
An Evaluation of
Intron Significance

Using Bioinformatics

Senior Project Submitted by

Kelsey Byers
Biotechnology Academy

April 17, 2003



Table of Contents

Table of Contents                                                                                      1

Explanation of Notation                                                                          1

Abstract                                                                                                         2

Introduction                                                                                                 2

Materials                                                                                                       5

Methodology                                                                                               14

Results                                                                                                           15

Discussion                                                                                                    30

References                                                                                                    30

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

2



Explanation of Notation

AF088282_1intron3 signifies gene AF088282, splice transcript 1 (this number is missing if the
gene has only one transcript), intron number 3.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

Abstract

The debate over whether introns carry genetic significance or are merely evolutionary remnants
is ongoing.  Introns share few of the conserved sequences that are such a major feature of exons
and genes, and are removed during to the transcription process.  The only indication that introns
might carry any significance at all is their presence, which possibly indicates a past or present
function.

Seven genes that exhibit alternative splicing were chosen from GenBank based on availability of
intron coordinates and raw genomic DNA sequences.  The introns were extracted manually and
converted to FASTA format using a Perl script.  Each intron was then compared to each intron
(an undertaking involving 10,404 commands run by one script) and the results parsed to remove
extraneous data.  Results with one hundred percent identity were retained and converted into
GFF format  (Artemis  flavor)  for  display  in  the  Apollo  Genome Browser.   Global  sequence
coordinates for the matches were found using the original sequences.  

Sixteen matches were found, each approximately twenty base pairs in length.  The sequences
were all polyAs and polyTs, but were not located in the same regions as the conserved polyAs
found in introns.  The presence of conserved intron sequences, albeit small ones, argues for a
possible function for introns.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

Introduction

With the completion of the human genome project, new information about the human genome is
readily  available.   About  99 percent of the human genome is  comprised of so-called "junk"
DNA, which occurs both in and between functional genes.  "Junk" DNA present within genes
occurs in short stretches known as introns.  More formally, introns are non-coding sections of
DNA that occur within functional genes. 

There are eight major classes of introns, each occurring in different locations.  GU-AG introns
(named for the splice sites), the most common, occur in the genomes of eukaryotes.  AU-AC
introns (also named for their splicing sites) are also found in eukaryotic genomes, along with
some Group I introns.  Group I and II introns are also found in organelle and some bacterial

3



RNAs.  Group III introns and twintrons are found exclusively in organelle RNAs.  Pre-tRNA
introns are found in eukaryotic nuclear pre-tRNA, and archeal introns are found in various RNAs
in archaebacteria.   

Vertebrate introns contain several conserved sequences.  The 5' end of the intron contains a 5'
splice site, typically of the sequence GU (guanine-uracil).  The 3' end of the intron contains a 3'
splice site, typically of the sequence AG (adenine-guanine).  Preceding the 3' splice site is a
polypyrimidine  tract,  consisting  of  many repeated  pyrimidine  nucleotides  (either  cytosine  or
uracil).   Some introns also contain "branch points,"  consisting of a single adenine nucleotide
located between 20 and 50 base pairs upstream from the 3' splice site.  When splicing occurs, the
branch point binds to the 5' splice site (specifically, to the uracil) and forms a "lariat," with the
loop  being  the  sequence  upstream  of  the  branch  point  and  the  tail  being  the  downstream
sequence.  Some introns also have branch point sequences that incorporate polyA signals.  Few
other conserved sequences are found. 

There are two major hypotheses of intron evolution:  "introns early" and "introns late."  "Introns
early" states that introns originated early in the genomic evolution process and are slowly being
removed from eukaryotic genomes.  "Introns late" states that introns are a recent development in
the genome and are accumulating in, rather than disappearing from, eukaryotic genomes.  These
distinctions apply mainly to GU-AG introns, as the other introns are either rare or (as in the case
of the Group I, II, and III introns) the origins are already known.  The "introns early" model is
also known as the "exon theory of genes" model, which states that introns were formed during
the transition from RNA-based organisms to DNA-based organisms.  According to this theory,
modern eukaryotic genes were formed from short (mostly single-domain) genes that associated
into one gene, with the intervening sequences becoming the introns.  The logical consequence of
this theory is the idea that all genomes possessed introns at some point.  As bacterial genomes no
longer contain introns, they must have been lost at some early point, which disagrees with the
"introns  early"  hypothesis.   Although  evidence  of  similarity  between  Group  II  and  GU-AG
introns helps support the "introns late" hypothesis, this evidence may also be turned around to
support the "introns early" hypothesis, although in a different manner than in the "exon theory of
genes."  Both hypotheses are still viewed as valid, as significant evidence to prove or disprove
either has yet to be put forth.   

