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Abstract

The recent success of object detection systems motivates object-based representations
for robot navigation; i.e. semantic simultaneous localization and mapping (SLAM),
in which we aim to jointly estimate the pose of the robot over time as well as the
location and semantic class of observed objects. A solution to the semantic SLAM
problem necessarily addresses the continuous inference problems where am I? and
where are the objects?, but also the discrete inference problem what are the objects?.

We consider the problem of semantic SLAM under non-Gaussian uncertainty.
The most prominent case in which this arises is from data association uncertainty,
where we do not know with certainty what objects in the environment caused the
measurement made by our sensor. The semantic class of an object can help to inform
data association; a detection classified as a door is unlikely to be associated to a chair
object. However, detectors are imperfect, and incorrect classification of objects can
be detrimental to data association. While previous approaches seek to eliminate such
measurements, we instead model the robot and landmark state uncertainty induced
by data association in the hopes that new measurements may disambiguate state
estimates, and that we may provide representations useful for developing decision-
making strategies where a robot can take actions to mitigate multimodal uncertainty.

The key insight we leverage is that the semantic SLAM problem with unknown
data association can be reframed as a non-Gaussian inference problem. We present
two solutions to the resulting problem: we first assume Gaussian measurement mod-
els, and non-Gaussianity only due to data association uncertainty. We then relax this
assumption and provide a method that can cope with arbitrary non-Gaussian mea-
surement models. We show quantitatively on both simulated and real data that both
proposed methods have robustness advantages as compared to traditional solutions
when data associations are uncertain.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

This thesis concerns the problem of data association for object-level navigation. Data

association is the process of determining the correspondence between a sensor mea-

surement and a landmark. Humans very reliably perform data association. Without

conscious effort we are aware of the correspondence between what we see and what

exists in our environment. It is often these tasks, which even a child can perform

reliably, that are most difficult for machines.

Humans navigate with respect to both geometric cues, avoiding collisions with the

environment, as well as semantic cues, bearing in mind the history of objects observed

[15]. For example, taking a walk around a city block in an unfamiliar area, we may

determine that we’ve come full circle through the recognition of cars and houses that

we had previously observed. The embodiment of these capabilities into analogous

robot systems can permit similarly reliable navigation and reasoning over the large

spatial and temporal scales that humans are accustomed to. Scaling navigation in

this sense is a more critical challenge now than ever before as autonomous robots are

deployed in increasingly challenging situations.

We consider the problem of determining the associations of measurements to land-

marks for robot navigation. Specifically we deal with the use of objects as environ-

mental landmarks. Formally, we will take an object to be defined uniquely by its

position in space and semantic class, where the class of an object is a label from a

predefined set of types of objects we can recognize. As an example, we may have a mo-

15



bile robot equipped with a perceptual system capable of detecting and classifying cars

(like those detected in Figure 1-1), houses, and pedestrians. The objective of the data

association system, then, is to use the perceived geometric and semantic information

in conjunction with estimates of the location and classes of environmental landmarks

to place the measurements in correspondence with the landmarks. The challenge

for such a system is that while in principle the geometric and semantic information

aids in associating measurements to known landmarks, errors in object classification

from a detector, as well as errors in vehicle and landmark position estimation cause

challenges for establishing reliable measurement-landmark correspondence.

Until recently, poor classification performance made the use of object detections

impractical, and most state-of-the-art visual SLAM algorithms (e.g. [39], [16]) ne-

glect semantics in favor of tracking sparse, relatively uninterpretable visual descrip-

tors or measuring photoconsistency between image frames as a means of determining

a camera’s relative pose change between instances when the images were obtained.

However, the recent performance of object detectors like the “single-shot multibox de-

tector” (SSD) [35] and “You Only Look Once” (YOLO) [46], among many others, has

motivated further the use of semantics to provide a sparse set of interpretable visual

cues for mobile robot navigation. Moreover, semantic information may go beyond

class alone, and can involve reasoning about the uses, dynamics, and deformabiity

of objects. This places the problem of semantic SLAM in a position to unify mobile

robot navigation and scene understanding, a task which we hope will bring long-term

robot navigation performance to the level of reliability of humans and beyond.

