Rules for Exponents and Logarithms

$$
\log _{\mathrm{b}} \mathrm{x}=\mathrm{n} \quad \leftrightarrow \quad \mathrm{~b}^{\mathrm{n}}=\mathrm{x}
$$

Exponent Rule	Logarithm Rule
$\mathrm{b}^{0}=1$	$\log _{\mathrm{b}} \mathrm{b}=0$
$\mathrm{~b}^{1}=\mathrm{b}$	$\log _{\mathrm{b}} \mathrm{b}=1$
$\mathrm{~b}^{\left(\log _{\mathrm{b}}\right)}=\mathrm{x}$	$\log _{\mathrm{b}}\left(\mathrm{b}^{\mathrm{x}}\right)=\mathrm{x}$
$\mathrm{b}^{\mathrm{x}} \cdot \mathrm{b}^{\mathrm{y}}=\mathrm{b}^{\mathrm{x}+\mathrm{y}}$	$\log _{\mathrm{b}}(\mathrm{x} \cdot \mathrm{y})=\log _{\mathrm{b}}(\mathrm{x})+\log _{\mathrm{b}}(\mathrm{y})$
$\mathrm{b}^{\mathrm{x}} / \mathrm{b}^{\mathrm{y}}=\mathrm{b}^{\mathrm{x}-\mathrm{y}}$	$\log _{\mathrm{b}}(\mathrm{x} / \mathrm{y})=\log _{\mathrm{b}} \mathrm{x}-\log _{\mathrm{b}} \mathrm{y}$
$\left(\mathrm{b}^{\mathrm{x}}\right)^{\mathrm{y}}=\mathrm{b}^{\mathrm{x} \cdot \mathrm{y}}$	$\log _{\mathrm{b}}(\mathrm{x} \cdot \mathrm{y})=\mathrm{y} \cdot \log _{\mathrm{b}} \mathrm{x}$
	$\left(\log _{\mathrm{a}} \mathrm{b}\right) \cdot\left(\log _{\mathrm{b}} \mathrm{x}\right)=\log _{\mathrm{a}} \mathrm{x}$
	$\log _{\mathrm{b}} \mathrm{x}=\log _{\mathrm{a}} \mathrm{x} / \log _{\mathrm{a}} \mathrm{b}$
	$\log _{\mathrm{b}} \mathrm{a}=1 / \log _{\mathrm{a}} \mathrm{b}$

(All rules are for any positive $\mathrm{a}, \mathrm{b}, \mathrm{x}$, and y .)

