Boron acceptor activation energy Eact ≈ 45 meV is
extracted, as described in the main text. For all of this data, Vsub = 0.
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saturates at a minimum value rmin because some conduction path other than through

the p-type substrate by activation of holes in the valence band dominates at low

temperature, though it is not clear what this conduction path could be. Tunneling

of electrons between neighboring acceptor atoms seems unlikely, as the mean spacing

between Boron atoms ≈ 60 nm is much larger than the size of the Boron acceptor

wavefunction ∼ 1 nm [53]. In any case, from this data it is clear that screening by

the substrate significantly reduces the response of the MOSFET to its electrostatic

environment.

At higher temperatures T > 25 K, r becomes very fast, so that the screening

takes place much more rapidly than the charge diffusion in the a-Si:H. In this regime,

we quantify the effect of the screening on the charge sensing signal by measuring the

response of the charge detector to changes in the charge on either the gold contacts

or the a-Si:H. The changes in GM for a given change in charge on the gold or a-Si:H,

denoted ΔGM−Au and ΔGM−aSi respectively, are extracted from charge transient

traces as shown in Fig. 5-2(c). We plot these quantities as a function of Vg = −VaSi

in Fig. 5-9(a), at three different temperatures. We see that at each temperature,

both ΔGM−Au and ΔGaSi decrease with increasing Vg.

To understand this effect qualitatively, we refer to the sketch in Fig. 5-9(b). The

negative bias applied to the p-type substrate relative to the inversion layer prevents

inversion anywhere at the Si/SiO2 interface [40] except underneath the gate (to which,

of course, a large positive voltage is applied). Therefore, the p-type silicon underneath

the a-Si:H and gold contacts is in a state of either depletion or accumulation. For

the depleted state, as shown in Fig. 5-9(b), the screening of the charge in the a-Si:H

(or gold) is done by charge in the substrate that is a distance LD away, where LD is

the depletion length. The maximum extent of the depletion region, for the voltages

used in our experiment, is quite large for our lightly doped substrate: We estimate

LD ≈ 1.4 �m as the maximum depletion length [40]. The depletion reduces the

capacitance C between the a-Si:H and the silicon substrate by adding a capacitance

CSi = �0�Si/LD, where �Si is the dielectric constant of Silicon, in series with the

binding energy.
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from which we extract the data shown in Fig. 5-4.
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oxide capacitance Cox. For the maximum depletion length we calculate C ≈ Cox/5.

The reduction of C caused by depletion would be more severe, were it not for the

fact that �Si is 3 times larger than the oxide dielectric constant �ox. When a negative

voltage is applied to the a-Si:H relative to the substrate, corresponding to a positive

Vg, the depletion layer shrinks, and the capacitance increases toward Cox. In addition

to these changes in capacitance, we expect large changes in the signal size. As Vg

is made more positive, LD shrinks. This makes the screening more effective, and

both signal sizes ΔGM−Au and ΔGM−aSi shrink. Depletion therefore constitutes a

qualitative explanation for the data shown in Fig. 5-9(a).

For the response of the gold to Vg, we see that the signal is large for Vg close

to zero, and decreases with increasing Vg, saturating at a minimum value at Vg ≈ 7

V. For Vg > 7 V, the response is roughly independent of Vg. This is to be expected:

Presumably the silicon under the gold reaches accumulation at Vg ≈ 7 V. The distance

between the charge on the gold and the screening charge in the substrate remains fixed

at the oxide thickness, and further increases in Vg do not change the signal size. The

shape of the response does not seem to depend strongly on temperature, which is also

to be expected, as the depletion length does not depend strongly on temperature [40].

For the response of the a-Si:H to Vg, the characteristics are qualitatively simi-

lar, but there are some unexplained differences. For instance, ΔGM−aSi drops more

rapidly with Vg at the highest temperature. Also, at the two lower temperatures,

ΔGM−aSi does not seem to saturate at a minimum value. This may be a result of the

fact that the center of the a-Si:H strip is very close to the inversion layer. This may

inhibit accumulation under this region because a depletion layer must separate the

inversion layer and the p-type substrate. Detailed simulations would be required to

ascertain whether or not this could be the reason that ΔGM−aSi does not saturate at

a minimum value . The temperature dependence of the response to the a-Si:H is also

not understood (Fig. 5-9(c)). The gold response ΔGM−Au is roughly temperature

independent, as one would expect. However, the response to the a-Si:H ΔGa−Si:H

decreases with increasing temperature. This effect, which along with the increased

charging rate Γ ultimately limited our charge transient measurements to temperatures
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T< 180 K, is currently not understood.

5.8 a-Si:H IV Characteristics and Noise Correla-

tions

There are other aspects of our charge transient results that are not fully understood.