Several interesting evolutionary effects have been noticed in introns found in rRNA (ribosomal
RNA).  Two possibilities exist for rRNA introns:  that they are vertically inherited from ancestral
genes, or that they are preferentially horizontally transferred to certain specific target sites.  The
vertical  inheritance  hypothesis  would  be  sustained  by  evidence  of  closely  related  introns  in
unrelated  organisms;  conversely,  the  horizontal  transfer  hypothesis  would  be  sustained  by
evidence of different intron classes located in the same region of the rRNA.  Another question
related to the horizontal transfer hypothesis is that of intron movement:  are introns transposed by
protein-dependent mechanisms or are they selectively retained after random insertion (i.e. introns
that reduced function would be removed)?  Studies showed that introns at the same position were
more closely related than those at different positions, and therefore introns were retained for long
periods of evolution after their initial insertion.  Introns were observed to be periodically lost

4



from certain lineages and were rarely regained or transferred to new lineages.  However, a certain
amount  of  mobility  is  required  to  ensure  survival  and  spread  of  intron  sequences  to  new
organisms,  otherwise  the  two  observations  would  contradict  one  another.   Finally,  it  was
observed that frequent deletion and insertion of introns led to different phylogenetic trees based
on  introns  or  exons  of  rRNA.    From the  evidence,  it  appears  that  the  vertical  inheritance
hypothesis is more valid than the horizontal transfer hypothesis. 

Logically, like exons, intron populations and locations in the genome have changed over time
and between species.  Intron size itself (the typical length of each intron) is actively regulated, as
changes in intron size may affect gene expression and protein export from the cell nucleus.  In
Drosophila, the gene 4f-rnp is an example of another type of intron regulation:  the regulation of
the splicing process.  Spliceosomal intron losses within this gene create functional alternative
splices  in  the  species.   When spliceosomal  introns were compared between distantly  related
species, they were found to have undergone differential intron loss.  It was observed that there
was a bias in intron loss toward the 3' (AG) end of the intron.  One possible explanation for this
behavior is the idea of intron elimination due to genetic drift. 

Of course,  the most  important  question relating to introns, and the one that is a very recent
development, is the idea of the significance or function of introns.  Some argue that introns are
critical to the genome, an idea supported by the "introns early" hypothesis.  As introns were
present in the common ancestor of all living species, and are still  present in eukaryotes, they
must be critical.  The opposing idea is that introns are "leftovers," remnants of the evolutionary
process.   For  example,  when  translated  into  amino  acid  sequences,  introns  do  not  code  for
meaningful proteins.  Many researchers' beliefs fall in the middle of the two ideas, believing that
intron function cannot be essential to translation but may provide useful regulatory functions for
some organisms.  Unspliced introns affect protein synthesis, as they are present in the mRNA
and amino acid sequences.  One idea states that introns may be required for the modification of
mRNA, with the idea that introns inhibit transcriptional activity.  The splicing process is thus
necessary,  as  it  activates transcription.   In  addition,  introns affect  expression levels  of  some
genes.  Minimal introns (those at the lowest end of the size distribution) have been shown to
affect exportation of proteins from the cell nucleus, with the hypothesis that three export paths
exist:  mRNAs without introns, mRNAs with non-minimal introns, and mRNAs with minimal
introns.  In addition, some genes exhibit odd behavior, where the order of intron removal affects
the  splicing  process.   If  one  intron  is  removed  earlier  than  another,  certain  exons  are
"accidentally" removed along with their flanking introns.  Small clues to the possible function of
introns have been discovered and described.  However, the idea of intron function has not been
widely researched.   

Bioinformatics tools provide a useful medium for analysis of genetic sequence.  Manual analysis
of genetic  data has become obsolete  with the development of high-powered processors,  data
storage, and programming languages, and a variety of tools for genomic and proteomic analysis
are readily available.  Types of bioinformatics tools  for sequence analysis  include alignment
programs,  which compare sequence data for  similarity;  translation programs,  which translate
sequences  from,  for  example,  DNA to  mRNA;  gene  prediction  programs,  which  search  for

5



possible open reading frames (ORFs) in genomic sequences; annotation programs, which allow
the user to manually or automatically analyze a variety of results from various tools; modeling
programs, which display complex three-dimensional protein structure, et cetera.  Many of these
programs (and many other useful scripts) are written in Perl (Practical Extraction and Report
Language), the major bioinformatics programming language.  Bioinformatics programs, along
with Perl, are extremely valuable to sequence analysis, and doubtless have applications in the
study of intron function and significance.

In this study, conserved elements shared by several introns are discovered and located in the
introns of seven genes that exhibit alternative splicing.  The conserved elements are shown to be
located in regions other than those corresponding to previously known conserved polyAs and
polyTs.    In addition,  the presence of polyTs,  previously not specifically noted in introns, is
interesting.  PolyTs are only noted in conjunction with introns because they are used to remove
mRNAs from genomic DNA.  The mRNA contains polyA sequences that the polyTs bind to.
The uniform size of these motifs (between seventeen and twenty-five base pairs in length) is also
interesting:   the  mean  (20.9375  b.p.),  median  (20  b.p.),  and  mode  (20  or  24  b.p.)  are  all
consistent.  This study can serve as a springboard for future investigation of introns, as well as
demonstrating conserved elements that may indicate a function for introns.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

Materials

Operating Environment

Red Hat Linux v. 7.2
Linux, one of the four major operating systems along with Windows, Macintosh, and Unix, is
most similar to Unix in both operation and design.  It shares Unix's text-based user interaction
but includes a slightly more complex graphic user interface.  Linux is available in a variety of
distributions, the most well known being Mandrake, Red Hat, and Debian GNU.  A full list may
be found at http://www.linux.org/dist/list.html.  Linux was developed by Linus Torvalds in 1991.
Red Hat Linux v. 7.2 is a recent release of Red Hat's distribution.  Information on acquiring Red
Hat Linux may be obtained at http://www.redhat.com/software/.

