LOGARITHMS PROBLEMS

* (1) Convert (Logs, Not Religions)

Recall that

 $\log_{b}(x) = n \iff b^{n} = x$

Convert between the two forms:

a) $\log_2 8 = 3$ \leftrightarrow b) \leftrightarrow $2^4 = 16$ c) $\log_{10} 1000 = 3$ \leftrightarrow d) \leftrightarrow $10^2 = 100$ e) $\log_3 27 = 3$ \leftrightarrow

** (2) Abraham Lincoln Was Born in a Log Cabin

Compute the values of the following logarithms:

- a) $\log_2 8 =$
- b) $\log_7 1 =$
- c) $\log_{1432}1 =$
- d) $\log_7 49 =$
- e) $\log_{11}121 =$
- f) $\log_{523}523 =$

*/** (3) Prove Your Identities

Read and understand the following short proof of a famous logarithm identity:

Theorem: $\log_{b}(xz) = \log_{b}(x) + \log_{b}(z)$

(For example, $\log_2 16 = \log_2(8 \cdot 2) = \log_2 8 + \log_2 2 = 3 + 1 = 4$.)

Let $n = \log_{b}(x)$. Let $m = \log_{b}(z)$. We want to show $n + m = \log_{b}(x \cdot z)$. **Proof:** Converting between the two forms for logs, $b^n = x$ and $b^m = z$. So $\mathbf{x} \cdot \mathbf{z} = \mathbf{b}^n \cdot \mathbf{b}^m = \mathbf{b}^{n+m}$ Converting to the other form, $\log_{b} (x \cdot z) = n + m$, which is what we wanted to show.

Now prove the following identities:

* a)
$$\log_{b}(x / z) = \log_{b}(x) - \log_{b}(z)$$

(Hint: Remember $x/z = x \cdot z^{-1}$)

(continued)

** c)
$$\boxed{\log_{b} a = \frac{1}{\log_{a} b}}$$

(continued)

```
(continued)
** d) \log_{b}(x^{y}) = x
```

****** (4) I Don't Care About Your Log Bases

a) Prove that
$$\log_{b} x = \frac{\log_{a} x}{\log_{a} b}$$
 for any a, b, and x.

b) Why does this mean that $O(\log_b x) = O(\log_a x)$? (In other words, why don't we care about the base of the logarithm when working in order-log-n time?)