While the measurements of Γ shown in Fig. 5-4 and Fig. 5-5 do not depend strongly

on the voltage applied between the a-Si:H contacts Vds for Vds < 1, we observe a large

nonlinearity in GaSi at room temperature when we measure current IaSi as a function

of voltage at Vds ≈ 500 mV (Fig. 5-10). While the source of this disagreement is

unclear, it is possible that at zero bias, either because of surface effects or because

of the restricted geometry of the a-Si:H strip, transport through the a-Si:H is limited

by the narrowest segment: The charge detection method is probably not sensitive to

such effects because it only requires that charge diffuse into the a-Si:H, and not that

the charge traverse all of the way from one contact to the other. More interestingly, it

is possible that the observed nonlinearity is caused by contact resistance: Our charge

sensing method is effective even in the presence of blocking contacts; it can detect

charge diffusing toward the contact even with infinite contact resistance as long as

there is significant contact capacitance. Future work will seek to demonstrate this

explicitly by using samples where there is an insulator between the a-Si:H and the

gold contacts.

Also intriguing but not fully understood is the sensitivity of the MOSFET to

telegraph noise switches in the a-Si:H. 1/f noise and discrete telegraph switches have

been observed previously in macroscopic a-Si:H samples [98]. The discrete switching

that is sometimes observed presumably occurs for samples where the conductance

is dominated by filaments small enough to be affected by a single switch. While

the microscopic origin of 1/f noise in a-Si:H is unclear, its phenomenology is quite

rich. Kakalios and coworkers demonstrated that this noise can be statistically non-

Gaussian, having a high degree of correlation between the noise power at different
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Figure 5-10: Current vs. voltage characteristics of a-Si:H strip, measured at room
temperature.

frequencies [99]. The noise becomes Gaussian when the sample is exposed to light,

and can be reversibly brought back to the the non-Gaussian state by annealing at 150

C [100]. Reversible changes in the electronic properties of a-Si:H with light exposure

and annealing, known in general as the Staebler-Wronski effect [26], are one of the

great unsolved problems in the physics of amorphous semiconductors, and lead to

limitations on performance thin film solar cells made with amorphous materials. The

phenomenology of 1/f noise in a-Si:H shows its close connection with the Staebler-

Wronski effect.

In Fig. 5-11(b), we show measurements of the current vs. voltage characteristics

of the a-Si:H strip at room temperature, in which we observed telegraph noise in

the current when Vds ≈ 2 V. This switching appeared and disappeared apparently

randomly, lasting ∼ 1 day. Because of the potential sensitivity of our sample to

surface effects, it is not clear whether the origin of the telegraph noise we observe is

the same as the origin of the noise found in bulk a-Si:H samples. However, because

the gate effect for our a-Si:H strip is fairly week, the narrow a-Si:H strip is not very

sensitive to nearby electrostatic fluctuations, and it therefore seems likely that the
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Figure 5-11: Noise correlations measured at room temperature. (a) Current through
a-Si:H strip IaSi (top panel) and transistor conductance GM (bottom panel) as a
function of time. Here we apply a voltage bias Vds = 2 V across the a-Si:H strip.
(b) Current vs. voltage characteristics of a-Si:H strip, showing telegraph noise that
appears around Vds = 2 V. (c) Correlation between IaSi and GM calculated from data
such as that shown in (a), as discussed in the main text.

source of this noise resides inside the a-Si:H strip or on its surface.

In the top panel of Fig. 5-11(a), we plot IaSi measured as a function of time with

Vds ≈ 2 V. We measure GM as a function of time simultaneously, and this is plotted

in the bottom panel of Fig. 5-11(a). We see that the two are correlated : When

IaSi jumps up, GM jumps down, and vice versa. This correlation is demonstrated

explicitly in Fig. 5-11(c). Here we measure IaSi and GM simultaneously for a long

time T , and compute the correlation function:

c(�) =
1

T

∫ T

0

ĨaSi(t+ �)G̃M(t)dt (5.11)

Here we define G̃M(t) by subtracting the mean and dividing by the standard devi-

ation G̃M(t) = G(t)− < G(t) > /
√

< G(t)2 > − < G(t) >2, where here the averages
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are over time. ĨaSi is defined in the same way. For two completely uncorrelated

quantities f(t) and g(t), c(�) = 0. For two perfectly correlated quantities, where one

quantity is a linear function of the other f(t) = a + bg(t), c(�) has a peak at � = 0.

One obtains c(0) = 1 or -1, depending on whether b, the slope of the linear function,

is positive or negative, respectively. We see that for our data c(�) has a clear peak at

� = 0 with a value ≈ −0.6, indicating a high degree of correlation between the two

signals.

From this, data it is clear that the MOSFET can detect the 1/f noise in a ma-

terial adjacent to it. The mechanism of this detection is not clear. It may be that

electrostatic fluctuations that give rise to the switching noise in the a-Si:H current

are detected by the MOSFET directly, or that these fluctuations change the charge

profile along the a-Si:H strip to which, as we saw in the previous sections, the MOS-

FET is extremely sensitive. We have observed telegraph noise in the current through

strips of a-Si:H other than the one studied here, but these samples were not fabricated

adjacent to a MOSFET charge sensor. The intermittency of the switch investigated

here made it difficult to study in detail, and more work is required to determine

mechanism by which the MOSFET senses these switches.
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Chapter 6

Conclusion

To conclude this thesis, here we briefly summarize the results presented in the previous

chapters, and then present ideas for possible future experiments. For all of the work

presented in this thesis, we used integrated charge sensors to study electron transport

in solid state systems. In the first part (Chapters 2 and 3), we used a GaAs quantum

point contact as a charge sensor, and studied single-electron tunneling in and out

of a GaAs quantum dot. We found that the tunneling was purely elastic, and that

the tunnel rate depended exponentially on the energy of the electron relative to the

tunnel barrier potential, as expected from a simple quantum mechanical model for the

tunneling process. In a large magnetic field, the rate of tunneling into the excited spin

state was suppressed relative to the rate of tunneling into the ground spin state. This

spin dependent tunneling effect depended on the shape of the electrostatic potential

defining the quantum dot, and remains unexplained.