Hardware details
126692K memory 
257032K swap space
9550788K disk space 
CPU speed unavailable.  Information obtained using top (memory and swap space) and df (disk
space) commands in bash.

6



bash
bash (the Bourne Again Shell) is a shell, or program for text-based interaction with the computer,
largely used in the Unix and Linux operating systems.  It allows the user to perform tasks in the
system environment by entering the command names into the shell.  bash is similar in function to
the MS-DOS terminal but is more integral to the user's interaction with the operating system.
bash comes standard with most Linux distributions and with Unix, but it may also be found at
http://ftp.gnu.org/gnu/bash/.

Perl
Perl, the Practical Extraction and Report Language, is a programming language widely used in
the field of bioinformatics.  Perl can be used for many tasks:  running commands, manipulating
files or data, and generally facilitating data acquisition and analysis.  Unlike C, Perl requires no
manual compilation, making it ideal for less involved tasks.  Perl utilizes regular expressions,
control structures, and variable systems similar to those found in C.  Perl was created by Larry
Wall in 1987.  Perl is available at http://www.perl.com/pub/a/language/info/software.html.  

Programs and Tools

LALIGN
LALIGN, written by William Pearson as part of the FASTA bioinformatics analysis package,
calculates multiple local alignments between two sequences.  It utilizes the SIM algorithm
developed by Huang and Miller in 1991.  Unlike many current alignment programs, LALIGN
displays multiple alignments with different scores, preventing the program from overlooking
additional significant results.  LALIGN output displays the sequence names, sizes, and matrix
followed by scoring and coordinate information and a graphic base-by-base alignment for each
hit.  LALIGN is available from ftp://ftp.virginia.edu/pub/fasta. 

Apollo
Apollo, a genome annotation and curation tool, was developed by the efforts of the FlyBase-
Berkeley Informatics Group, the Howard Hughes Medical Institute, and the Sanger
Institute/European Bioinformatics Institute.  It provides a graphic display of genomic data and
genomic annotations.  In addition, annotations may be made within the program.  Apollo accepts
input in the Artemis flavor of GFF (Gene Finder Format) and exports to Apollo or GFF format.
The program may be customized to accommodate data from various programs.  Apollo is
available through the Berkeley Drosophila Genome Project at
http://www.fruitfly.org/annot/apollo/install.html.  

XV
XV is a graphics program for acquiring, manipulating, reading, and saving graphic files in
multiple formats.  XV is most useful in the bioinformatics field in its capacity for acquiring data
via its screenshot capability.  It is also used to display these files (which may also be shown in a
browser window).  XV is shareware and is available from
http://www.trilon.com/xv/downloads.html.  

7



Programs Written Specifically for This Project

intronlalign
This script is intended to LALIGN intron sequences from 7 alternative splice genes.  Each intron
sequence must be compared to each other intron sequence.  The script is written in Perl.

#!/usr/bin/perl -w
#
# Comments:
#       This script is intended to lalign intron sequences from 7 alternative
#       splice genes.  The intron sequences have been previously separated
#       from their parent genes.  Each intron sequence must be compared to
#       each other intron sequence.

# start pseudocode

# define scalars (input, output files and databases)
# $i method (until $i>100 and such); $f array method (see examples below)

#define scalar variables

$QUERYDIR = "/home/kbyers/alternative_splices/All";
$DB = "/home/kbyers/alternative_splices/All2";
$OUTPUTDIR = "/home/kbyers/alternative_splices/intronlalign";

#put files from $db into an array
opendir (DB, $DB) || die "cannot open directory handle. $!";
while ($dbfile = readdir(DB)) {
    unless ($dbfile=~/^\./) {
        push (@intronlist,$dbfile);
        push (@querylist,$dbfile);
    }
}

#do lalign
foreach $f (@intronlist) {
    foreach $i (@querylist) {
        $cmd = "lalign $DB/$f $QUERYDIR/$i > $OUTPUTDIR/out.$f.$i.lalign";
           print $cmd,"\n";
           system ($cmd);
    }
}

close (DB);

lalign.parse2
A parser for lalign data to remove the actual alignment data and keep the %identity, overlap, and
score.  It searches for a regular expression of digits followed by a percent sign (the /\d\d.\d\%/)
and prints the line containing this expression to the output file.  The program requires command-
line input of filenames and is written in Perl.

