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Abstract— Unsupervised learning techniques, such as
Bayesian topic models, are capable of discovering latent
structure directly from raw data. These unsupervised models
can endow robots with the ability to learn from their
observations without human supervision, and then use the
learned models for tasks such as autonomous exploration,
adaptive sampling, or surveillance. This paper extends
single-robot topic models to the domain of multiple robots.
The main difficulty of this extension lies in achieving and
maintaining global consensus among the unsupervised models
learned locally by each robot. This is especially challenging
for multi-robot teams operating in communication-constrained
environments, such as marine robots.

We present a novel approach for multi-robot distributed
learning in which each robot maintains a local topic model to
categorize its observations and model parameters are shared to
achieve global consensus. We apply a combinatorial optimiza-
tion procedure that combines local robot topic distributions
into a globally consistent model based on topic similarity,
which we find mitigates topic drift when compared to a
baseline approach that matches topics naı̈vely. We evaluate
our methods experimentally by demonstrating multi-robot un-
derwater terrain characterization using simulated missions on
real seabed imagery. Our proposed method achieves similar
model quality under bandwidth-constraints to that achieved by
models that continuously communicate, despite requiring less
than one percent of the data transmission needed for continuous
communication.

I. INTRODUCTION

Unsupervised machine learning techniques can enable
adaptive robotic systems that are robust to unexpected
changes in their environment. Furthermore, the operation
of robots in environments like the deep benthic sea, where
they may encounter species and terrains not previously
documented, demands the flexibility to novel observations
afforded by unsupervised learning. A team of underwater
robots capable of unsupervised scene categorization would
enable more efficient ocean surveying and exploration. How-
ever, because unsupervised learning methods do not have a
priori defined labels, combining the local models discov-
ered by individual robots into a globally cohesive model
is a hard combinatorial optimization problem. Achieving
a globally cohesive scene model is critical for both post-
mission analysis and so that multi-robot teams can make
better global planning and exploration decisions in real-time.
This paper presents a novel approach to multi-robot learning
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Fig. 1: Illustration of the multi-robot terrain charac-
terization problem. Each individual AUV builds its own
local topic model. Model parameters from all vehicles are
transmitted top-side via acoustic modem, where the models
must be combined into a consistent global model. However,
there is no guarantee that the individual robots will agree
on which visual category corresponds to each topic ID. This
correspondence issue must be addressed to achieve global
consensus.

that obtains a globally consistent scene categorization under
communication constraints, endowing a team of exploratory
robots with the ability to reach consensus in their semantic
description of the world.

In this work, we consider the problem of underwater ter-
rain characterization. Formally, given a sequence of images,
we would like to predict for each image the distribution over
a set of latent categories that generated the data. Previous
approaches to this problem for single robots [1] make use of
spatiotemporal variants of topic models like latent Dirichlet
allocation (LDA) [2] and the nonparametric hierarchical
Dirichlet process (HDP) [3]. The extension of these methods
to the multi-robot setting presents several challenges. We aim
to have every robot build a model that discovers thematic
structure within an image stream that coincides well with
human semantics, but also for each robot’s model to be
consistent with the other robots in a multi-robot exploration



team. We define consistent topic models to be those with
similar topic-word distributions.

Semantically meaningful, consistent topic models can be
achieved by allowing the robots to share raw sensor obser-
vations directly with one another continuously; however, in
many practical scenarios this approach is infeasible due to
communication constraints. Additionally, it does not allow
the individual robots to build their own models for local
control. We opt instead to build a local topic model on each
robot and provide an approach allowing the correspondences
between topic models to be identified and fused without
sharing the raw sensor observations. An illustration of our
problem scenario is depicted in Figure 1, where we show
seafloor exploration with multiple autonomous underwater
vehicles (AUVs) communicating acoustically with a central
top-side modem. Topic models learned by each robot are
transmitted top-side, where the models are combined to
build a consistent global model that is then sent back to
all vehicles.

The primary contributions of this work are as follows:
• We present a novel algorithm for multi-robot real-time

online spatiotemporal topic modeling.
• We experimentally validate our approach by simulating

a multi-robot underwater mission where we seek to
categorize terrains and fauna observed on the seafloor
without human supervision or a priori defined labels.

• We examine the performance of the proposed approach
under different communication constraints, and show
that our approach produces consistent topic models
even under substantial communication delays, as well
as when one robot observes topics that go completely
unobserved by another.