The impact of integrated charge sensors on the study of GaAs quantum dots

has been dramatic, enabling a wide range of experiments that would not otherwise

be possible. We decided to apply this technique to the study of other solid state

systems, to see if it might have a similar impact. For a charge sensor, we fabricated

a narrow MOSFET. We used this sensor to study electron transport in a nanometer

scale strip of hydrogenated amorphous silicon (a-Si:H). We found that we could use

the sensor to measure the resistance of the a-Si:H, even at low temperatures ∼ 100 K

where the a-Si:H resistance is extremely large (∼ 1017 Ω), using fairly small voltages
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(∼ 1 V). We showed that at higher temperatures, where the a-Si:H resistance is not

too large, the resistance obtained from the charge sensing technique was consistent

with the resistance obtained from a measurement of current. We used the field effect

and dispersive transport to probe the density of localized states in the a-Si:H with

the charge sensor, and obtained consistent results.

None of our results for the transport properties of a-Si:H are particularly surpris-

ing: They are all consistent with the generally accepted model for electron transport

in a-Si:H. What is significant about these results is the manner in which they are

obtained: Our integrated charge sensing technique makes it possible to characterize

electron transport in highly resistive materials. The results presented in this thesis

should therefore enable studies of electron transport in highly resistive materials that

would otherwise be impossible. As mentioned in Chapter 5, it is likely that our tech-

nique is not sensitive to contact resistance. In order to demonstrate this explicitly,

we plan to repeat the experiments discussed in Chapter 5, but with an insulator (for

instance, a-Si3N4:H) placed between the gold contacts and the a-Si:H. Following such

a demonstration, the next next thing to do is to apply our technique to materials

with a high electrical resistance or contact resistance in order to elucidate their elec-

tronic properties. As mentioned in Chapter 5, there are in fact a variety of highly

resistive materials for which a study of electron transport would be valuable, and we

now review a few of these materials in detail.

Electron transport through arrays of semiconducting nanocrystals has been stud-

ied intensively by our group [97, 101] and by others [102, 103, 104]. The nanocrystals

consist of a semiconducting (PbSe) sphere with a diameter ∼ 5 nm, capped by an

organic material (oleic acid) of thickness ∼ 1 nm, which serves to passivate the sur-

face of the semiconducting sphere, and to insulate the sphere from its surroundings.

These nanocrystals can be deposited from solution onto the surface of a chip, and

if this is done properly, they self-assemble into an ordered array [105]. It is possible

that electron transport through such ordered arrays exhibits collective effects caused

by Coulomb interactions [106, 107]. However, transport studies of these arrays are

inhibited by their extremely large electrical resistance. There have been a number
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of studies in which the high electrical resistance is ameliorated by either chemical

treatments [102] or by annealing [97]. However, in addition to lowering the electrical

resistance, these procedures have other undesired effects. For instance, in Mentzel et

al. [97], we found that annealing arrays of nanocrystals increases their conductivity,

as the average distance between neighboring nanocrystals is reduced. However, the

films also become highly disordered following the annealing procedure, as is clearly

observable from transmission electron microscope images and grazing incidence small

angle X-ray scattering data. We found that transport through such disordered arrays

can be described in terms of a simple model where the conduction occurs via activa-

tion of holes from above the Fermi level to the valence band, and electron-electron

interactions are ignored.

With our charge sensing technique, we may be able to probe nanocrystal ar-

rays without subjecting them to annealing or chemical treatments, and thus may be

able to observe more interesting forms of electron transport. Our technique would

also be interesting to apply to annealed or chemically treated arrays of nanocrystals.

Hu and collaborators [108] demonstrated, using a combination of electrostatic force

microscopy and transmission electron microscopy, that for annealed arrays of PbSe

nanocrystals, the transport can be limited by cracks in the film that form during

the annealing process. Therefore, traditional transport measurements do not neces-

sarily probe the bulk properties of PbSe nanocrystal arrays, but rather measure the

resistance of thin (∼ 20 nm) wide channels of NC’s that extend across the cracks

[108]. Our technique is not sensitive to cracks in the film, as it does not require that

a continuous path of nanocrystals extend from one contact to the other, but rather

simply that a section of nanocrystals is charged by the contact.

Another class of materials of technological relevance to which our technique could

be applied with great effect are high dielectric constant materials. As integrated

circuits (IC’s) have gotten smaller, the required oxide thickness for MOSFETs in

state of the art IC’s has shrunk to only a few nanometers. Quantum mechanical

tunneling through these thin gate oxides results in a large leakage from the gate to the

inversion layer. This leakage increases power consumption, and over the last decade
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has been one of the main roadblocks to reducing the size of IC’s. The solution that has

been embraced by the engineering community (and has recently been implemented by

the large IC manufactures [109]) is to replace SiO2 with a higher dielectric constant

material. With a higher dielectric constant, one can use a thicker insulator while

maintaining the same gate capacitance, resulting in an exponential decrease in the

tunneling current.