#!/usr/bin/perl -w

8



#
# Comments:
#       A parser for lalign data to remove the actual alignment data and
#       keep the %identity, overlap, and score.
#
# Code:

# later on this input dialog will be replaced with a foreach loop to do all
# 8000-odd parses... this is the interactive version, soon to be automated.
# Likely I will push this file to a <> mode to accept command-line file calls
# and will then write another script to execute this one automatically.
# Call with lalign.parse2 $f > $f.parsed.

# that push to full auto has already been done.

while (defined($line = <>)) {
        if ($line =~ /\d\d.\d\%/) {
                print ("$line\n");
        }
}

parse_lalign
This script is intended to run 'lalign.parse2' on a series of files resulting from a run of LALIGN.
It is written in Perl.

#!/usr/bin/perl -w
#
# Comments:
#       This script is intended to run 'lalign.parse2' on a series of files
#       resulting from a run of lalign.
#
# Code:

# get files
$INPUTDIR = "/home/kbyers/alternative_splices/intronlalign";
$OUTPUTDIR = "/home/kbyers/alternative_splices/intronlalign_parse";

#put files from input into an array
opendir (INPUT , $INPUTDIR) || die "cannot open directory handle. $!";
while ($dbfile = readdir(INPUT)) {
    unless ($dbfile=~/^\./) {
        push (@lalignlist,$dbfile);
        }
}

#do parse
foreach $f (@lalignlist) {
           $cmd = "lalign.parse2 $INPUTDIR/$f > $OUTPUTDIR/$f.parsed";
           print $cmd,"\n";
           system ($cmd);
}

lalign_narrow100
This script is similar to lalign.parse2.  However, instead of removing lines based on the presence
of digits and a percent sign, it screens by removing all lines without a "100.0%" present.  It's

9



intended to remove lines resulting from lalign.parse2 that contain  values of less than one
hundred percent.  Written in Perl.

#!/usr/bin/perl -w
#
# Comments:
#       A parser for lalign data to remove all data below 100% and
#       keep the %identity, overlap, and score.
#
# Code:

# later on this input dialog will be replaced with a foreach loop to do all
# 8000-odd parses... this is the interactive version, soon to be automated.
# Likely I will push this file to a <> mode to accept command-line file calls
# and will then write another script to execute this one automatically.
# Call with lalign_narrow100 $f > $f.parsed.

# that push has already been done.

while (defined($line = <>)) {
        if ($line =~ /100.0\%/) {
                print ("$line\n");
        }
    }

lalign_narrowing100
This program is a modification of parse_lalign and runs lalign_narrow100 (as opposed to
lalign.parse2).  Written in Perl.

#!/usr/bin/perl -w
#
# Comments:
#       This script is intended to run 'lalign_narrow100' on a series of files
#       resulting from a run of lalign.
#
# Code:

# get files
$INPUTDIR = "/home/kbyers/alternative_splices/intronlalign_parse";
$OUTPUTDIR = "/home/kbyers/alternative_splices/intronlalign_narrow100";

#put files from input into an array
opendir (INPUT , $INPUTDIR) || die "cannot open directory handle. $!";
while ($dbfile = readdir(INPUT)) {
    unless ($dbfile=~/^\./) {
        push (@lalignlist,$dbfile);
        }
}

#do parse
foreach $f (@lalignlist) {
           $cmd = "lalign_narrow100 $INPUTDIR/$f > $OUTPUTDIR/$f.parsed";
           print $cmd,"\n";
           system ($cmd);
}

10



counterimage100
This program counts the number of characters in all files in a directory and then outputs the
filename and number of characters for each file into a separate file (countlist100).  Written in
Perl.

#!/usr/bin/perl -w
#
# Commentary:
#       This program is a perl script I've been working on lately.
#       Its purpose is to count the number of characters in each
#       file in the given directory, then save the names of the files with
#       a certain number of characters to another file.
#
# Code:

#define scalar variables
$COUNTDIR="/home/kbyers/alternative_splices/intronlalign_narrow100";

#put files from $countdir into an array
opendir (COUNTDIR, $COUNTDIR) || die "cannot open directory handle: $!";
while ($file=readdir (COUNTDIR)) {
        unless ($file=~/^\./) {

             push (@countlist,$file);
        }
}
close (DIR);

#do count
foreach $f (@countlist) {
$cmd="wc -m $COUNTDIR/$f >> countlist100";
        print $cmd,"\n";
        system ($cmd);
}

count.parse
This program removes the filename and number of characters of any file with 0 characters from
the file resulting from countlist100.  Written in Perl.

#!/usr/bin/perl -w
#
# Comments:
#       A parser for lalign data to remove the actual alignment data and
#       keep the %identity, overlap, and score.
#
# Code:

# later on this input dialog will be replaced with a foreach loop to do all
# 8000-odd parses... this is the interactive version, soon to be automated.
# Likely I will push this file to a <> mode to accept command-line file calls
# and will then write another script to execute this one automatically.
# Call with count.parse $f > $f.parsed.