• We additionally show that the proposed model achieves
similar model quality under bandwidth-constraints to
that achieved by models that continuously communi-
cate, despite requiring < 1% of the data transmission
needed for continuous communication.

To our knowledge, this work is the first application of
distributed topic models to streaming data from a multi-robot
mission. Consequently, this work provides new avenues for
intelligent, coordinated multi-robot exploration.

The remainder of the paper is organized as follows: in
Section II we discuss related work in machine learning and
robotics. In Section III we briefly describe the latent Dirichlet
allocation topic model and real-time online spatiotemporal
topic modeling (ROST) [1], and then present our approach,
approximate distributed ROST (AD-ROST). In Section IV
we present both qualitative and quantitative results from topic
modeling experiments on a simulated multi-robot mission
using data collected at the Hannibal Bank Seamount off the
coast of Panama. Finally, in Section V we discuss several
compelling directions for future work in this area.

II. RELATED WORK

Unsupervised machine learning models have been of in-
terest in the robotics community for several years. In the area

of visual topic models, both parametric and nonparametric
models have been used for analysis of seabed imagery [4],
[5], underwater exploration [6], [1], and navigation [7]. Our
approach is based on the realtime online spatiotemporal topic
modeling (ROST) framework developed by Girdhar et al. in
[1]. More recently, the seabed imagery analysis and anomaly
detection work in [5] was adapted to use features learned by
a deep convolutional auto-encoder [8]. The parametric visual
topic models developed in the aforementioned works could
all be directly extended to the multi-robot setting using our
proposed methods.

Within the machine learning community, there are sev-
eral approaches for distributing topic models. Newman et
al. [9] provide methods for distributing LDA and HDP
on multiple processors in an offline setting. Our baseline
approach is an adaptation of their approximate distributed
LDA algorithm to the online setting, while inheriting the
spatial and temporal modeling capabilities of ROST. The
bipartite matching approach we take toward addressing the
component correspondence issue is grounded in methods for
multi-processor learning, and has been applied in distributed
learning literature to LDA and HDP in centralized, sampling-
based [9] and variational inference [10], [11], as well as in
the decentralized case [12].

Our problem differs from the traditional distributed learn-
ing setting fundamentally in that our data is partitioned
naturally by virtue of being collected on independent robots.
In contrast, in a traditional learning setting, we would have
access to the full dataset and partition the data into mini-
batches across multiple processors, for example by sampling
randomly from the dataset. Our data also contains signifi-
cant spatial and temporal correlations, since they consist of
consecutive observations from a sensor stream taken as a
robot navigates through the environment. Beyond that, we
are subject to the practical constraints imposed by acoustic
communication on our ability to send updates to a global
model. The consequence of this is not only that topic drift is
more likely, but also that some robots may make observations
of visual categories that have not been observed by others.
Our work focuses on addressing these topic correspondence
issues as they apply to learning on multi-robot systems.

III. METHODS

In the following sections, we review the latent Dirichlet
allocation (LDA) topic model and its extension to spa-
tiotemporal domains, highlighting the permutation symmetry
problem as it pertains to these two models. We then provide
two methods for multi-robot topic modeling. The first is a
naı̈ve adaptation of parallel LDA for multiple processors [9]
to the multi-robot setting, in which we merge topics directly
by their ID, without considering topic consistency. In the
second approach, we explicitly account for the permutation
symmetry problem during inference in order to improve
global consistency between models.



Fig. 2: Graphical model representation of the ROST frame-
work. ROST incorporates both spatial and temporal relation-
ships into the traditional LDA formulation.

A. Latent Dirichlet Allocation

The latent Dirichlet allocation (LDA) topic model [2] is
used to extract latent thematic structure from a corpus of
documents. In the LDA model, a document d consists of a
set of discrete words {w1, w2, . . . , wN} from a vocabulary
of size V . In LDA, we infer the distribution over a set of
latent “topics” for each document and the likelihood of all
words given these topics by computing a topic assignment
zi for each word wi in a document. With this factorization
into the distributions p(zi|d) and p(wi|zi), the likelihood of
an observed word wi given its document d is computed by
marginalizing over the topics as follows:

p(wi | d) =

K∑
k=1

p(wi | zi = k)p(zi = k | d). (1)

We will often abbreviate the topic mixing proportions for
a document p(z|d) as θd and the per-topic word distribution
p(w|z = k) as φkw. Dirichlet priors are placed over both
distributions, i.e. θd ∼ Dir(α) and φkw ∼ Dir(β) where α
and β are hyperparameters.