There are a number of issues with high dielectric constant materials, but one of

the main problems is a high bulk defect density as compared to SiO2 [109]. Consider

for example HfO2. This material, along with a number of other transition metal

oxides, has a high dielectric constant owing to optical phonons [109], and is therefore

a good candidate to replace SiO2. However, it is of inferior electrical quality, for

the following reasons: First, it cannot be grown thermally on silicon like SiO2, and

therefore must be deposited, using a method such as atomic layer deposition (ALD).

In general, deposited oxides have higher defect densities than oxides grown thermally.

The second reason that HfO2 has a high defect density is that is has a high number

of bonds per atom, or coordination number. SiO2 has a low coordination number,

and this allows it to easily relieve structural defects. HfO2 cannot relax so easily, and

therefore remains in a nonequilibrium, high defect density state [109]. The defects in

HfO2 result in a number of problems, including gate leakage that is higher than the

expected tunneling contribution, and hysteresis in the transistor threshold voltage

caused by the filling and emptying of traps in the HfO2. The methods developed

in this thesis are well suited to studying electron transport in these highly resistive

dielectrics, and may thereby be able to shed light on the nature of the defects in these

materials. A preliminary experiment would be straightforward to implement, as high

dielectric constant materials are typically deposited with ALD at T ∼ 200 C, and can

probably be patterned using the same process we used to pattern a-Si:H.

Other than for measuring charge transport in resistive materials, there may be a

number of additional ways that integrated charge sensors can be used to elucidate

the electronic properties of solids. As a specific example, consider resistive memory

devices, for which the resistance of a transition metal oxide (for instance SrTiO3) is
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switched between an insulating and metallic state by the application of an electric

field, providing a new form of nonvolatile electronic memory [110]. The mechanism for

this switching phenomena is not fully understood, but it is observed in a wide range

of materials [110]. One common feature of all materials exhibiting this effect is the

presence of mobile oxygen vacancies, and a particularly promising theory involves the

motion of oxygen vacancies, which are positively charged, in response to the electric

field [111]. It is possible that using integrated charge sensing we could observe the

motion of the charged oxygen vacancies directly.

It is thus possible that charge sensing will make contributions to a wide variety of

disciplines. Our group has already begun the steps necessary to apply this technique

to the study of electron transport in nanocrystal arrays, where hopefully it will have

a large impact.
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Appendix A

Fabrication

In this appendix, we give the details for our fabrication sequences. We give step

by step fabrication sequences in A.1 and A.2 for our MOSFET and a-Si:H strip re-

spectively. In A.3 we outline our electron beam lithography alignment procedure.

All of the MOSFET fabrication steps were performed in either in the Microsystems

Technology Laboratory (MTL) (in either the Integrated Circuits Laboratory (ICL) or

Technology Research Laboratory (TRL)) or in the Scanning Electron Beams Labora-

tory (SEBL), at MIT. For the a-Si:H patterning, we also used the Raith electron beam

lithography system at Harvard. This system is essentially identical to the Raith 150

in the SEBL facility, and we used the Harvard facility simply because the SEBL fa-

cility is very heavily used. A few minor processing steps (cleaning in solvents, lift-off,

ect.) were performed in our laboratory or in Moungi Bawendi’s laboratory.

A.1 MOSFET Fabrication

The starting material is a “prime” electrical quality p-type silicon 6 inch wafer, doped

with Boron NB ≈ 3 × 1015 cm−3, which we purchased from the MTL. The doping

level can be verified by measuring the resistivity of the wafers � ≈ 5 Ω⋅cm with the

ICL’s four point probe.

1. RCA Clean: This is an industry standard pre-diffussion cleaning procedure,

and was done at the ICL’s RCA cleaning station. The wafers should be
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transferred to the furnace immediately after this step. The three cleaning

steps are supposed to remove organic contamination, native oxide, and ionic

contamination, respectively.

SC1 5:1:1 H2O:H2O2:NH4OH, T = 80 C, time = 10 minutes. Rinse.

HF Dip 50:1 H2O:HF, 1 minute. Rinse.

SC2 5:1:1 H2O:H2O2:HCL, T = 80 C, time = 15 minutes. Rinse. Spin Dry.

2. Grow Field Oxide: We grow a wet thermal oxide. We use the furnace

5D-ThickOx in the ICL’s diffusion system (Thermco 10K 4 Furnace Systems).

The recipe (4W1000, time = 127 minutes) grows ≈ 650 nm of wet thermal

oxide at T = 1000 C. The oxide thickness can be verified using ellipsometry,

using the ICL’s UV1280.

3. Photolithography: Pattern the field oxide for etching. This step was

accomplished using the ICL’s coater/developer track (SSI 150) and optical

stepper (Nikon NSR-2005i9, an i-line optical stepper). The masks are chrome

on quartz. Some of our masks were patterned for us in the MTL by Dennis

Ward, and some we purchased from external vendors. This first

photolithography step along with the following etch, in addition to patterning

the active region of the device, patterns alignment marks in the oxide to which

all subsequent photolithography steps, as well as the e-beam lithography step

for patterning the gate, are aligned.