# again, already done.

11



while (defined($line = <>)) {
        if ($line =~ /1\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /2\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /3\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /4\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /5\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /6\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /7\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /8\d\s/) {
                print ("$line\n");
        } elsif ($line =~ /9\d\s/) {
                print ("$line\n");
        }
}

deltaseq
This program, the most complex of this category, accepts user input or prompts for input.  It
takes a genomic sequence file of type GenBank, lowercase without numbers, uppercase without
numbers, or FASTA and converts the file to FASTA.  Written in Perl.

#!/usr/bin/perl

#############################################################################
#
#       Deltaseq:  A program to translate data to FASTA format.
#       Copyright 2003 by Kelsey Byers.
#       This program may be copied or modified (with credit to the original
#       owner) but NOT sold.  This message must be retained and the program's
#       source passed on.  Not to be used commercially or for profit without
#       prior permission of the owner/author.
#
#############################################################################
#
# Code:

# Do you need help?
if ($ARGV[0] eq "-h") {
        print ("Deltaseq:  the FASTA sequence conversion tool.\nWritten by
Kelsey Byers, 2003.  (kjb\@space.mit.edu)\nUsage:  deltaseq -t type
filename.\nType can range from 1 to 4.\n1 = Genbank\n2 = Lowercase text\n3 =
Uppercase text\n4 = FASTA\nEntering deltaseq -h will display this
message.\n");
        exit;
}

# Did you input a filename?  Or should I prompt you?
if ($ARGV[2] =~ /^\w/) {
        $INFILE = $ARGV[2];
} else {

12



        print ("Please enter an input file path.\n");
        $INFILE = <STDIN>;
}

# Processing the filename
chomp($INFILE);
open (IN, "$INFILE") || die "Cannot open $INFILE:  $!";
$TMPFILE = $INFILE . ".tmp";
open (TMP, ">$TMPFILE") || die "Cannot open temporary file $TMPFILE:  $!";
$OUTFILE = $INFILE . ".fold.fa";

# Did you input a type?  Or should I prompt you?
if ($ARGV[0] eq "-t") {
        $type = $ARGV[1];
} else {
        print ("Please enter a sequence type.\n1 = Genbank\n2 = Lowercase
text\n3 = Uppercase text\n4 = FASTA\n");
        $type = <STDIN>;
}
chomp($type);

# A few commands needed later for formatting and removing temporary files
$fold = "fold -w 60 $TMPFILE > $OUTFILE";
$rm = "rm -f $TMPFILE";

# Processing the file
if ($type == "1") {
        print TMP (">$OUTFILE\n");
        while ($fasta = <IN>) {
                $fasta =~ tr/a-z/A-Z/;
                $fasta =~ s/\d//g;
                $fasta =~ s/\s//g;
                print TMP ("$fasta");
        }
        system ($fold);
        system ($rm);
} elsif ($type == "2") {
        print TMP (">$OUTFILE\n");
        while ($fasta = <IN>) {
                $fasta =~ tr/a-z/A-Z/;
                $fasta =~ s/\s//g;
                print TMP ("$fasta");
        }
        system ($fold);
        system ($rm);
} elsif ($type == "3") {
        print TMP (">$OUTFILE\n");
        while ($fasta = <IN>) {
                $fasta =~ s/\s//g;
                print TMP ("$fasta");
        }
        system ($fold);
        system ($rm);
} elsif ($type == "4") {
        print ("$INFILE is already in FASTA format.\n");
        system ($rm);
} else {
        print ("$type is not a recognized file type.\n");
}

13



exit;

#############################################################################
# Command-line Options
#
# -h:  help.  Displays the help message.
# -t:  type.  Should be -t 1 (for example).
# filename to be changed.
# Should be deltaseq -t <type> <filename> or deltaseq -h
#############################################################################

apollo
The executable for Apollo is location-specific and must be run from its original directory.  This
script, written in shell script, executes Apollo from any location.

#!/bin/sh
#
# code to execute apollo
#

exec /home/kbyers/Apollo/Apollo "$@"

Data/Sequences

GenBank.
GenBank is an annotated collection of all publicly available DNA and RNA sequences.
Sequence data must under process control prior to submission, ensuring accuracy.  Data in
GenBank is in GenBank format (flatfiles with sequence data, annotations, references, and links).
Sequence data is presented in lowercase with coordinate numbers.  GenBank is a database
maintained by the National Center for Biotechnology Information (NCBI) and may be found at
http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html.
AF088282/OGG1
OGG1 codes for an enzyme that converts 8-oxoguanine (a byproduct of exposure to reactive
oxygen, also a mutagen) into a harmless product.  Many alternative splice variants for this gene
exist and have been described.  The gene is located at 3p26.2.
AF110798/IL18BP
IL18BP codes for an inhibitor of IL18, an inflammatory cytokine.  It inhibits interferon
production and is expressed and secreted in mononuclear cells, particularly in those from patients
with Crohn's disease.  Four alternative splice variants have been described.  Located at 11q13.
AF135025/KLK12
KLK12 is a serine protease.  The group of proteins in which it is classified, the kallikreins, are
implicated in carcinogenesis and may be of use as biomarkers.  Alternative splicing encodes
three variants.  KLK12 is located between 19q13.3-19q13.4.
AF199339/PSIP1/PSIP2
PSIP1 and 2 have not been well researched.  PSIP1 is thought to protect cells from cell death via
apoptotic cleavage; PSIP2 is believed to bind to involucrin promoters, thereby regulating