B. Real-time Online Spatiotemporal Topic Models

The traditional formulation of LDA does not consider
correlations between observed words in a document. Spatial
LDA [13] incorporates spatial correlations between visual
words within an image. The real-time online spatiotemporal
topic model (ROST) [1] further extends this method to image
streams by additionally incorporating correlations between
visual word observations within the same temporal neigh-
borhood. In the ROST framework, depicted graphically in
Figure 2, we consider a document, here denoted Gi, as the
set of all observed words in a spatiotemporal neighborhood.
Neighborhoods are determined by cells of fixed-size in space
and time. Similar to LDA, ROST places Dirichlet priors over
φkw and the topic mixing proportions, which we denote θGi

to make explicit the spatiotemporal context. The likelihood
of a word wi can then be written

p(wi | x, t) =

K∑
k=1

p(wi | zi = k)p(zi = k | x, t) (2)

Algorithm 1 AD-ROST-ID
repeat

// Local model updates
for each robot r in parallel do

// Receive global counts Nkw
Nkwr ← Nkw
for t from tcurr to tcurr + T do

w,x, t← ExtractWords(It)
z, Nkwr ← RefineTopics(z,w,x, t)

end for
end for
// Global model updates
Synchronize // Retrieve each Nkwr
Nkw ← Nkw +

∑
r(Nkwr −Nkw)

until no new observations

where x and t denote the location of wi in an image and the
time of its observation, respectively.

Exact inference in the ROST model and LDA more gener-
ally is intractable. Instead, we perform approximate inference
using Gibbs sampling [14]. Gibbs sampling is performed by
sampling a topic zi for every word wi = v conditioned on
the set of all words w and the current set of topics assigned
to all other words, denoted z−i. This sampling distribution
is computed as follows:

p(zi = k | z−i,w) ∝

[
n
(v)
k,−i + β

n
(·)
k,−i + V β

][
n
(Gi)
k + α

n
(Gi)
−i +Kα

]
, (3)

where n(v)k,−i is the count of assignments of topic k to every
other observation of word v, n(·)k,−i is the count of all current
assignments of topic k, n(Gi)

k is the count of all assignments
of topic k in spatiotemporal neighborhood Gi, and n(Gi)

−i is
the corresponding total count of topic assignments to all other
words in Gi. Gibbs sampling is performed continuously as
new images are observed by the robot.

The maximum-likelihood estimates for the per-topic word
distribution and topic mixing proportions can be calculated
using the counts recorded during Gibbs sampling as follows:

φ̂kw =
n
(w)
k + β

n
(·)
k + V β

(4)

θ̂Gik =
n
(Gi)
k + α

n(Gi) +Kα
. (5)

C. Approximate Distributed ROST with Topic IDs

The marginalization over topics in the generative models
of LDA and ROST (Equations 1 and 2 respectively) causes
the likelihood of a word to be invariant to the permutation
of topics in these models. For a single topic model, this
permutation symmetry does not warrant consideration. When
we seek to distribute the model, however, this permutation
symmetry becomes vital: two models can be equivalent in
terms of the likelihood, but be inconsistent in terms of topic



correspondence. This problem of resolving correspondence
between latent variables in unsupervised models is a general
problem in distributed unsupervised learning.

The baseline approach that we consider is an adaptation
of the parallel LDA formulation of Newman et al. [9] to
the ROST model. We make the naı̈ve assumption that the
topic IDs assigned by each robot directly correspond, i.e
topic 1 on robot 1, topic 1 on robot 2, through topic 1 on
robot R are topics corresponding to the same visual category,
where R is the number of robots. Under this assumption, it
is straightforward to derive a global update rule based on
the per-topic word counts for each agent. Letting Nkw be
the global K × V matrix of per-topic word counts obtained
from Gibbs sampling across all agents, and letting Nkwr be
the per-topic word count matrix on robot r, we combine the
local counts by summation, taking care to avoid duplicates
of the global count matrix:

Nkw ← Nkw +
R∑
r=1

(Nkwr −Nkw), (6)

where R is the number of robots. The complete procedure for
distributing ROST with ID-based topic matching, AD-ROST-
ID, is described in Algorithm 1. Each robot r receives the
global count matrix Nkw, then begins processing the next T
images, where T is a fixed number of observations between
global synchronizations of all robot models. The procedure
ExtractWords produces a set of visual words consisting of
extracted feature descriptors. RefineTopics then performs
Gibbs sampling over the data given the new observations.
After we have added T new observations, we synchronize
models by communicating local counts to a central node,
which combines the counts according to the update in Equa-
tion 6. On the next cycle, each robot retrieves the new global
count matrix, replacing its local model with the global model.
We repeat this process until every agent ceases to record
new observations. If one agent finishes before the others, its
final updates are made and the remaining agents proceed as
usual, relying on the central node to handle synchronization
appropriately.

It may seem counter-intuitive to assume that models
combined by ID in this manner would converge to a globally
consistent set of topics describing the same visual categories.
Consistency between models is achieved by the repeated
mixing of model parameters into an averaged global model
and the resetting of the local models. When mixing hap-
pens frequently enough, ID-based matching performs Gibbs
sampling from an approximation of the true posterior for
the combined dataset [9]. As a consequence, successfully
arriving at the appropriate topic correspondences in the case
of ID-based topic matching rests on the frequency of global
model updates. In a traditional distributed learning setting,
it is not unreasonable to expect that we can synchronize
processors after only a few iterations of Gibbs sampling.
However, on a team of robots, communication delays may
be substantial, and models may converge to different sets of
topics locally between synchronizations.

Algorithm 2 AD-ROST-SIM
repeat

// Local model updates
for each robot r in parallel do

// Receive global counts Nkw
Nkwr ← Nkw
for t from tcurr to tcurr + T do

w,x, t← ExtractWords(It)
z, Nkwr ← RefineTopics(z,w,x, t)

end for
end for
// Global model updates
Synchronize // Retrieve each Nkwr
for each robot r do

Cr1 ← ComputeCost(φ̂kwr, φ̂kw1)
π∗r ← Hungarian(Cr1)

end for
Nkw ← Nkw +

∑
r π
∗
r (Nkwr −Nkw)

until no new observations

D. Approximate Distributed ROST with Topic Similarity

In order to mitigate the potential topic drift issues caused
by naı̈ve ID-based matching in a direct adaptation of parallel
LDA [9], we now propose an alternative approach. We would
like to obtain local topic models on each robot that are
consistent in the sense that their topics are appropriately
aligned and the same topic ID on multiple robots corresponds
to the same semantic visual category. Accounting for this
consistency should result in a visual topic model that better
corresponds with human semantics. If the probability distri-
bution over the vocabulary is similar for two topics, we say
that the topics are similar. We adopt the heuristic in [11],
measuring the similarity between two topic models in terms
of the sum of squared distances between these distributions1

D(φ̂kw, φ̂
′
kw) =

K∑
k=1

‖φ̂kw − φ̂′kw‖2. (7)

Given this measure of model similarity, we pose model
consistency as an explicit optimization objective during the
inference procedure. Each time the global model is updated,
we permute each robot’s topic-word distribution to optimize
model consistency. There are K! possible permutations of
topics each time we perform model synchronization. If we
synchronize S times during a mission, there are K!S total
possible sequences of permutations over the entire mission.
Consequently, it is intractable to maintain a full distribution
over all possible permutations of topics for every model syn-
chronization. Instead, we optimize the permutations greedily
at every model update.

Let φ̂kwr denote the empirical topic-word distribution on
robot r and let π(φ̂kwr) denote a permutation of topics in

1Although we use the sum of squared Euclidean distance heuristic, other
measures of topic similarity for related models have been presented, such
as symmetric Kullback-Leibler divergence [9].



φ̂kwr. We aim to solve the following optimization:

π∗r = arg min
π(φ̂kwr)

f(π(φ̂kwr)) (8)

f(π(φ̂kwr)) =

K∑
k=1

‖π(φ̂kwr)− φ̂kw1‖2, (9)

where π∗r is the optimal permutation of the topic-word
distribution on robot r. In our case, the optimal permutation
minimizes the sum of squared Euclidean distances between
the topic-word distributions on robot r and those on the first
robot. Since we optimize permutations with respect to the
first robot, we take π∗1 to be the identity.