Coat Use recipe T1HMDS, which, after application of the adhesion promoter

HMDS, coats the wafers in ≈ 1 �m of SPR 700-1.0 (from Shipley), a

positive photoresist.

Expose Exposure time ≈ 165 ms (the lamp intensity is ≈ 475 mW/cm2).

Develop Use recipe Dev6. This develops the wafers in LDD-26W, a TMAH

based developer.
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4. Etch Oxide: Etch the field oxide in BOE (Buffered oxide etchant, a mixture

of HF and NH4OH) at the ICL’s oxide etch wet bench. The etch rate should

be ≈ 1.5 nm/s, and we overetch by about 20 percent. The etch rate can be

measured using ellipsometry, and we can verify that all of the oxide in the

active regions has been removed using ellipsometry as well.

5. Strip Photoresist: Using the ICL’s O2 plasma asher (Matrix 106 Plasma

Asher). This takes about 3 minutes, depending on the power.

6. Photolithography: As above. This step defines the ion implanted regions.

7. Ion Implantation: We send the wafers out to Innovian for ion implantation.

They should be doped with phosphorous. The dose is 3.5 × 1015 cm−2, at an

energy of 180 keV. We asked for a small, 7 degree tilt, which is supposed to

prevent “channeling” of the phosphorous along the crystalline axes of the

wafer. For a few of our wafers, we had trouble contacting the implanted

regions. This may have been caused by damage to the silicon surface during

the ion implantation. We never fully resolved this problem, but for future

processes, it is probably advisable to have the phosphorous implanted only

after growing a thin (∼ 10 nm) protective oxide on the wafer.

8. Strip Photoresist/Clean: Following ion implantation, the photoresist is

much harder to remove than it normally is. It can be removed using a

combination of Piranha cleans (3:1 H2SO4:H2O2) and O2 plasma ashing such

as:

Piranha resist strip Blue pre-metal wet station in the ICL, 10 minutes.

Rinse. Dry.

O2 Plasma clean In the ICL’s O2 plasma asher. Repeat until photoresist is

gone.

Piranha clean Green pre-metal wet station in the ICL, 10 minutes. Rinse.

Dry.
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9. RCA Clean: As above.

10. Grow gate oxide: We use furnace 5A-GateOx in the ICL’s diffusion system.

The recipe (1D1000, time = 160 minutes) grows 100 nm of oxide at T = 1000

C. It also serves as to “drive in” the donor atoms: The phosphorous atoms

diffuse ∼ 0.5 �m into the substrate during this step. In order that the donor

atoms do not diffuse out of the silicon as the furnace ramps up, the recipe can

be changed to introduce O2 into the furnace as it ramps up, thus growing a

thin layer of oxide during the ramp up that prevents this so called ex-diffusion

of phosphorous out of the silicon substrate. To doping level can be verified by

etching off the oxide and measuring the resistivity of the ion implanted silicon

with the ICL’s four point probe. From this measurement we obtain NP ∼ 1020

cm−3, so the implanted regions are degenerately doped. The thickness of the

oxide can be verified with ellipsometry, and it is generally thicker over the ion

implanted regions. This is to be expected, as oxidation of silicon is known to

speed up with doping. After the oxide has been grown the wafers should be

transferred directly to the polysilicon deposition furnace.

11. n+ Polysilicon Deposition: We perform LPCVD (Low pressure chemical

vapor deposition) in the ICL’s diffusion system. The recipe (560Doped PH3

Flat, time = 77 minutes, in tube 6A-npoly) deposits 80 - 100 nm of

phosphorous doped polysilicon at T = 560 C. The wafers should be stored in a

clean box until proceeding to the next step, which, because of time

constraints, must usually be performed the following morning.

12. Polysilicon Anneal: This step is intended to reduce the grain boundaries in

the polysilicon and thereby increase its conductivity. The recipe anneals at

900 C (We used the furnace 5B-Anneal in the ICL, 2A900, time = 30

minutes). This step changes the polysilicon color from brown to green. The

resistivity of the polysilicon can be measured with the ICL’s four point probe

after this step, and for our wafers it is ≈ 1.5 mΩ⋅cm.
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13. Polysilicon Oxide Strip: We etch the wafers in BOE as above for ≈ 1

minute. This removes a somewhat thick ∼ 5 nm layer of oxide that is on top

the polysilicon after the anneal. This step is actually very important because

the reactive ion etching used for etching the polysilicon gate etches oxide very

slowly, and with such a thick native oxide the time required for the gate etch

becomes longer than it should be, and varies from wafer to wafer. We

attributed this rather thick native oxide to the fact that the wafers are still

quite hot as they are unloaded into atmosphere from the annealing furnace.

This thick native oxide did not grow back on the polysilicon at room

temperature, even when the wafers were left sitting in atmosphere for days.

