Functions and Their Limits

104003 Differential and Integral Calculus I
Technion International School of Engineering 2010-11
Tutorial Summary - January 2, 2011 - Kayla Jacobs

Domain, Image, Range

Notation: Function f: Domain \rightarrow Range

Domain: Set of "input" values for which the function is defined.
Image : The set of "output" values which the function returns.
Range = Co-Domain = Target: Any set (usually nice) containing the image;
may be equal to the image or a larger set containing the image.

Increasing and Decreasing Functions

Monotonically increasing function: $x_{1} \leq x_{2} \Leftrightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$
Monotonically decreasing function: $x_{1} \leq x_{2} \Leftrightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$

1-to-1, Onto

f: $A \rightarrow B$ is...

- Injective (1-to-1): If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$. Equivilently: If $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. (Every element in B is mapped to by at most one element of A .)
- Surjective (onto): For all y in B, there is an x in A such that $y=f(x)$. (Every element in B has one or more matching elements in A)
- Bijective (1-to-1 and onto)

Inverses

If $y=f(x)$ is a bijective (1-to-1 and onto) function, then there exists an inverse function f^{-1} such that $f^{-1}(f(x))=f^{-1}(y)=x$

A function is bijective iff it is invertible (has an inverse).

Elementary Operations and Functions

The 5 Elementary Operations:,,$+- \times, \div$, composition $\quad[c o m p o s i t i o n: ~ f(g(x))=(f \circ g)(x)$] Elementary Functions: The functions we get from:

$$
\mathrm{c} \text { (const) } \mathrm{x} \quad \mathrm{a}^{\mathrm{x}} \quad \sin (\mathrm{x}) \quad \arcsin (\mathrm{x}) \quad \log _{\mathrm{a}}(\mathrm{x})
$$

... and their combinations through the elementary operations

Definition of a Finite Limit of Function as $\mathbf{x} \rightarrow$ a

$\lim _{x \rightarrow a} f(x)=L \quad$ iff: \quad for all $\varepsilon>0$, there exists a $\delta>0$ such that for all $\mathrm{x} \neq \mathrm{a}$,

$$
0<|x-a|<\delta \quad \Leftrightarrow \quad|f(x)-L|<\varepsilon
$$

Algebra of Limits:

Let $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=K$. Then:

- Sum: $\lim _{x \rightarrow a}(f(x)+g(x))=L+K$
- Product: $\lim _{x \rightarrow a}(f(x) * g(x))=L * K$
- Quotient: $\lim _{x \rightarrow a}(f(x) / g(x))=L / K$
- Multiplication by a constant: $\lim _{x \rightarrow a}(c * f(x))=c * L$
(if g and K are both non-0) (where c is any constant)