We minimize this objective for R robots using the Hungar-
ian algorithm [15], which provides the optimal assignment
in O(K3), giving an overall complexity of O(RK3) for the
optimization procedure at each model synchronization step.

After finding the optimal permutation for each robot, π∗r ,
we update the global topic-word counts according to the
following rule:

Nkw ← Nkw +

R∑
r=1

π∗r (Nkwr −Nkw), (10)

where, as before, Nkw and Nkwr are the global and local
counts of topic k for word w, respectively. After subtracting
the set of previous global topic-word counts, we permute the
model updates from each robot using its respective optimal
permutation from Equation 8. The new update is exactly the
update from Equation 6 when π∗r is identity for all r, which
is the only scenario where ID-based matching is optimal with
respect to the objective posed in Equation 9.

This approach, which we call AD-ROST-SIM, is summa-
rized in pseudocode in Algorithm 2. The individual vehicles
perform the same operations as in the case of AD-ROST-ID.
The primary distinction is that the central node, after receiv-
ing the model parameters of the robots, then computes for
each robot the pairwise distances between word distributions
for each topic on that robot and that of the first robot (i.e. the
procedure ComputeCost). Optimization of costs produces
the optimal permutation of topics on robot r to match the
topics on the first robot. Differences in counts are permuted,
then incorporated into the global model by summation.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We compare the proposed distributed learning approaches
using real video data collected by a single AUV equipped
with a downward-facing camera at the Hannibal Bank
Seamount, off the coast of Panama [16]. To simulate a multi-
robot mission, we treat data from multiple deployments of
a single robot as though it were retrieved simultaneously
by multiple vehicles. Each simulated “robot” communicates
with a central node to update a globally synchronized model
in order to produce a consistent scene categorization model
shared between all agents in the system. To aid in evaluation,
each mission has been annotated using a set of thirteen

(a) Topic distributions predicted by AUV 1 and AUV 2 using
the AD-ROST-ID method. AD-ROST-ID results in different visual
categories being assigned to the same topic.

(b) Topic distributions predicted by AUV 1 and AUV 2 using
the AD-ROST-SIM method. Matching by topic similarity helps to
ensure that distinct visual categories are appropriately assigned to
different topics.

Fig. 3: Comparison of topic distributions inferred by AD-
ROST-ID (a) and AD-ROST-SIM (b) with global updates
every 100 observations. Neglecting to consider permutation
symmetry in this limited communication setting results in
different visual categories being placed in the same topic.
Accounting for permutation symmetry with AD-ROST-SIM
causes allocation of separate topics for these categories.

possible ground-truth terrain labels, including “crab congre-
gation,” “water column,” and “sparse rocks.”

In the first simulated mission, the first deployment, “AUV
1,” contains 2,296 image frames, each taken four seconds
apart over approximately 2.5 hours. In this mission, the robot
descends through the water column until it arrives near the
seafloor, which primarily consists of smooth, sandy terrains.
Notably, however, these visually nondescript sandy terrains
are punctuated by several dense crab swarms [16]. Finally,
the vehicle ascends through the water column. The second
deployment, “AUV 2,” contains 1,117 image frames taken
four seconds apart, with a total duration of approximately
1.25 hours. In the second mission, the robot observes several
distinct seafloor terrains. It initially descends through the
water column, then observes a rocky terrain, followed by
porous, sandy seafloor, before ascending back through the
water column. Since the second AUV mission ends before
the first AUV mission, the vehicle stops sending updates to
the global model and the first vehicle continues its mission
alone until it receives no new observations.

In the second simulated mission, the first deployment,



Fig. 4: AD-ROST-SIM achieves higher mutual information
than AD-ROST-ID as we increase the period between model
synchronizations. Despite requiring a fraction of the data
transmission, the mutual information of AD-ROST-SIM with
T = 250 is comparable to that of either method with T = 1.

“AUV 1,” contains 1,244 frames over about 1.25 hours in
which the robot descends through the water column, travels
over sandy and rocky seafloor terrains, and then ascends back
through the water column. The second deployment, “AUV
2,” contains 2,733 image frames with a total duration of
approximately 3 hours. In this deployment, after the vehicle’s
descent, it simply observes a variety of nondescript sandy
terrains over the course of the mission, before ascending back
through the water column. In this mission, the first AUV
deployment finishes before the second, so the first vehicle
stops sending updates to the global model while the second
vehicle continues.