14. Backside Etch: We remove the polysilicon and oxide from the back of the

wafer so that the p-type substrate can be grounded during the e-beam

lithography. First the wafers are coated in photoresist on the coater track as

described above (to protect the front side of the wafer), and then etched

upside down using two magnetically enhanced reactive ion-etching steps in the

AME Model P5000 to etch polysilicon (recipe Keith CP, with the main step

time tm ≈ 60 s as described in the gate etching step below) and oxide etch

(such as Baseline Ox New for 90 seconds). These etch steps are not very

sensitive, so we overetched quite a bit. The resist is then be stripped in O2

plasma as described above.

15. Spin E-beam Resist (HSQ): We use the negative e-beam resist XR-1541 4

HSQ from Dow Corning. This should be kept refrigerated, or else it degrades,

and generally you must spin it on the wafer not too long before the e-beam

write (the night before seemed to be all right). We deposit the HSQ on the

wafer with a pipet, spread at 500 rpm for 5 seconds, and then spin at 2000

rpm for 45 seconds (We use the PMMA spinner in the TRL Heidelberg room.

We did not precisely measure the HSQ film thickness, but it is between 55 and

115 nm). After spinning the wafer is baked on a hot plate for 2 minutes at T

= 110 C.
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16. Electron Beam Lithography: We use SEBL’s Raith 150. See Appendix

A.3 for details. We wrote the pattern at a voltage of 30 kV, with a step size =

10 nm, field size = 100 �m. The required dose is discussed in A.3.

17. Develop HSQ: 5 minutes in LDD 26W, followed by a rinse in water (this is

done in the TRL photo area). The patterns were imaged using the ICL’s Zeiss

electron microscope after this step or after the next.

18. Post E-beam Clean: We were required by standard ICL procedure to clean

the wafers after electron beam lithography before they could be processed

further in the ICL. We performed a Piranha clean (as above) followed by an

SC1 clean (as in the RCA clean description above, but at room temperature)

at the TRL acid wet bench.

19. Photolithography: As described above. This step patterns the larger parts

of the polysilicon gate.

20. Polysilicon Etch: This step uses magnetically enhanced reactive ion etching

in a chlorine/hydrogen bromide chemistry to create the polysilicon gate of the

transistor. The time of the main step must be long enough to etch through

the polysilicon but not too long or it will etch through the HSQ. We use the

recipe Keith CP with the following parameters:

Gas Stabilization for Main Etch Cl2:HBr 20:20 Scc, ts,m = 10 s, P = 200

mtorr, B = 50 Gauss, RF = 0.

Main Etch Cl2:HBr 20:20 Scc, tm = 24 sec, P = 200 mtorr, B = 50 Gauss,

RF = 350 W.

Gas Stabilization for Overetch HBr 40 Scc, ts,o = 10 s, P = 100 mtorr, B

= 50 Gauss, RF = 0

Short Overetch Step HBr 40 Scc, to = 40 s, P = 100 mtorr, B = 50 Gauss,

RF = 50 W.

21. Strip Photoresist: As described above.
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22. Photolithography: As described above. This step covers the polysilicon gate

structure in photoresist, for the “stringer” etch.

23. “Stringer” Etch: This step is designed to remove any remaining polysilicon

from the edge of the active region, as described in Section 4.2. We use the

same recipe used for the gate etch step, except that the times for the first two

steps are set to zero, (ts,m = tm = 0) and the overetch time is made very long

(to = 900 s). The overetch step does not etch the oxide at a measurable rate.

24. Strip Photoresist: As described above.

25. HF Dip: 50:1 H2O:HF, in the TRL acid hood. This is intended to remove the

HSQ before the next oxide growth step. This step will only remove a little bit

of the oxide (6 ± 3 nm). The mixture must be stirred very well in order to

achieve a uniform etch.

26. Long Piranha Clean: 20 minute piranha clean (Done in the green pre-metal

ICL station). We did this instead of an RCA clean because the complete RCA

process would etch the exposed gate oxide.

27. Grow Thin Oxide: We use furnace 5C-FieldOx in the ICL diffusion system.

The recipe (3D900, time = 25 minutes) grows a thin (∼ 10 nm) dry thermal

oxide at 900 C. This was intended to insulate the polysilicon from anything it

might touch, but ended up being unnecessary for the experiments discussed in

this thesis.

28. Photolithography: As described above. This step patterns holes to be

etched in the oxide over the polysilicon gate and ion implanted regions

through which electrical contact will be made.

29. Etch Oxide: As described above, with an etch time = 4 minutes (this should

overetch quite a bit, which is all right for this step). Ellipsometry can be used

to verify that no oxide remains above the implanted region where the holes

have been etched. One should proceed immediately (e.g. within an hour) to
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the following three steps in order to minimize the native oxide that will grow

where the holes have been etched. For a wafer that we had trouble making

contact to, we noticed that the ellipsometer registered a small (∼ 3 nm)

thickness of oxide that did not go away even for very long BOE etches. This

may have been caused by damage of the silicon surface by the ion

implantation process.

30. Strip Photoresist: As described above.

31. Long Pirhana Clean: As described above. This is a standard pre-metal

deposition clean.

