Fundamental Theorem of Calculus, Riemann Sums, Substitution Integration Methods

104003 Differential and Integral Calculus I
Technion International School of Engineering 2010-11
Tutorial Summary - February 27, 2011 - Kayla Jacobs

Indefinite vs. Definite Integrals

- Indefinite integral: $\int f(x) d x$

The function $F(x)$ that answers question:
"What function, when differentiated, gives $f(x)$?"

A calc student upset as could be
That his antiderivative didn't agree With the one in the book
E'en aft one more look.
Oh! Seems he forgot to write the "+ C".
-Anonymous

- Definite integral: $\int_{a}^{b} f(x) d x$
- The number that represents the area under the curve $f(x)$ between $x=a$ and $x=b$
- $\quad a$ and b are called the limits of integration.
- Forget the +c . Now we're calculating actual values .

Fundamental Theorem of Calculus (Relationship between definite \& indefinite integrals)

If $F(x):=\int_{a}^{x} f(t) d t$ and f is continuous, then F is differentiable and $F^{\prime}(x)=f(x)$.
Important Corollary: For any function F whose derivative is f (i.e., $F^{\prime}(x)=f(x)$),

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

This lets you easily calculate definite integrals!

Definite Integral Properties

- $\int_{a}^{a} f(x) d x=0$
- $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \quad$ whether or not $c \in[a, b]$

Area in [a,b] Bounded by Curve f(x)

Case 1: Curve entirely above x-axis. Really easy! Area $=\int_{a}^{b} f(x) d x$
Case 2: Curve entirely below x-axis. Easy! Area $=\left|\int_{a}^{b} f(x) d x\right|=-\int_{a}^{b} f(x) d x$
Case 3: Curve sometimes below, sometimes above x-axis. Sort of easy! Break up into sections.

Average Value

The average value of function $f(x)$ in region $[a, b]$ is:

$$
\text { average }=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

Riemann Sum

Let $[\mathbf{a}, \mathbf{b}]=$ closed interval in the domain of function f
Partition [a,b] into n subdivisions: $\left\{\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]\right\}$ where $\boldsymbol{a}=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=\boldsymbol{b}$ The Riemann sum of function f over interval $[a, b]$ is:

$$
S=\sum_{i=1}^{n} f\left(y_{i}\right) \cdot\left(x_{i}-x_{i-1}\right)
$$

where y_{i} is any value between $\mathrm{x}_{\mathrm{i}-1}$ and x_{i}. Note $\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}\right)$ is the length of the $\mathrm{i}^{\text {th }}$ subdivision $\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$.

If for all i :

$y_{i}=x_{i-1}$
$y_{i}=x_{i}$
$y_{i}=\left(x_{i}+x_{i-1}\right) / 2$
$\mathrm{f}(\mathrm{yi})=\left(f\left(\mathrm{x}_{\mathrm{i}-1}\right)+f\left(\mathrm{x}_{\mathrm{i}}\right)\right) / 2$
$f\left(y_{i}\right)=$ maximum of f over $\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$
$f\left(y_{i}\right)=$ minimum of f over $\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right]$

then...

S = Left Riemann sum
$\mathrm{S}=$ Right Riemann sum
S = Middle Riemann sum
$S=$ Trapezoidal Riemann sum
$\mathrm{S}=$ Upper Riemann sum
S = Lower Riemann sum

As $n \rightarrow \infty, \boldsymbol{s}$ converges to the value of the definite integral of f over $[a, b]: \lim _{n \rightarrow \infty} S=\int_{a}^{b} f(x) d x$
EX: Riemann sum methods of $f(x)=x^{3}$ over interval $[a, b]=[0,2]$ using 4 equal subdivisions of 0.5 each:

(1) Left Riemann sum:

(4) Middle Riemann sum:

(2) Right Riemann sum:

(3) Trapezoidal Riemann sum:

Integration Method: u-substitution

$$
\int_{a}^{b} f(u(x)) \cdot u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u(x)) d u
$$

... where $d u=u^{\prime}(x) d x \quad$ (because $\left.u^{\prime}(x)=d u / d x\right)$.

Notes:

- This is basically derivative chain rule in reverse.
- The hard part is figuring out what a good u is.
- If it's a definite integral, don't forget to change the limits of integration! $a \rightarrow u(a), \quad b \rightarrow u(b)$
- If it's an indefinite integral, don't forget to change back to the original variable at the end, and $\mathbf{+ c}$.

Basic Trigonometric Derivatives and Indefinite Integrals

$D(\sin x)=\cos x$

$$
\int \cos x d x=\sin x+C
$$

$D(\cos x)=-\sin x$

$$
\int \sin x d x=-\cos x+C
$$

$D(\tan x)=\sec ^{2} x$
$\int \sec ^{2} x d x=\tan x+C$
$D(\cot x)=-\csc ^{2} x$

$$
\int \csc ^{2} x d x=-\cot x+C
$$

$D(\sec x)=\sec x \tan x$

$$
\int \sec x \tan x d x=\sec x+C
$$

$D(\csc x)=-\csc x \cot x$

$$
\int \csc x \cot x d x=-\csc x+C
$$

From trigonometric identities and u-substitution:

$$
\begin{aligned}
& \int \tan x d x=\ln |\sec x|+C \\
& \int \cot x d x=\ln |\sin x|+C \\
& \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \csc x d x=\ln |\csc x-\cot x|+C
\end{aligned}
$$

Integration Method: Trigonometric Substitution for Rational Functions of Sine and Cosines

To integrate a rational function of $\sin (x)$ and $\cos (x)$, try the substitution:

$$
t=\tan \left(\frac{x}{2}\right) \quad d x=\frac{2}{1+t^{2}} d t
$$

Use the following trig identities to transform the function into a rational function of t :

$$
\begin{aligned}
& \sin (x)=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}=\frac{2 t}{1+t^{2}} \\
& \cos (x)=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}=\frac{1-t^{2}}{1+t^{2}} \\
& \tan (x)=\frac{2 \tan \left(\frac{x}{2}\right)}{1-\tan ^{2}\left(\frac{x}{2}\right)}=\frac{2 t}{1-t^{2}}
\end{aligned}
$$

Integration Method: Trigonometric Substitution

If the integral involves...

... then substitute...

and use the trig identity...

$$
\boldsymbol{a}^{2}-\boldsymbol{u}^{2} \quad u=a \cdot \sin \theta \quad 1-\sin ^{2} \theta=\cos ^{2} \theta
$$

$$
\boldsymbol{a}^{2}+\boldsymbol{u}^{2} \quad u=a \cdot \tan \theta \quad 1+\tan ^{2} \theta=\sec ^{2} \theta
$$

$$
\boldsymbol{u}^{2}-\boldsymbol{a}^{2} \quad u=a \cdot \sec \theta \quad \sec ^{2} \theta-1=\tan ^{2} \theta
$$

Steps:

1. Notice that the integral involves one of the terms above.
2. Substitute the appropriate u. Make sure to change the $d x$ to a du (with relevant factor).
3. Simplify the integral using the appropriate trig identity.
4. Rewrite the new integral in terms of the original non- θ variable
(draw a reference right-triangle to help).
5. Solve the (hopefully now much easier) integral,