Since our focus is on the relative performance of each
method under a variety of communication constraints, we
fixed the hyperparameters K = 7, α = 0.1, and β = 10 in all
experiments. In practice, hyperparameters may be optimized
in cross-validation by comparing mutual information be-
tween maximum-likelihood topics and a set of ground-truth
labels, if annotations are available [8]. We evaluated models
with T = 1, 20, 40, 60, 80, 100, and 250 observations
between global model updates. Because the Gibbs sampling
process may produce different estimates when run multiple
times on the same data, we trained each model three times
and show average performance and standard deviation for all
quantitative results.

The topic models used in our experiment make use of
visual words consisting of ORB features [17]. Our approach
is also compatible with other methods of feature extraction,
including features learned by a deep neural network [8]. The
visual vocabulary we use has size V = 6500 and was built
using k-means clustering of ORB features extracted from
unrelated video. At run time, ORB features extracted from

Fig. 5: Sum of squared differences in topic-word distributions
on each model evaluated on the first mission. As we increase
the number of observations between model synchronization
steps, the topic distributions begin to diverge in the case
of AD-ROST-ID. AD-ROST-SIM is comparatively robust to
decreases in communication rate.

images count as instances of their nearest visual vocabulary
word, quantified by Euclidean distance.

B. Evaluation Metrics

We tested the correspondence between the discovered
topics and human annotation by measuring the mutual in-
formation between the most likely topic labels for each
mission and ground-truth annotations. Mutual information is
the amount of entropy reduced in a random variable Y after
the observation of a random variable X , and is formally
defined as

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
. (11)

Mutual information here measures the degree to which
the maximum-likelihood topic labels correlate with anno-
tations. Specifically, normalized mutual information equal
to 1 signifies that maximum-likelihood topics are in one-
to-one correspondence with annotated labels. A normalized
mutual information score of zero indicates the opposite:
that the maximum-likelihood topics and annotated labels are
statistically independent.

We quantify topic divergence by examining the similarity
between the topic-word distributions for the two vehicles at
the end of the mission. Specifically, we measure the sum of
squared distances between topic-word distributions for each
topic, consistent with the heuristic distance D(φ̂kw, φ̂

′
kw)

posed in Equation 7. A large value of D(φ̂kw, φ̂
′
kw) indicates

that the pair of models has drifted from one another, resulting
in dissimilar topic-word distributions.

C. Results and Discussion

In Figure 3 we show, for both vehicles in the first mission,
the topic distributions produced by AD-ROST-ID and AD-



Fig. 6: Sum of squared differences in topic-word distri-
butions on each model evaluated for the second mission.
As communication becomes less frequent, AD-ROST-ID
quickly begins to show topic model divergence that persists
to 250 iterations between synchronizations. AD-ROST-SIM
performance degrades slightly with 250 iteration gaps in
communication, but consistently performs much better than
AD-ROST-ID.

ROST-SIM with synchronizations every 100 observations.
The portion of the mission highlighted in Figure 3 demon-
strates that when updates to the global model are infrequent
(e.g. T = 100), merging topics naı̈vely based on ID (AD-
ROST-ID) causes topic distributions to drift. This problem
is most apparent when comparing the maximum-likelihood
topics near t = 950 on the first AUV and t = 400 on the
second AUV. The second AUV observes a rocky terrain at
t = 400, but at t = 950, the same maximum-likelihood
topic corresponds to a crab colony on AUV 1. On the
other hand, merging topics based on similarity (AD-ROST-
SIM) appropriately places these distinct visual categories into
different topics, despite also synchronizing the models only
every 100 observations.

In Figure 4, we show the mutual information between the
maximum-likelihood topic predictions and a set of human
annotations of the data from the first mission. We observe
that as we increase the period between synchronizations,
the performance of AD-ROST-ID degrades. With AD-ROST-
SIM, we achieve nearly the same model quality when we
synchronize every 250 observations as when we synchronize
after every observation, despite the fact that we transmit less
than one percent of the data required to synchronize after
every observation.

In Figure 5, we show the sum of squared differences
between the per-topic word distributions on each robot at
the end of the first mission as we increase the number of
observations between global updates. We observe that the
sum of squared model differences begins to grow in the case
of AD-ROST-ID. This quantifies the phenomenon that we
observed in Figure 3, when the same topic was assigned to

(a) Topic exemplars, grouped by topic ID, from the model inferred
using AD-ROST-ID with T = 100 show several instances where
the robots assign the same topic to visually different categories.

