Convexity

Function f is **convex** on interval (a,b) if:

Definition 1:
At every point x_1 in (a,b), f lies **above the tangent line** at the point:

$$f(x) \geq f(x_1) + f'(x_1) \cdot (x - x_1)$$

Definition 2:
Between every 2 points x_0 and x_1 in (a, b), f lies **below the secant line** connecting the points:

$$f(t \cdot x_1 + (1 - t) \cdot x_2) \geq t \cdot f(x_1) + (1 - t) \cdot f(x_2) \quad \text{for } t \in [0,1]$$

- If $f''(x) \geq 0$ always on (a,b), then f is **convex** \cup (according to both definitions above).
- If $f''(x) \leq 0$ always on (a,b), then f is **concave** \cap.
- If $f''(x) = 0$ always on (a,b), then f is a straight line, and is both concave and convex.

Other notation: concave = concave down \cap; convex = concave up \cup

Inflection point: When a function changes from being convex to concave, or vice versa. At an inflection point $x = a$, $f''(a)$ is either 0 or doesn’t exist; and $f''(x)$ is negative (convex) on 1 side of a and positive (concave) on the other side. An inflection point where $f''(a)$ doesn’t exist is a **corner point**.
Infinite Integral

- The **infinite integral** of function \(f \) is the **antiderivative**: the function \(F \) that, when differentiated, gives you \(f \). It's the reverse process of differentiation. \(\int f(x) \, dx = F(x) + c \iff F'(x) = f(x) \)

- Don’t forget the **\(+C \)** constant!

- If \(\int f \, dx = F_1 \) and \(\int f \, dx = F_2 \), then \(F_1 \) and \(F_2 \) are equal or differ by a constant \((F_1 = F_2 + c) \).

- The integral is a **linear operator**: For any functions \(f \) and \(g \) and for any constant \(c \),

\[
\int (f + g) \, dx = \int f \, dx + \int g \, dx \\
\int (c \cdot f) \, dx = c \cdot \int f \, dx
\]

Integration by Parts

\[
\int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx
\]

Strategy: Try to choose \(f \) and \(g' \) such that:

- \(f \) is simpler when differentiated
- \(g' \) is simpler when integrated
- \(\int f'(x) \cdot g(x) \, dx \) is simpler to integrate than \(\int f(x) \cdot g'(x) \, dx \)

Another way to write it: \(u = f(x) \) \quad \rightarrow \quad \frac{du}{dx} = f'(x) \quad \rightarrow \quad du = f'(x) \, dx \)

\(v = g(x) \) \quad \rightarrow \quad \frac{dv}{dx} = g'(x) \quad \rightarrow \quad dv = g'(x) \, dx \)

\[
\int u \, dv = uv - \int v \, du
\]

Integration of Rational Functions \(\int \frac{p(x)}{q(x)} \, dx \) Using Partial Fractions

1. Check that \(\text{degree}(p) < \text{degree}(q) \).
 - If it’s not, use polynomial division to rewrite \(p/q \) as a polynomial plus a new rational polynomial \(p_2/q_2 \) where \(\text{degree}(p_2) < \text{degree}(q_2) \).

Example:

\[
\frac{x^3 - 4x - 10}{x^2 - x - 6} = x + 1 + \frac{8x - 4}{x^2 - x - 6}.
\]

2. Factor the denominator \(q \) until you can’t anymore (factor into “irreducible terms”).

3. Write \(p/q \) as a sum of partial fractions (and solve for constants).

Examples:

\[
\frac{x - 1}{x^2 + x} = \frac{x - 1}{x(x + 1)} = \frac{A}{x} + \frac{B}{x + 1} \\
\frac{2x - 3}{x^3 + x} = \frac{2x - 3}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} \\
\frac{2x^3 + 5x - 1}{(x + 1)^2(x^2 + 1)^2} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{x^2 + 1} + \frac{Dx + E}{(x + 1)^3} + \frac{Fx + G}{(x^2 + 1)^2}
\]

4. Integrate! (It should be easier now.)