32. Deposit Aluminum: We sputter 250 nm of pure aluminum (using the

Applied Materials Endura system). Originally, we were advised to deposit an

Al-Si alloy, which is a standard procedure used to minimize “spiking” of Al

into the substrate. Spiking occurs because silicon is soluble in aluminum, so

that pits form in the silicon as it is dissolved into the Al during the sintering

step. This can cause electrical shorts between the ion-implanted regions and

the substrate. This is alleviated by using aluminum that is already saturated

with silicon. For our process however, this caused problems. The standard

PAN etch of aluminum (see below) will not remove silicon, so after this etch

there are small so called “freckles”, small bits of silicon visible with an

electron microscope. Using any silicon etch to remove these would risk

damaging the gate. We therefore switched to pure aluminum. We did not

encounter any serious problems caused by spiking, probably because our

phosphorous implanted regions were fairly deep (∼ 0.5 �m), so only very deep

spikes could cause problems.

33. Photolithography: As described above. This step patterns the Aluminum

for the etch in the following step.

34. PAN Etch We etch the aluminum in standard PAN aluminum etchant

(H3PO4:CH3COOH:HNO3:H2O, 16:1:1:2). Because the of the native oxide on
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the aluminum, the time required for the PAN etch can vary a bit. We

typically etched for ∼ 5 minutes, and examined the wafers afterward to verify

there was no aluminum remaining.

35. Strip Photoresist: As described above.

36. Sinter contacts: Standard thermal process for improving the contact

between aluminum and doped silicon. The wafer is sintered at 425 C for about

30 minutes in forming gas (This is done in the TRL’s sintering tube).

37. Photolithography with Negative Resist: This step is to pattern the gold

a-Si:H contacts using a lift off process. We used the negative resist

NR9-1000PY from Futurex:

Bake 20 minutes at 120 C to remove moisture (TRL photo area oven).

Coat Deposit two pipets of the resist on the wafers, spread at 750 rpm for 6s,

spin at 5000 rpm for 40 s. The resist will be 1 �m thick (TRL coater).

Soft Bake The recipe (NR9soft, on the ICL coater track) bakes the wafer at

150 C for 1 minute.

Expose Exposure time ≈ 650 ms.

Develop Use LDD-26W (using the recipe NR9dev on the ICL’s developer

track).

38. Electron Beam Evaporation: Deposit Titanium/Gold contacts (30 nm Ti

deposited at 0.1 nm/s, 300 nm Au deposited at 0.3 nm/s. You can use either

of the TRL’s two electron-beam evaporators).

39. Lift-Off: Put the wafers in acetone and leave for a few hours. One can also

spray with acetone to speed the process up a bit. Clean in methanol and

water and spin dry.

40. Spin Photoresist: We spin on the photoresist AZ514 at 3000 rpm and bake

it at 90 C (in the TRL photo area), which serves to protect the wafer surface
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during diesaw step. Any type of resist of sufficient thickness should be

appropriate for this step.

41. Diesaw: Wafers are diced up with a 220 �m silicon blade.

A.2 a-Si:H Patterning

1. Scratch Back of Chip: Use a diamond scribe. This is so that the chip is

well grounded during the electron beam lithography.

2. Clean Chip: The chips have been coated with a protective layer photoresist

for the diesaw procedure. Before spinning e-beam resist onto the chips, we

need to clean this photoresist off.

Acetone Soak chip acetone ∼ 7 minutes.

Methanol Sonicate chip in methanol ∼ 3 minutes. Blow dry in Helium or

Nitrogen.

3. Spin on PMGI: We use PMGI SF3, from Microchem. We spin fairly fast in

this step: For small chips, it is important to do this, as it reduces the edge

bead. For the steps used here, we spin two layers of PMGI, and the total

thickness is ≈ 120 nm (measured by cleaving a chip and imaging it from the

side with an SEM). It is good to examine the chips carefully after spinning, to

check that the resist looks to be of a uniform thickness.

Bake 1 180 C, ∼ 1 minute, to drive off any moisture.

Spin 1 Deposit PMGI on chip with a pipet. Put the chip on top of a fab

wipe, and allow the PMGI it to run down over the sides of the chip. Spin

at 6000 rpm for 1 minute.

Bake 2 180 C, 5 minutes.

Spin 2 Repeat the step Spin 1 above.

Bake 3 250 C, 15 minutes.
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4. Electron Beam Lithography: For this step we use SEBL’s Raith 150, or

the Raith at Harvard. See Appendix A.3 for details. For PMGI spun and

developed using the conditions described here, we wrote at 10 kV with a dose

of 520 �C/cm2, with a step size = 10 nm, and a field size = 100 �m.

5. Develop Pattern:

Develop MIBK:IPA 1:3 (premixed), 5 minutes while sonicating.

Clean IPA, for a minute or so.

6. O2 Plasma Clean: The exact parameters one should use depend on the

plasma cleaner. Using a small table top plasma cleaner, which typically

remove organic material at a rate ∼ 10 nm /minute, we plasma cleaned for 50

seconds: Not so long that it changes the PMGI thickness appreciably, but long

enough to remove any small amount of organic material left where the

developer has removed the PMGI.

7. a-Si:H Deposition: Using the STS CVD in the TRL: Time = 5 minutes,

Temperature = 200 C, Pressure = 300 mtorr, SiH4 flow rate = 80 Sccm, PH3

(2 % in H2) flow rate = 80 Sccm, RF Power = 20 W, RF frequency = 13.56

MHz. This will deposit ≈ 50 nm of a-Si:H heavily doped with phosphorous.

