SET THEORY PROBLEMS SOLUTIONS

* (1) Formal as a Tux and Informal as Jeans

Describe the following sets in both formal and informal ways.

	Formal Set Notation Description	Informal English Description
a)	{2, 4, 6, 8, 10,}	The set of all positive even integers
b)	{, -3, -1, 1, 3,}	The set of all odd integers
c)	$\{n \mid n = 2m \text{ for some } y \in \mathbb{N}\}$	The set of all positive even integers (using the convention that 0 is not a natural number)
d)	$\{x \mid x=2n \text{ and } x=2k \text{ for some } n, k \in \mathbb{N}\}$	The set of all positive multiples of 6
e)	$\{b \mid b \in \mathbb{Z} \text{ and } b=b+1\}$	<u>φ</u>
f)	{2, 20, 200}	The set containing the numbers 2, 20, and 200
g)	$\{\underline{n \mid n \in \mathbb{Z} \text{ and } n > 42}\}$	The set containing all integers greater than 42
h)	$\frac{\{n \mid n \in \mathbb{Z} \text{ and } n < 42 \text{ and } n > 0\}}{= \{n \mid n \in \mathbb{N} \text{ and } n < 42\}}$	The set containing all positive integers less than 42
i)	{hello}	The set containing the string hello
j)	{bba, bab}	The set containing the strings bba and bab
k)	φ = {}	The set containing nothing at all
I)	<u>{a}</u>	The set containing the empty string

* (2) You Want Me to Write What?

Fill in the blanks with \in , \notin , \subseteq , \supseteq , =, or \neq .

Recall that \mathbb{Z} is the set of all integers and φ is the empty set, {}.

- a) 2 $_ \in [2, 4, 6]$ b) {2} $_ \subseteq [2, 4, 6]$ c) 1.5 $_ \notin [2]$ \mathbb{Z} d) -1.5 $_ \notin [2]$ \mathbb{Z} e) 15 $_ \in [2]$ \mathbb{Z}
- f) -15 __⊆_ ℤ
- g) φ __⊆__ ℤ
- h) 54 $_\in_$ {6, 12, 18, ...}
- i) 54 __∉__ {6, 12, 18}
- j) $\{1, 3, 3, 5\} = \{1, 3, 5\}$
- k) $\{-3, 1, 5\} _ \pm \{1, 3, 5\}$
- l) $\{3, 1, 5\}$ ____ $\{1, 3, 5\}$

* (3) Set Operations

Let $A = \{x, y\}$ and $B = \{x, y, z\}$.

- a) Is A a subset of B? **YES**
- b) Is B a subset of A? NO
- c) $A \cup B = \{x, y, z\} = B$
- d) $B U A = {x, y, z} = B$
- e) $A \cap B = \{x, y\} = A$

- f) $B \cap A = \{x, y\} = A$
- g) $A \times B = \{(x, x), (x, y), (x, z), (y, x), (y, y), (y, y), (y, z)\}$
- h) $B \times A = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}$
- i) $P(A) = \{\phi, \{x\}, \{x, y\}\}$
- j) $P(B) = \{ \varphi, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{x, z\}, \{y, z\}, \{x, y, z\} \}$

** (4) Does Order Matter?

Three important binary set operations are the union (U), intersection (\cap), and cross product (x).

A binary operation is called **commutative** if the order of the things it operates on doesn't matter.

For example, the addition (+) operator over the integers is commutative, because for all possible integers x and y, x + y = y + x.

However, the division (\div) operator over the integers is *not* commutative, since $x \div y \neq x \div y$ for all integers x and y. (Note it works for *some* integers x and y, specifically whenever x = y, but not for *every* possible integers x and y.)

a) Is the union operation commutative? (Does A U B = B U A for all sets A and B?)

Yes. A U B =
$$\{x \mid x \in A \text{ or } x \in B\} = \{x \mid x \in B \text{ or } x \in A\} = B U A$$

b) Is the intersection operation commutative?

Yes. $A \cap B = \{x \mid x \in A \text{ and } x \in B\} = \{x \mid x \in B \text{ and } x \in A\} = B \cap A$

c) Is the cross product operation commutative?

No. For a counterexample, see Problem (3g) and (3h) above. Recall that order matters for pairs.

*** (5) Set Me Up

Consider the following sets: $A = \{\phi\}$ $B = \{A\}$ $C = \{B\}$ $D = \{A, \phi\}$ True (T) or False (F)? a) $\varphi \in A(\mathbf{T})$ i) $A \in B(T)$ o) $B \in A(F)$ u) $C \in A(F)$ b) $\varphi \subseteq A(\mathbf{T})$ i) $A \subseteq B(F)$ p) $B \subseteq A(F)$ v) $C \subseteq A(F)$ c) $\varphi \in B(F)$ k) $A \in C(F)$ q) $B \in C(T)$ w) $C \in B(F)$ d) $\varphi \subseteq B(\mathbf{T})$ l) $A \subseteq C(\mathbf{F})$ r) $B \subseteq C(\mathbf{F})$ x) $C \subseteq B(F)$ y) $C \in D(F)$ e) $\varphi \in C(\mathbf{F})$ m) A ∈ D <u>(T)</u> s) B ∈ D <u>(F)</u> n) A ⊆ D**(T)** f) $\varphi \subseteq C(\mathbf{T})$ t) $B \subseteq D(T)$ z) $C \subseteq D(F)$ g) $\phi \in D(\mathbf{T})$ h) $\varphi \subseteq D(\mathbf{T})$

Note: May be easier to think about the sets as:

 $A = \{ \{\} \} \\ B = \{ \{\}\} \} \\ C = \{ \{\{\}\}\} \} \\ D = \{ \{\{\}\}, \{\}\} \}$