14



expression of the involucrin gene.  The number of splice variants is unknown.  PSIP1 is located
at 9p22.2; PSIP2 is located at 9p22.1.
AY052369/PPP2R5C
Information on PPP2R5C is unavailable and its function is unknown at this time.  It codes for an
unknown number of splice variants.  The gene is located at 14q32.
L29074/FMR1
Mutations in the FMR1 gene cause fragile X syndrome, the major symptom  of which is mental
retardation.  The syndrome is caused by an increased number of repeats in the gene.  The number
of splice variants is not available.  FMR1 is located at Xq27.3. 
M10014/FGG
FGG codes for the gamma component of fibrinogen.  Fibrinogen is cleaved by thrombin to form
fibrin, the major component of blood clots.  Mutations in this gene lead to several disorders.
Alternative splicing results in two isoforms of the gene.  Located at 4q31.3.
(http://www.ncbi.nlm.nih.gov)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

Methodology

Preparation and Sequence Acquisition
1.  Installed LALIGN, Apollo, and XV on the computer.
2.  Obtained 7 alternative splice gene DNA sequences (see above for descriptions) from
GenBank.
3.  Removed intron sequences by hand using GenBank annotation data for coordinates and stored
them on hard drive of computer.
4.  Converted GenBank intron sequences to FASTA format (required by LALIGN) using
deltaseq.
LALIGN
5.  Wrote running scripts for LALIGN (intronlalign).
6.  Tested intronlalign using a few sequences.
7.  Ran intronlalign over several days, resulting in 10,404 files.
Parsing LALIGN Output
8.  Wrote a parser that removes the %id line from the LALIGN files (lalign.parse2).
9.  Modified lalign.parse2 to take input from command-line and write to specified output per
"lalign.parse2 file > file.parsed".
10. Wrote a script to run all lalign.parse2 jobs with one call (parse_lalign).
11. Parsed all output files by running parse_lalign.
12. Modified lalign.parse2 to remove all matches with identities fewer than 100 percent
(lalign_narrow100).
13. Wrote a script to run all lalign_narrow100 jobs with one call (lalign_narrowing100).
14. Got list of file sizes using counterscript100 and parsed it using count.parse to get a working
list of good files with file sizes larger than 0.

15



Moving LALIGN Output to GFF/Apollo; Viewing Results
15. Split file size list by 1st intron (the database intron) into 36 groups, representing 36 introns
that had hits.
16. Each group represented one Apollo file to display.  Decided to display database intron along
its length and show where the other introns matched to it.
17. Modified Apollo to accept lalign input in ~/Apollo/conf/tiers.dat file.
18. Put each file from the list into GFF format to display in Apollo.
19. Took a screenshot in XV of each file's Apollo view.
20. Noticed the presence of lots of duplicates due to repeated introns and overlaps, so screened
out duplicates.  Left with 22 files.
21. Had a problem with AF199339_1intron3 and 2intron3 being the same intron but hitting to
different sites (6 off) on another intron- not really sure why that occurred.  Sequences were
exactly the same when tested in LALIGN.
22. Removed duplicate introns from good Apollo files (e.g. if intron 1 and its duplicate are both
matching, remove the duplicate from the GFF file).
23. Removed hits from same genes due to overlap of transcripts rather than significant similarity
between the introns.
24. Took screen shots of good introns using XV.
Obtaining Matching Sequences
25. Found global coordinates of intron motifs (the sequences that were matched by other
introns).
26. Got intron sequences that were motifs of each intron (16 in total). All polyAs and polyTs of
approximately 20 base pairs each.
27. Converted motif sequences to FASTA format.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

Results

Format:  
Apollo screenshot of data
Database intron:  number of introns aligned to it.
Database intron start stop # in local coordinates
Hit 1 start stop
Hit 2 start stop # ad nauseum
Global Coordinates: start-stop # in global coordinates
Motif Sequence Length:  Length in base pairs
Motif Sequence:  DNA sequence of motif

16



AF088282_1intron3:  3 introns aligned.
AF088282_1intron3 1       2750    
AF135025_1intron3 583     603     
AF135025_1intron3 585     604     
AF135025_1intron3 586     604     
AF135025_1intron3 587     604     
AF135025_3intron3 583     603     
AF135025_3intron3 585     604     
AF135025_3intron3 586     604     
AF135025_3intron3 587     604     
AF199339_1intron2 585     604     
AF199339_1intron2 583     602     
AF199339_1intron2 586     604     
L29074_intron12 586     604     
L29074_intron12 585     603     