(b) Exemplars from the model inferred using AD-ROST-SIM with
T = 100 show that the model successfully assigns different
topics to different visual categories. Additionally, when a particular
category is observed by one AUV but not the other, such as in the
case of the “crab congregation,” there is no image from AUV 2
where the corresponding topic occurs with maximum likelihood.

Fig. 7: Annotated exemplar images for each topic. Topics
that did not occur with maximum-likelihood on any image
are denoted “No ML Image.” This occurs when a visual cat-
egory is only observed by one of the two AUVs. Mismatches
where the individual robot topic models assign the same topic
label to images of visually distinct categories arise with AD-
ROST-ID, but not when using AD-ROST-SIM.

both images of a crab colony and the rocky seafloor. Consis-
tent with our previous observations, AD-ROST-SIM is robust
to infrequent model communication up to intervals of 250
observations between synchronizations, which corresponds
to synchronization roughly every 15 minutes.

For the second mission, we show the sum of squared
differences in per-topic word distributions on each of the two
vehicles in Figure 6. We similarly observe topic divergence in
the case of AD-ROST-ID, which happens much more quickly
than in the first mission and persists to 250 iterations between
global model synchronizations. Distance in the topic models
grows in the case of AD-ROST-SIM as well around 250
iterations, but the resulting model similarity is comparable
to AD-ROST-ID with synchronization every iteration.

Another way to examine the topics learned by these
models is through “exemplar images” of each topic. To
further compare the effects of model drift on the topic
correspondences between the two vehicles, we provide high-
likelihood exemplars from four of the discovered topics in
the first mission in Figure 7. Topics that never occur with
maximum-likelihood are not displayed. We show that AD-



ROST-ID incorrectly matches several topics between the two
vehicles. Most notably, we observe again the phenomenon
where AUV 1’s topic representing a congregation of crabs
is matched to a rocky terrain image on AUV 2. Using AD-
ROST-SIM, we see that the topic exemplified by an image of
crabs has no maximum-likelihood match on AUV 2. Since
we know that the crab congregation never appears throughout
the second AUV’s mission, this is appropriate. Furthermore,
the remaining topic exemplars from the similarity-based
matching procedure are in direct correspondence with one
another, in contrast to AD-ROST-ID.

V. FUTURE WORK

The multi-robot topic modeling framework presented here
enables many interesting directions for future research. We
provide a multi-agent topic modeling framework, enabling
distributed variants of unsupervised exploration algorithms
[1], [5], or perplexity-based navigation methods, as in [7].
In general, leveraging our globally consistent, unsupervised
models for multi-agent robotic exploration is a compelling
area for future research.

We have not considered the situation where robots can
communicate directly with one another absent a global,
centralized node. Application of decentralized variants of
topic models, either using variational inference [12] or Gibbs
sampling [18], to the multi-robot domain would greatly
improve the robustness of these methods to unpredictable
communication delays or node failures.

Another avenue for future work is the extension of these
methods to the case where the number of topics is not
chosen a priori and consistently across robots, such as in the
case of the hierarchical Dirichlet process (HDP) model [3].
A topic matching procedure similar to Algorithm 2 could
be used with HDP models in communication-constrained
settings, for example by allocating new global topics using
a threshold on distance between topic-word distributions as
in [9]. The notion of category discovery is vital for the sort
of lifelong learning required of systems operating in novel
environments, such as in underwater exploration. Extension
of our methods to nonparametric unsupervised models is a
priority for further work on this problem.

VI. CONCLUSION

We have presented a novel algorithm for multi-robot real-
time online spatiotemporal topic modeling. We applied our
algorithm in the context of underwater terrain characteriza-
tion. By explicitly incorporating an optimization procedure
to match topics during the distributed inference process,
we achieve more globally consistent models despite the
robots’ having never shared their raw sensor observations
due to communication constraints. Beyond resolving issues
due to topic drift, we also found that our method is robust
to situations where certain visual categories were observed
by one robot but not by the other. Finally, enforcing topic
consistency can lead to improved correspondence between
maximum-likelihood topic labels and human annotations,
as measured by mutual information. The proposed method,

AD-ROST-SIM, infers semantically meaningful, consistent
topics comparable to those of models requiring constant
communication, while transmitting substantially less data.
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