Proofs by Induction

Goal: Prove some statement $P[n]$ is true for all integers $n \geq 1$

Step 1: State the base case $P[1]$ and prove it.
Step 2: State the inductive hypothesis $\mathrm{P}[\mathrm{m}]$.
Step 3: Prove the inductive case $\mathbf{P}[\mathbf{m}+1]$, assuming that the inductive hypothesis $\mathrm{P}[\mathrm{m}]$ is true for some $\mathrm{m} \geq \mathrm{n}$ It's often helpful to write $\mathrm{P}[\mathrm{m}+1]$ in terms of something recognizable from $\mathrm{P}[\mathrm{m}]$

Example: Prove $1+2+3+\ldots+n=1 / 2 n \cdot(n+1)$ for all integers $n \geq 1$.

The statement $\mathrm{P}[\mathrm{n}]$ is: " $1+2+3+\ldots+\mathrm{n}=1 / 2 \mathrm{n} \cdot(\mathrm{n}+1)$ "
We want to show this is true for any integer $\mathrm{n} \geq 1$ using induction.
Step 1: State the base case $P[1]$ and prove it
The base case $P[1]$ is: " $1=1 / 2 \cdot 1 \cdot(1+1)$ "
This is obviously true (proof by "duh").
Step 2: State the inductive hypothesis $\mathrm{P}[\mathrm{m}]$.

$$
P[m] \text { is: " } 1+2+3+\ldots+m=1 / 2 m \cdot(m+1) "
$$

Step 3: Assume the inductive hypothesis, and prove the inductive case:
Assume $\mathrm{P}[\mathrm{m}]: 1+2+3+\ldots+\mathrm{m}=1 / 2 \mathrm{~m} \cdot(\mathrm{~m}+1)$ is true for some $\mathrm{m} \geq \mathrm{n}$.
Now show $P[m+1]: 1+2+3+\ldots+(m+1)=1 / 2(m+1) \cdot((m+1)+1)$ is true:
Rewrite $\mathrm{P}[\mathrm{m}+1]$ in terms of something recognizable from $\mathrm{P}[\mathrm{m}]$:

$$
\begin{aligned}
1+2+3+\ldots+(\mathrm{m}+1) & =1+2+3+\ldots+\mathrm{m}+(\mathrm{m}+1) \\
& =(1+2+3+\ldots+\mathrm{m})+(\mathrm{m}+1)
\end{aligned}
$$

(Does the underlined first term look familiar?)
$=(\mathrm{m}(\mathrm{m}+1) / 2)+\mathrm{m}+1 \quad$ by induction hypothesis
$=m(m+1) / 2+m+1$
$=\mathrm{m}(\mathrm{m}+1) / 2+(\mathrm{m}+1)(2 / 2)$
$=\mathrm{m}(\mathrm{m}+1) / 2+2(\mathrm{~m}+1) / 2$
(continued)

$$
\begin{aligned}
& =(\mathrm{m}+2)(\mathrm{m}+1) / 2 \\
& =(\mathrm{m}+1+1)(\mathrm{m}+1) / 2 \\
& =((\mathrm{m}+1)+1)(\mathrm{m}+1) / 2 \\
& =(\mathrm{m}+1)((\mathrm{m}+1)+1) / 2
\end{aligned}
$$

So we've proven our base case $\mathrm{P}[1]$ (step 2) and our inductive case $\mathrm{P}[\mathrm{m}+1$] using the induction hypothesis $\mathrm{P}[\mathrm{m}]$ (step 3).

Therefore, $\mathrm{P}[\mathrm{n}]$ holds true for all $\mathrm{n} \geq 1$.