17



L29074_intron12 586     604     
L29074_intron12 585     603     
Global Coordinates:  3515-3534
Motif Sequence Length:  20 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAAA

AF088282_1intron4:  1 intron aligned.
AF088282_1intron4 1       1574    
AF199339_1intron13 579   595     
Global Coordinates:  6441-6457
Motif Sequence Length:  17 b.p.
Motif Sequence:  CTTTTTTTTTTTTTTTT

18



AF135025_3intron3:  3 introns aligned.
AF135025_3intron3 1          3058    
AF199339_1intron2 1578    1599    
AF199339_1intron2 1580    1598    
AF199339_1intron2 1577    1595    
AY052369_intron8 1580    1599    
L29074_intron12 1580    1599    
L29074_intron12 1579    1597    
L29074_intron12 1579    1597    
Global Coordinates:  6235-6254
Motif Sequence Length:  20 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAAG

19



AF199339_1intron2:  3 introns aligned.
AF199339_1intron2       1          3930    
AF088282_1intron3       1583    1602    
AF088282_1intron3       1582    1601    
AF088282_1intron3       1582    1600    
AF135025_1intron3       1582    1603    
AF135025_1intron3       1584    1602    
AF135025_1intron3       1582    1600    
AF135025_1intron3       1585    1602    
AF135025_3intron3       1582    1603    
AF135025_3intron3       1584    1602    
AF135025_3intron3       1582    1600    
Global Coordinates:  5201-5221
Motif Sequence Length:  21 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAAAA

20



AF199339_1intron3:  1 intron aligned.
AF199339_1intron3       1         3053    
AF199339_1intron13     353     370     
Global Coordinates:  8341-8358
Motif Sequence Length:  18 b.p.
Motif Sequence:  ATTTCTTTTTTTTTTTTT

21



AF199339_1intron7:  1 intron aligned.
AF199339_1intron7       1         4238    
AY052369_intron6        325     348     
AY052369_intron6        326     349     
Global Coordinates:  17132-17156
Motif Sequence Length:  25 b.p.
Motif Sequence:  TTTTTTTTTTTTTTTTTTTTTTTTT

22



AF199339_1intron9:  2 introns aligned.
AF199339_1intron9       1          2640    
AF199339_1intron13     1677    1696    
AF199339_1intron13     1676    1695    
AY052369_intron6        1675    1698    
AY052369_intron6        1676    1699    
AY052369_intron6        1677    1699    
AY052369_intron6        1678    1699    
AY052369_intron6        1679    1699    
Global Coordinates:  24327-24350
Motif Sequence Length:  24 b.p.
Motif Sequence:  TTTTTTTTTTTTTTTTTTTTTTTT

23



AF199339_1intron13:  4 introns aligned.
AF199339_1intron13     1        1769    
AF088282_1intron4       488     504     
AF199339_1intron3       489     506     
AF199339_1intron9       489     508     
AF199339_1intron9       489     508     
AY052369_intron6        489     508     
AY052369_intron6        489     507     
AY052369_intron6        491     508     
AY052369_intron9        489     506     
Global Coordinates:  27143-27162
Motif Sequence Length:  20 b.p.
Motif Sequence:  TTTTTTTTTTTTTTTTTTTT

24



AY052369_intron6:  5 introns aligned.
AY052369_intron6        1         2703    
AF199339_1intron13     471     490     
AF199339_1intron13     474     492     
AF199339_1intron13     469     486     
AF199339_1intron7       469     492     
AF199339_1intron7       469     491     
AF199339_1intron9       469     492     
AF199339_1intron9       469     492     
AF199339_1intron9       469     491     
AF199339_1intron9       469     490     
AF199339_1intron9       469     489     
AY052369_intron13      469     492     
L29074_intron1  468     492     
Global Coordinates:  83368-83391

25



Motif Sequence Length:  24 b.p.
Motif Sequence: TTTTTTTTTTTTTTTTTTTTTTTT 

AY052369_intron8:  2 introns aligned.
AY052369_intron8        1          7158    
AF135025_1intron3       2077    2096    
AF135025_1intron3       2077    2095    
AF135025_1intron3       2077    2095    
AF135025_3intron3       2077    2096    
Global Coordinates:  89240-89259
Motif Sequence Length:  20 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAAG

26



AY052369_intron9:  1 intron aligned.
AY052369_intron9         1          4512          
AF199339_1intron13      1127    1144    
Global Coordinates:  95619-95636
Motif Sequence Length:  18 b.p.
Motif Sequence:  TTTTTTTTTTTTTTTTTT

27



AY052369_intron13_1:  1 intron aligned.
AY052369_intron13       1          7194    
AF135025_1intron3       2025    2046    
Global Coordinates:  112575-112596
Motif Sequence Length:  22 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAAAAA

These two motif sequences share the same Apollo file.