After the chips are unloaded from the deposition chamber, wait ≈ 3 minutes

to let them cool a little before opening the load lock (to reduce oxidation).

8. Lift Off:

Scratch Scratch the a-Si:H at the four corners of the chip with a diamond

scribe, so that the remover can get under the a-Si:H.

Soak Soak in PG remover from Microchem (PG remover is just NMP with a

proprietary surfactant added to it) at 70 - 80 C for > 12 hours.

Lift off Sonicate in the hot PG remover for ∼ 2 minutes.

Clean Acetone, methanol, and IPA. Blow dry
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A.3 Electron Beam Lithography

For our process, the most difficult parts of the electron beam lithography procedure

were properly processing HSQ in order to pattern the polysilicon gate, and aligning

the a-Si:H strip to the polysilicon gate with high precision. Here we briefly discuss

the HSQ procedure, and then give a detailed description of our alignment

procedure. Our description of the alignment procedure will be in general terms,

details on how to manipulate the Raith software can be found elsewhere [112].

For our device (Fig. 4-6), our polysilicon gate tapers down to a width of 60 nm.

While patterning a 60 nm line in HSQ is fairly straightforward, patterning wide

sections that rapidly taper down to a 60 nm width is more difficult, a result of the

proximity effect. This effect can be understood as follows. Suppose we wish to write

a small square box (Box S), located just to the side of a larger box (Box L). We first

expose Box S to a give electron dose. When we subsequently expose Box L,

electrons in the substrate excited by the incoming beam, called secondary electrons,

as well as x-ray radiation caused by the relaxation of high energy electrons [113],

will impinge upon Box S. The amount of this excess exposure depends on the area

of Box L, and how far away it is from Box S. Points within Box L will receive even

more extra exposure than points within Box S, and, in general, the result of the

proximity effect is that larger features are overexposed. A commonly used technique

for ameliorating this effect is to expose the smaller regions to a relatively higher

dose [113]. We exposed the narrowest portion of our gate to a dose of 430 �C/cm2,

the regions adjacent to the narrowest portion to a dose of 295 �C/cm2, and the

larger regions to a dose of 245 �C/cm2. Our device geometry required precise

alignment of the a-Si:H pattern to the MOSFET gate. The Raith is perfectly

capable of accomplishing this, but the procedure for doing so is somewhat

complicated. Here we give a step by step process for the electron beam lithography

procedure we used for patterning the a-Si:H.

1. NC Deposition: Put gold 100 nm nanocrystals on the chip with a micro

pipet tool. We use these nanocrystals to focus and stigmate the electron
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beam. Obviously, you should not put the nanocrystals exactly where you want

to write. But you should put them fairly close (a few mm away) because the

focus can change when you move large distances. Also, you should not put the

nanocrystals on top of the chip where the resist is thick (i.e. the edge bead),

because if the resist under the nanocrystals is too thick, it will charge up and

make it impossible to focus the beam properly.

2. Load Sample, Etc: The procedure for loading is different at Harvard and

MIT. We usually made sure to to align the axes of our sample pattern (to

which we align the write) with the axes of the Raith stage (by eye), as this

generally makes navigating the wafer a lot easier. We followed the appropriate

loading procedures at Harvard and MIT, and usually measured the beam

current at the Faraday cup immediately after loading.

3. Focus, Stigmate, and Aperature Align Using Gold NC’s: The times

when this was particularly difficult, the problem was usually that the sample

was not well grounded, or that the resist under the NC’s is too thick and is

charging. If a grounding problem is suspected, it is useful to diagnose whether

the wafer chuck is not contacting the stage or the chip is not contacting the

wafer chuck. If the current measured at the Faraday cup is zero or unstable,

then wafer chuck is not grounded to the stage (this frequently happened at

MIT), and the best thing to do is run a routine that shakes the stage, which

hopefully moves the chuck into a position where it is better grounded. If the

current is a reasonable, stable value, then the best thing to do is unload the

sample and scratch the back of it. Immediately after focusing etc., it is good

to check that the image does not drift too much (it should drift less than ∼ 50

nm in 5 minutes), a problem that is also usually caused by a build up of

charge on the sample, which deflects the beam.

4. Field Alignment: Use gold NC’s. We used the standard field alignment

procedure at MIT, and at Harvard we used the standard field alignment

procedure three times with the step size set to 20,5, and 1 �m. This step
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aligns the electron beam to the stage axes.

5. UV Alignment: Perform either a UV coordinate transformation, or an angle

correction followed by an origin correction. It is important to use the Raith

side for imaging during this step. The SEM view is not necessarily perfectly

aligned with the Raith side view, so if you align using the SEM view, the

Raith will not write in the proper location.

6. Field Alignment: As above. Following the UV alignment, the axes of the

electron beam are not aligned to your UV axes, and this step is needed to

perform the alignment.

7. Origin Correction: Following this step, the alignment is complete. To check

how good the alignment is, drive to the UV coordinates of any feature of the

design to which you are aligned and image it on the Raith side.
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[113] M. Köhler and W. Fritzsche, Nanotechnology (Wiley-VCH, 2007).

145