1.1 Motivation

Robots are no longer isolated to factories and manufacturing applications. In recent

years, we have seen a number of applications of robots operating in complex environ-

ments and in safety-critical situations. The critical navigation challenges for these

platforms have not changed much in the past 30 years, but our notion of success in

these tasks has changed. Modern robots are expected not just to move from one point

16



Figure 1-1: Detection of a car produced by a neural network using imagery from
the KITTI dataset [22]. The detector fails to detect all of the cars in the scene and
moreover produces an ambiguous bounding box containing several cars. We aim to
develop object-level navigation systems that are robust to these types of detections.

to another without collision, but to do so with low-cost sensors, reason about their

uncertainty to do so while incurring minimal localization error, and deduce objectives

from high-level task specifications (requiring building and reasoning about a semantic

world representation).

Moreover, as object detectors continue to improve, there has been growing interest

in their use in conjunction with a suite of inertial and geometric sensors to improve

robot navigation, allowing autonomous robots to build more accurate, descriptive

maps [6, 53]. However, the consideration of semantic class and data association am-

biguity makes the navigation problem significantly more challenging. The majority

of SLAM systems are well-suited to solving a specific subset of navigation prob-

lems in which sensor measurements can be represented as nonlinear functions of the

true state corrupted by additive Gaussian noise (see, for example, [6] for a review

of state-of-the art methods making these assumptions). When we consider jointly

the discrete inference problem and the continuous inference problem (even under the

same measurement assumptions), ambiguity in the discrete variables introduces mul-

tiple hypotheses about the robot and world state. The resulting “multi-hypothesis”

ambiguity is generally non-Gaussian and is poorly addressed by traditional methods

for SLAM.

In particular, in Figure 1-2 we show three snapshots of a trajectory estimate for

a vehicle equipped with stereo cameras (from the popular KITTI dataset [22]). De-

17



(a) 16% poses added. (b) 33% poses added. (c) 100% poses added.

Figure 1-2: Snapshots of the landmark-based SLAM solution using maximum-
likelihood data association (red) for the KITTI dataset odometry sequence 05 with
ground-truth (gray, dashed). Detections of cars (see Figure 1-1) are used as land-
marks with range and bearing provided by stereo cameras. Initially, in 1-2a the
solution is consistent with the ground-truth, but as incorrect loop closures are added
in 1-2b and beyond in 1-2c the trajectory estimate fails catastrophically.

tections of cars, like those in Figure 1-1 are used as landmarks and their position

in space is determined by the average range and bearing to the three-dimensional

points recovered by the stereo cameras falling in the detection bounding box. The

methods producing the pictured trajectories make traditional assumptions of Gaus-

sian measurement uncertainty and use maximum-likelihood data association. The

maximum-likelihood data association method determines, for each observation, the

most likely landmark to have caused the observation (a detailed description of the

maximum-likelihood method for data association is given in Chapter 3). We find that

the method aligns well with the ground-truth initially, but errors arise when the most

likely association at a particular time is not the true association. We refer to these

events as false loop closures. One example of a false loop closure can be seen in Figure

1-2b, and we see how catastrophically incorrect the overall trajectory estimate (shown

in Figure 1-2c) can be as these errors propagate to cause errors in future associations.

Beyond recent research and commercial interest in autonomous driving vehicles

and quadrotor drones, one of the most compelling areas for autonomy—and one of

the most challenging—is marine robotics. However, all of the aforementioned prob-

lems are made even more challenging by the underwater environment: underwater

scenes are often repetitive, ambiguous, or featureless when they can be observed with

18



Figure 1-3: Instrument recovery for underwater science is a compelling area for au-
tonomous vehicles. The soundtraps in these photos, located off the coast of the United
States Virgin Islands were displaced during the back-to-back category 5 hurricanes
Irma and Maria. Recovery required a team of several divers and a total dive time of
771 minutes. Images courtesy of Genevieve Flaspohler.

cameras, and acoustic sensing, one of the primary modes of perception for underwa-

ter vehicles, suffers greatly from non-Gaussian noise sources like acoustic multipath.

