LOGARITHMS PROBLEMS

* (1) Convert (Logs, Not Religions)

Recall that $\quad \log _{\mathrm{b}}(\mathrm{x})=\mathrm{n} \quad \leftrightarrow \quad \mathrm{b}^{\mathrm{n}}=\mathrm{x}$

Convert between the two forms:
a) $\log _{2} 8=3 \quad \leftrightarrow$
b) $\quad \leftrightarrow \quad 2^{4}=16$
c) $\log _{10} 1000=3 \quad \leftrightarrow$
d)
$\leftrightarrow \quad 10^{2}=100$
e) $\log _{3} 27=3 \quad \leftrightarrow$

** (2) Abraham Lincoln Was Born in a Log Cabin

Compute the values of the following logarithms:
a) $\log _{2} 8=$
b) $\log _{7} 1=$
c) $\log _{1432} 1=$
d) $\log _{7} 49=$
e) $\log _{11} 121=$
f) $\log _{523} 523=$

*/** (3) Prove Your Identities

Read and understand the following short proof of a famous logarithm identity:

Theorem: $\quad \log _{b}(x z)=\log _{b}(x)+\log _{b}(z)$
(For example, $\log _{2} 16=\log _{2}(8 \cdot 2)=\log _{2} 8+\log _{2} 2=3+1=4$.)

Proof: \quad Let $\mathrm{n}=\log _{\mathrm{b}}(\mathrm{x})$. Let $\mathrm{m}=\log _{\mathrm{b}}(\mathrm{z})$. We want to show $\mathrm{n}+\mathrm{m}=\log _{\mathrm{b}}(\mathrm{x} \cdot \mathrm{z})$.
Converting between the two forms for logs, $\mathrm{b}^{\mathrm{n}}=\mathrm{x}$ and $\mathrm{b}^{\mathrm{m}}=\mathrm{z}$.
So $\mathrm{x} \cdot \mathrm{z}=\mathrm{b}^{\mathrm{n}} \cdot \mathrm{b}^{\mathrm{m}}=\mathrm{b}^{\mathrm{n}+\mathrm{m}}$
Converting to the other form, $\log _{\mathrm{b}}(\mathrm{x} \cdot \mathrm{z})=\mathrm{n}+\mathrm{m}$, which is what we wanted to show.

Now prove the following identities:

* a)

$$
\log _{\mathrm{b}}(\mathrm{x} / \mathrm{z})=\log _{\mathrm{b}}(\mathrm{x})-\log _{\mathrm{b}}(\mathrm{z})
$$

(Hint: Remember $\mathrm{x} / \mathrm{z}=\mathrm{x} \cdot \mathrm{z}^{-1}$)

(continued)

** b$) \quad \log _{\mathrm{b}}\left(\mathrm{x}^{\mathrm{k}}\right)=\mathrm{k} \cdot \log _{\mathrm{b}}(\mathrm{x}) \quad$ and thus $\quad \log _{\mathrm{b}}\left({ }^{\mathrm{k}} \sqrt{\mathrm{x}}\right)=(1 / \mathrm{k}) \cdot \log _{\mathrm{b}}(\mathrm{x})$
** c$) \log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$
(continued)

** d$) \quad$| $\log _{\mathrm{b}}\left(\mathrm{x}^{\mathrm{y}}\right)$ | y | |
| :---: | :---: | :---: |
| b | $=$ | x^{2} |

** (4) I Don't Care About Your Log Bases

a) Prove that $\log _{b} x=\underline{\log _{a}} \underline{x}$ for any a, b, and x.
b) Why does this mean that $\mathrm{O}\left(\log _{b} \mathrm{x}\right)=\mathrm{O}\left(\log _{\mathrm{a}} \mathrm{x}\right)$? (In other words, why don't we care about the base of the logarithm when working in order-log-n time?)

