Functions and Their Limits

104003 Differential and Integral Calculus I
Technion International School of Engineering 2010-11
Tutorial Summary – January 2, 2011 – Kayla Jacobs

Domain, Image, Range

Notation: Function **f**: **Domain** → **Range**

Domain: Set of "input" values for which the function is defined. **Image:** The set of "output" values which the function returns.

Range = Co-Domain = Target: Any set (usually nice) containing the image;

may be equal to the image or a larger set containing the image.

Increasing and Decreasing Functions

Monotonically *in*creasing function: $x_1 \le x_2 \iff f(x_1) \le f(x_2)$ Monotonically *de*creasing function: $x_1 \le x_2 \iff f(x_1) \ge f(x_2)$

1-to-1, Onto

f: $A \rightarrow B$ is...

- Injective (1-to-1): If $f(x_1) = f(x_2)$, then $x_1 = x_2$. Equivilently: If $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. (Every element in B is mapped to by at most one element of A.)
- **Surjective (onto)**: For all y in B, there is an x in A such that y = f(x). (Every element in B has one or more matching elements in A)
- Bijective (1-to-1 and onto)

Inverses

If y = f(x) is a bijective (1-to-1 and onto) function, then there exists an <u>inverse function</u> f^{-1} such that $f^{-1}(f(x)) = f^{-1}(y) = x$

A function is bijective iff it is invertible (has an inverse).

Elementary Operations and Functions

The 5 Elementary Operations: +, -, \times , \div , composition [composition: $f(g(x)) = (f \circ g)(x)$]

Elementary Functions: The functions we get from:

c (const) $x = a^x = \sin(x) = \arcsin(x) = \log_a(x)$

... and their combinations through the elementary operations

Definition of a Finite Limit of Function as $x \rightarrow a$

 $\lim_{x\to a} f(x) = L$ iff: for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \ne a$,

 $0 < |x - a| < \delta \iff |f(x) - L| < \varepsilon$

Algebra of Limits:

Let $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = K$. Then:

- Sum: $\lim_{x\to a} (f(x) + g(x)) = L + K$
- Product: $\lim_{x\to a} (f(x) * g(x)) = L * K$
- Quotient: $\lim_{x\to a} (f(x)/g(x)) = L/K$ (if g and K are both non-0)
- Multiplication by a constant: $\lim_{x\to a} (c*f(x)) = c*L$ (where c is any constant)