Set Theory Problems

SOLUTIONS

* (1) Formal as a Tux and Informal as Jeans

Describe the following sets in both formal and informal ways.

Formal Set Notation Description	Informal English Description
a) $\{2,4,6,8,10, \ldots\}$	The set of all positive even integers
b) $\{\ldots,-3,-1,1,3, \ldots\}$	The set of all odd integers
c) $\{\mathrm{n} \mid \mathrm{n}=2 \mathrm{~m}$ for some $\mathrm{y} \in \mathbb{N}\}$	The set of all positive even integers (using the convention that 0 is not a natural number)
d) $\{\mathrm{x} \mid \mathrm{x}=2 \mathrm{n}$ and $\mathrm{x}=2 \mathrm{k}$ for some $\mathrm{n}, \mathrm{k} \in \mathbb{N}\}$	The set of all positive multiples of 6
e) $\{\mathrm{b} \mid \mathrm{b} \in \mathbb{Z}$ and $\mathrm{b}=\mathrm{b}+1\}$	9
f) $\{\mathbf{2}, \mathbf{2 0}, \mathbf{2 0 0}\}$	The set containing the numbers 2, 20, and 200
g) $\{\mathrm{n} \mid \mathrm{n} \in \mathbb{Z}$ and $\mathrm{n}>42\}$.	The set containing all integers greater than 42
$\text { h) } \begin{aligned} & \{n \mid n \in \mathbb{Z} \text { and } n<42 \text { and } n>0\} \\ & =\{n \mid n \in \mathbb{N} \text { and } n<42\} \end{aligned}$	The set containing all positive integers less than 42
i) $\{$ hello	The set containing the string hello
j) \{bba, bab	The set containing the strings b.ba and bab
k) $\varphi=\{ \}$	The set containing nothing at all
1) $\{\mathbf{E}\}$	The set containing the empty string

* (2) You Want Me to Write What?

Fill in the blanks with $\in, \nsubseteq, \subseteq, \supseteq,=$, or \neq.
Recall that \mathbb{Z} is the set of all integers and φ is the empty set, $\}$.
a) $2 \ldots \quad\{2,4,6\}$
b) $\{2\} \quad \subseteq_{\underline{-}}\{2,4,6\}$
c) $1.5 \quad \notin \mathbb{Z}$
d) $-1.5 \ldots \notin \mathbb{Z}$
e) $15 \ldots \in \mathbb{Z}$
f) $-15 \subseteq \subseteq \mathbb{Z}$
g) $\varphi \quad \subseteq=\mathbb{Z}$
h) $54 \ldots __{=}\{6,12,18, \ldots\}$
i) $54 \underset{=}{\notin}\{6,12,18\}$
j) $\{1,3,3,5\} \ldots\{1,3,5\}$
k) $\{-3,1,5\} \quad \neq=\quad\{1,3,5\}$

1) $\{3,1,5\} \longrightarrow=\{1,3,5\}$

* (3) Set Operations

Let $A=\{x, y\}$ and $B=\{x, y, z\}$.
a) Is A a subset of B? YES
f) $\mathrm{B} \cap \mathrm{A}=\{\mathbf{x}, \mathbf{y}\}=\mathbf{A}$
b) Is B a subset of A? NO
g) $\mathrm{A} \times \mathrm{B}=\{(\mathrm{x}, \mathrm{x}),(\mathrm{x}, \mathrm{y}),(\mathbf{x}, \mathbf{z}),(\mathbf{y}, \mathbf{x})$, $(\mathbf{y}, \mathrm{y}),(\mathrm{y}, \mathrm{z})\}$.
c) $\mathrm{A} \cup \mathrm{B}=\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}=\mathbf{B}$
h) $\mathrm{BxA}=\{(\mathbf{x}, \mathbf{x}),(\mathbf{x}, \mathbf{y}),(\mathbf{y}, \mathbf{x}),(\mathbf{y}, \mathbf{y})$, $(z, x),(z, y)\}$
d) $\mathrm{B} \cup \mathrm{A}=\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}=\mathbf{B}$
i) $\mathbf{P}(\mathrm{A})=\{\underline{\varphi},\{\mathbf{x}\},\{\mathbf{x}, \mathbf{y}\}\}$
e) $\mathrm{A} \cap \mathrm{B}=\{\mathbf{x}, \mathbf{y}\}=\mathbf{A}$
j) $P(B)=\{\varphi,\{\mathbf{x}\},\{\mathbf{y}\},\{\mathbf{z}\},\{\mathbf{x}, \mathbf{y}\}$, $\{x, z\},\{y, z\},\{x, y, z\}\}$