Because of the difficulties of operating in the underwater environment, a number of

mundane or dangerous tasks have historically been performed by human divers. For

example, the recovery of soundtraps for biological research in Figure 1-3, and the dan-

gerous task of inspecting ship hulls for mines (which has previously been performed

by either trained human divers or marine mammals). Additionally, there has been

increasing interest in the use of robots for semantic-level biological surveying, as in

prior work which examines online learning for multiple communication-constrained

underwater vehicles [12].

Moreover, there is increasing interest in the development of low-cost underwater

drone platforms, like the BlueRobotics BlueROV2 [1]. In order for these vehicles

to be practically useful for many of the most prominent underwater tasks, there is

a critical need for robust perception and state estimation algorithms that can cope

with the difficulties of operating in underwater environments.

These challenges for the next generation of autonomous systems motivate richer

representations of uncertainty that can consider semantics and sensor noise mod-

els with complex noise distributions. Such representations accommodate the errors
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in data association caused by geometric uncertainty in bounding boxes provided by

object detectors (such as in Figure 1-1), as well as the environment dependent, non-

Gaussian noise incurred by a variety of sensors (like sonars in underwater environ-

ments).

1.2 Related Work

There is a rich history of literature on the problems of SLAM and data association.

Early work on probabilistic data association (PDA) as a representation for ambigu-

ous hypotheses stems from target-tracking literature, where it was incorporated into

the “probabilistic data association filter” [3]. Approaches based on multi-hypothesis

tracking (MHT) originated around the same time [47], later adapted to the SLAM

problem [8], [9]. These approaches seek to explicitly represent several plausible hy-

potheses and over time “prune” those which become unlikely.

In the recent history of SLAM, there have been three primary areas of related

work: robust SLAM, non-Gaussian SLAM, and semantic SLAM. Each of these areas

has substantial overlap with the others, but here we attempt to place each work into

its most relevant subcategory.

1.2.1 Robust SLAM

A number of works in robust SLAM address the problem of SLAM with outliers.

These can alternatively be viewed as methods that deal with discrete-continuous esti-

mation, where the discrete variables are decisions about whether to discard particular

measurements. Sunderhauf et al. [55] introduce discrete switching variables which

are estimated on the back-end to determine whether loop closure proposals from the

front-end are accepted. Relatedly, Latif et al. [33] introduce a method for “undoing”

incorrect loop closures. Olson and Agarwal [42] proposed a “max-mixtures” approach

that side-steps the complexity usually associated with multi-hypothesis SLAM or

non-Gaussian SLAM by selecting the most likely component of a mixture of Gaus-

sians at all points in the measurement domain (where each Gaussian corresponds to
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a candidate hypothesis). This removes the need to explicitly represent a potentially

large number of combinations of hypotheses. Pfingsthorn and Birk [44] proposed a

maximum-likelihood optimization for multimodal distributions. In [49], the authors

propose a method for approximate inference on a junction tree data structure for

robust SLAM problems with Gaussian measurement models.

Similar to [42], we consider a max-mixture-style approach to inference of the most

probable set of robot poses and landmark locations in Chapter 4. In contrast to their

work, however, we consider mixtures of associations between different landmarks to

address the data association problem, whereas they provide a method of rejecting in-

correct loop closures. This difference motivates a new method for computing mixture

component weights, whereas mixture weights are determined heuristically in [42]. Fur-

thermore, this method, as well as the method we propose in 4 are suited to problems

where individual measurements are well-characterized by Gaussian distributions but

non-Gaussianity arises due to the introduction of discrete variables only. In Chapter

5 we expand further on these previous solutions by relaxing these assumptions.

1.2.2 Non-Gaussian SLAM

We divide the area of SLAM with non-Gaussian noise models into two categories: 1)

methods that cope with arbitrary non-Gaussian distributions, including non-Gaussianity

that arises from nonlinearity, undetermined systems (such as range-only or bearing-

only SLAM), discrete variables (such as data association), or measurement physics

(for example acoustic multipath in sonar measurements), and 2) methods that deal

only with discrete-continuous Gaussian models.

