Review: Complexity Theory

\[\text{TIME}(t(n)) = \{ A \mid A \text{ is a language decided by a deterministic 1-tape TM in } O(t(n)) \text{ time} \} \]

\[\text{NTIME}(t(n)) = \{ A \mid A \text{ is a language decided by a non-deterministic 1-tape TM in } O(t(n)) \text{ time} \} \]

\[P = \bigcup_{k=1}^{\infty} \text{TIME}(n^k) \text{ where the union is over all natural numbers } k \]

\[NP = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k) \text{ where the union is over all natural numbers } k \]

“quickly” = “in polynomial time”

Polynomial Time

\[P = \{ L \mid L \text{ is a language that can be decided quickly} \} \]

Non-deterministic Polynomial Time (NOT “Not Polynomial”!)

\[NP = \{ L \mid L \text{ is a language that, given a certificate, can be verified quickly} \} = \{ L \mid L \text{ is a language that can be decided quickly by a non-deterministic TM} \} \]

All languages in \(P \) are also in \(NP \).

The $1 million question: Are all languages in \(NP \) also in \(P \)?

A language \(L \) is **NP-complete** if:

a) \(L \) is in \(NP \)

b) Every language \(A \) in \(NP \) is polynomial-time reducible to \(L \)

If \(B \) is NP-complete and \(B \) is in \(P \), then \(P=NP \).

(In other words, if you can show any NP-complete problem is actually solvable in polynomial time, then all NP problems are also solvable in polynomial time.)