AY052369_intron13_2:  1 intron aligned.
AY052369_intron13       1         7194    
AF135025_1intron3       3116    3139       
Global Coordinates:  113666-113689
Motif Sequence Length:  24 b.p.
Motif Sequence:  TTTTTTTTTTTTTTTTTTTTTTTT

28



L29074_intron1:  1 intron aligned.
L29074_intron1     1          9702    
AY052369_intron6        6325    6349    
Global Coordinates:  20337-20361
Motif Sequence Length:  24 b.p.
Motif Sequence:  CTTTTTTTTTTTTTTTTTTTTTTTT

29



L29074_intron12_1:  3 introns aligned.
L29074_intron12 1       2414    
AF088282_1intron3       1742    1760    
AF088282_1intron3       1742    1760    
AF135025_1intron3       1742    1761    
AF135025_1intron3       1742    1760    
AF135025_3intron3       1742    1761    
AF135025_3intron3       1742    1760    
Global Coordinates:  41686-41704
Motif Sequence Length:  19 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAA

These two motif sequences share the same Apollo file.

L29074_intron12_2:  3 introns aligned.

30



L29074_intron12 1       2414    
AF088282_1intron3       2000    2018    
AF088282_1intron3       2000    2018    
AF135025_1intron3       2000    2018    
AF135025_3intron3       2000    2018    
Global Coordinates:  41944-41962
Motif Sequence Length:  19 b.p.
Motif Sequence:  AAAAAAAAAAAAAAAAAAA

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

Discussion

The  presence  of  sixteen  completely  conserved  sequences  shared  between  seven  completely
unrelated genes cannot be attributed to coincidence.  Neither can the statistical values shared by
the sequences in terms of length and type.  Of the sequences, seven were determined to be polyA
sequences;  the remaining nine were polyT sequences.   The majority  of each type were pure
sequences  with  no  corrupting  residues;  some  sequences  of  each  group  had  one  or  more
intervening cytosine or guanine residues.

The presence of polyAs is noted in introns only 20 to 50 base pairs upstream from the 3’ end of
the intron.  None of these sequences are located in this region, so it may be assumed that they
represent a different motif occurring at a different site in each intron.  The presence of polyTs is
not noted within introns, so these sequences are novel as well.

Since conservation of motif sequences requires regulatory action, and regulatory action is only
performed on necessary sequences (observe the chaotic state of intergene regions), it  may be
hypothesized  through logic  that  the  sequences  containing  motifs  must  have  (or  have  had)  a
function now or in the past.   It’s possible that so-called “junk DNA” might not be completely
irrelevant when it comes to the evolution, development, and maintenance of an organism.

Future research confirming this phenomenon must be completed.  It will be interesting to note
whether these motifs are common to all introns from one species or across species boundaries.
In  addition,  any possible  role  these  sequences  play  in  alternative  splicing,  the  one  common
element among them, should be explored.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x

References/Citations

"Apollo User Guide."   http://www.fruitfly.org/annot/apollo/userguide.html (February 26, 2003)

31



Baxevanis, Andreas D., and B. F. Francis Ouellette.  Bioinformatics:  A Practical Guide to the
Analysis of Genes and Proteins (Second Edition).  New York:  Wiley-Interscience, 2001.
(p. 187-212)

Brown, T. A.  Genomes.  New York:  Wiley-Liss, 1999.  (p. 212-219, 221-223, 385-387)

Feiber, A. L., Rangarajan, J., and Vaughn, J. C.  (2002)  The evolution of single-copy Drosophila
nuclear 4f-rnp genes:  spliceosomal intron losses create polymorphic alleles.  Journal of
Molecular Evolution, 55, 401-413.

Jackson, S., Cannone, J., Lee, J., Gutell, R., and Woodson, S.  (2002)  Distribution of rRNA
introns in the three-dimensional structure of the ribosome.  Journal of Molecular Biology,
323, 35.

Schwartz, Randal L., and Tom Christiansen.  Learning Perl.  Sebastopol, California:  O'Reilly
and Associates, Inc., 1997.

Takahara, K., Schwarze, U., Imamura, Y., Hoffman, G.G., Toriello, H., Smith, L.T., Byers, P.H.,
and Greenspan, D.S.  (2002)  Order of intron removal influences multiple splice
outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in
abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type 1.  American
Journal of Human Genetics, 71, 451-465.

Vromans, Johan.  Perl Pocket Reference (Fourth Edition).  Sebastopol, California:  O'Reilly and
Associates, Inc., 2002.

Watson, James.  Molecular Biology of the Gene (Fourth Edition).  New York:  Addison-Wesley
Publishing, 1997.  (p. 91-95)  

Watts, Giles D. J.  (1998)  Analysis of genes within human chromosome region 11q22-23.
University of Birmingham Thesis Paper.

Yu, Jun, Yang, Zhiyong, Kibukawa, Miho, Paddock, Marcia, Passey, Douglas A., and Wong,
Gane Ka-Shu.  (2002)  Minimal introns are not "junk."  Genome Research, 12, 1185-
1189.

32