Methods for Arbitrary Distributions

In the SLAM literature, FastSLAM [37] represents multiple hypotheses using a parti-

cle filter-based algorithm in which data association probabilities are computed sepa-

rately for each particle representing a candidate robot state. Conceptually, FastSLAM

is similar to our approach, but maintains separate parametric solutions each using
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extended Kalman filters (EKFs). In contrast, our approach directly approximates

the non-Gaussian solution to the SLAM problem under ambiguous association. A

similar approach focusing on filtering-based SLAM is the sum of Gaussians method

described by Durrant-Whyte et al. [14]. These methods infer the belief in the robot

pose at the most recent discrete time given the history of measurements. We consider

in this thesis methods which use all measurements to inform inference of the robot

pose at all times in the history of the vehicle’s trajectory (i.e. including the influence

of measurements that took place after a particular time). In this way, using the

methods presented in Chapter 5 we can recover a complex, non-Gaussian belief over

the entire history of vehicle locations.

Methods for Discrete-Continuous Gaussian Models

When non-Gaussianity exists only due to the introduction of discrete association

variables, the SLAM problem is often reduced to a search over discrete variables

combined with a continuous optimization over vehicle poses and landmarks. Multi-

hypothesis SLAM methods maintain tree data structures that model the sequence of

discrete data association decisions. Each set of decisions has a corresponding solu-

tion to the continuous optimization problem. Examples of multi-hypothesis methods,

besides the early works of [8] and [9], include [25], which described the concept of

“lazy” data association. These methods generally seek to “prune” the most unlikely

hypotheses to avoid the complexity of search over every possible assignment to dis-

crete variables. Additionally, as previously mentioned, robust SLAM methods are

similarly concerned with inference over discrete-continuous models, though histori-

cally the majority of robust SLAM methods have sought to deal with such discrete

variables through optimization, with the aim of removing or coping with outliers,

rather than multi-hypothesis search, where each hypothesis is in principle valid, but

not necessarily correct.
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1.2.3 Semantic SLAM

The ability of semantic measurements obtained from an object detector to aid in data

association when there is ambiguity in purely geometric features links the problems of

semantic SLAM and data association. The majority of works in semantic SLAM thus

far have considered questions of geometric representation and make use of variants on

maximum-likelihood data association [54, 48, 58, 36, 41]; in this thesis, we instead opt

for a simple geometric representation and focus on representing the multimodalities

induced in the posterior by ambiguous data associations and unknown landmark

classes. Bowman et al. [5] recently showed that the discrete problems of landmark

class inference and data association could be combined and provided an expectation-

maximization (EM) solution which replaces the marginalization over data associations

in the PDA method with a geometric mean, preserving the Gaussian assumption.

The EM formulation provably converges to a local optimum when iterated, but for

computational reasons, it is undesirable to recompute the combinatorial number of

plausible data associations for previous poses. We also proactively compute data

association probabilities, but marginalize out data associations (either by computing

the “max marginal” or the true “sum marginal”) and perform inference in the resulting

factor graph, which is Gaussian in the former case, but non-Gaussian in the latter

case.

1.3 Thesis Overview

In this thesis, we consider two complementary approaches to the non-Gaussian seman-

tic SLAM problem. In one approach, we represent non-Gaussian noise as nonlinearity

within a standard nonlinear least-squares SLAM framework. We show that this ap-

proach permits efficient inference and provides improved robustness to non-Gaussian

noise as compared to current state-of-the-art alternatives. The second approach in-

stead provides a representation of the full non-Gaussian posterior distribution over

poses and landmarks. While this approach in its current form is less computationally

efficient than the alternative, it is well-suited to provide the underlying representa-
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tion for non-Gaussian belief space planning tasks. As a consequence, the latter work

opens several new avenues for research connecting SLAM with active, non-Gaussian

planning, for example reasoning about, and making decisions to mitigate data asso-

ciation uncertainty. Furthermore, we provide new theoretical insight linking these

approaches as instances of max-product and sum-product belief propagation algo-

rithms, respectively, for inference in graphical models.
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Chapter 2

Perception as Bayesian Inference

In robot navigation, we are concerned with answering three questions: “where am I?”.

