Algebra of Limits:

If \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = K \), then:

- **Sum:** \(\lim_{x \to a} (f(x) + g(x)) = L + K \)
- **Product:** \(\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot K \)
- **Quotient:** \(\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{K} \) (if \(g \) and \(K \) are both non-0)
- **Multiplication by a constant:** \(\lim_{x \to a} (c \cdot f(x)) = c \cdot L \) (where \(c \) is any constant)

One-sided Limits (Definition)

From the left/below:
\[
\lim_{x \to a^-} f(x) = L \quad \text{iff:} \quad \text{for all } \varepsilon > 0, \text{ there exists a } \delta > 0 \text{ such that for all } x \neq a,
0 < a - x < \delta \quad \Rightarrow \quad |f(x) - L| < \varepsilon
\]

From the right/above:
\[
\lim_{x \to a^+} f(x) = L \quad \text{iff:} \quad \text{for all } \varepsilon > 0, \text{ there exists a } \delta > 0 \text{ such that for all } x \neq a,
0 < x - a < \delta \quad \Rightarrow \quad |f(x) - L| < \varepsilon
\]

(Recall definition for a limit was similar to the above, just had \(0 < |x - a| < \delta \) ... note the absolute value.)

Thm: \(f(x) \) has a finite limit at \(x = a \) iff both 1-sided limits exist and are equal to each other.

Finite Limit as \(x \to \infty \) (Definition)

\[
\lim_{x \to \infty} f(x) = L \quad \text{iff:} \quad \text{for all } \varepsilon > 0, \text{ there exists } x_0 \text{ such that for all } x > x_0,
|f(x) - L| < \varepsilon
\]

“Infinite” Limit as \(x \to a \) (Definition)

\[
\lim_{x \to a} f(x) = \infty \quad \text{iff:} \quad \text{for all } M > 0, \text{ there exists a } \delta > 0 \text{ such that for all } x,
0 < |x - a| < \delta \quad \Rightarrow \quad f(x) > M
\]

“Infinite” Limit as \(x \to \infty \) (Definition)

\[
\lim_{x \to \infty} f(x) = \infty \quad \text{iff:} \quad \text{for all } M > 0, \text{ there exists } x_0 \text{ such that for all } x > x_0,
f(x) > M
\]

- Similar definitions for \(\lim = -\infty \), just \(M < 0 \) and \(f(x) < M \).
- Note “infinite” limits do not exist. We just write \(\lim = \pm \infty \) to easily say why the limit doesn’t exist (because \(f(x) \) increases/decreases without bound).
Continuity (Definition)

Let a be a point in the domain of function $f(x)$.

Then f is **continuous at $x = a$** iff:

1) $f(a)$ is defined
2) $\lim_{x \to a} f(x)$ exists (i.e. is finite)
3) $\lim_{x \to a} f(x) = f(a)$

(Informally, the limit of f at a equals the value of f at a.)

Alternative (but equivalent) definition of continuity:

f is **continuous at $x = a$** iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all x:

$$|x - a| < \delta \iff |f(x) - f(a)| < \varepsilon$$

Function f is **continuous** iff it is continuous at every point of its domain.

Algebra of Continuity

If $f(x)$ and $g(x)$ are both continuous at $x=a$, then the following are also continuous at $x=a$:

- **Sum**: $f(x) + g(x)$
- **Product**: $f(x) \times g(x)$
- **Quotient**: $f(x) / g(x)$ (if $g(x=a) \neq 0$)
- **Composition**: $f(g(x)) = (f \circ g)(x)$ (where c is any constant)

Continuous Functions

The elementary functions are continuous.

Forgot what elementary functions are? Recall:

The 5 Elementary Operations: $+, -, \times, \div, \text{composition}$ \[\text{composition: } f(\ g(x)\) = (f \circ g)(x)\]

Elementary Functions: The functions we get from:

$$c (\text{const}) \quad x \quad a^x \quad \sin(x) \quad \arcsin(x) \quad \log_a(x)$$

... and their combinations through the elementary operations

Thus, **polynomial functions and rational functions (when denominator $\neq 0$) functions are always continuous.**