** (4) Does Order Matter?

Three important binary set operations are the union (U), intersection (\cap), and cross product (x).
A binary operation is called commutative if the order of the things it operates on doesn't matter.
For example, the addition $(+)$ operator over the integers is commutative, because for all possible integers x and $y, x+y=y+x$.

However, the division (\div) operator over the integers is not commutative, since $x \div y \neq x \div y$ for all integers x and y . (Note it works for some integers x and y , specifically whenever $\mathrm{x}=\mathrm{y}$, but not for every possible integers x and y.)
a) Is the union operation commutative? (Does $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ for all sets A and B ?)

$$
\text { Yes. } \mathbf{A} \cup B=\{x \mid x \in A \text { or } x \in B\}=\{x \mid x \in B \text { or } x \in A\}=B \cup A
$$

b) Is the intersection operation commutative?

$$
\text { Yes. } A \cap B=\{x \mid x \in A \text { and } x \in B\}=\{x \mid x \in B \text { and } x \in A\}=B \cap A
$$

c) Is the cross product operation commutative?

No. For a counterexample, see Problem (3g) and (3h) above. Recall that order matters for pairs.

*** (5) Set Me Up
Consider the following sets: $\mathrm{A}=\{\varphi\} \quad \mathrm{B}=\{\mathrm{A}\} \quad \mathrm{C}=\{\mathrm{B}\} \quad \mathrm{D}=\{\mathrm{A}, \varphi\}$ True (T) or False (F)?
a) $\varphi \in \mathrm{A}(\mathbf{T})$
b) $\varphi \subseteq \mathrm{A}(\mathbf{T})$
c) $\varphi \in \mathrm{B}(\mathbf{F})$
d) $\varphi \subseteq$ B (\mathbf{T})
e) $\varphi \in \mathrm{C}(\mathbf{F})$
f) $\varphi \subseteq \mathrm{C}(\mathrm{T})$
g) $\varphi \in D(T)$
h) $\varphi \subseteq D(\mathbf{T})$
i) $\mathrm{A} \in \mathrm{B}(\mathbf{T})$
j) $\mathrm{A} \subseteq \mathrm{B}(\mathbf{F})$
k) $\mathrm{A} \in \mathrm{C}(\mathbf{F})$
m) $A \in D(T)$
n) $\mathrm{A} \subseteq \mathrm{D}(\mathrm{T})$
o) $\mathrm{B} \in \mathrm{A}(\mathbf{F})$
p) $\mathrm{B} \subseteq \mathrm{A}(\mathbf{F})$
q) $B \in C(T)$
r) $\mathrm{B} \subseteq \mathrm{C}(\mathbf{F})$
s) $B \in D(\mathbf{F})$
t) $\mathrm{B} \subseteq \mathrm{D}(\mathbf{T})$
u) $\mathrm{C} \in \mathrm{A}(\mathbf{F})$
v) $\mathrm{C} \subseteq \mathrm{A}(\mathbf{F})$
w) $C \in B(F)$

1) $\mathrm{A} \subseteq \mathrm{C}(\mathbf{F})$
x) $\mathrm{C} \subseteq \mathrm{B}(\mathbf{F})$
y) $\mathrm{C} \in \mathrm{D}(\mathbf{F})$
z) $\mathrm{C} \subseteq \mathrm{D}(\mathbf{F})$

Note: May be easier to think about the sets as:

$$
\begin{aligned}
& \mathrm{A}=\{\{ \}\} \\
& \mathrm{B}=\{\{\{ \}\} \\
& \mathrm{C}=\{\{\{\{ \}\} \\
& \mathrm{D}=\{\{3\},\{ \}\}
\end{aligned}
$$