“where am I going”, and “how should I get there?” [34]. However, robots perceive

their environment only through noisy measurements. In order to navigate we must

aggregate noisy measurements of the environment and robot state in the hopes of

accurately determining the true location of the vehicle and an accurate map of the

surroundings. We commonly describe the true state of the vehicle and environment

as hidden, or latent, in that we can only infer them from measurements caused by the

interaction of sensors with the environment. Since there is no way for us to know that

the value of a particular inferred state matches the true state in general—if we knew

with certainty the true state, we would be done—we typically express the inferred

state as a probability distribution, termed the belief in the robot state. Mathemat-

ically, we formalize these ideas in the context of Bayesian inference, where belief is

expressed as a posterior distribution over the latent variables–namely, the state of the

robot and environment, described often as the position and orientation of the vehicle

and relevant landmarks–conditioned on the evidence, given as the measurements ob-

tained from sensors like lidar, cameras, sonar, or accelerometers.

In this chapter, we introduce robot perception as Bayesian inference. We begin

by formally stating the SLAM problem as one of inference over a Bayesian network

exposing probabilistic constraints between the sensor measurements and the hidden
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states of the robot and landmarks [43]. We then discuss relevant background on

inference in graphical models for navigation problems, including present solutions that

are able to achieve reliable real-time navigation under specific assumptions about the

robot’s sensor noise characteristics. We will discuss the refactorization of graphical

models into a tree structure (termed the Bayes tree in the context of robot navigation

[29]). Finally, the principal algorithms for inference in graphical models, namely

the sum-product algorithm and max-product algorithm for variable elimination will

be discussed. These two algorithms form the cornerstone of this thesis. We will

specifically show that the two core methods presented in this thesis can be derived as

max-product and sum-product algorithms for sensors with sensor noise characteristics

that can be described by mixtures of Gaussians.

2.1 Problem Formulation

As described in the previous section, during navigation a robot moves through the en-

vironment guided by a set of control inputs while making observations 𝑧𝑡 , {𝑧1
𝑡 , . . . ,𝑧

𝐾
𝑡 }

at each discrete time 𝑡 ∈ Z≥0; here we use 𝐾 to denote the number of observations

made at time 𝑡 (when this can vary for different points in time, we commonly denote

the number of measurements made at a particular time 𝑡 as 𝐾𝑡). We will nominally

consider all measurements to be real-valued vectors. The time index at the end of a

robot-trajectory will generally be denoted as 𝑇 .

In order to navigate, a robot must infer its state 𝑥𝑡 in some state-space 𝒳 , and

the state of all relevant environmental landmarks (i.e. the map), L , {ℓ𝑗 ∈ ℒ, 𝑗 =

1, . . . ,𝑀}. The two tools we are equipped with to infer a belief over the latent robot

and environment state are the process model and the observation or measurement

model. The process model 𝑝(𝑥𝑡 | 𝑥𝑡−1) describes how a robot’s state may change

stochastically from one discrete time instance to the next. This may represent, for

example, constraints due to the dynamics of the vehicle, or the output of an inertial

measurement device. The observation model 𝑝(𝑧𝑡 | 𝑥𝑡, ℓ𝑗) describes the probability

of making observation(s) 𝑧𝑡 given that the robot state is 𝑥𝑡 and knowledge of the
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corresponding landmark state ℓ𝑗.

2.1.1 Problem Statement

In its general form, the problem of semantic SLAM is corresponds to determining

the history of robot poses X , {𝑥𝑡}𝑇𝑡=1 and landmark positions and semantic classes

L , {(ℓ𝑝, ℓ𝑠)𝑗}𝑀𝑗=1 given a set of sensor measurements Z , {𝑧𝑡}𝑇𝑡=1 made at each

robot pose. We have 𝑥𝑡 ∈ 𝑆𝐸(2) in the two-dimensional case, and 𝑥𝑡 ∈ 𝑆𝐸(3) in 3D.

Similarly, we take ℓ𝑝 ∈ R2 in 2D and R3 in 3D. The landmark class ℓ𝑠 is assumed to

come from a finite set of discrete, known, class labels: 𝒞 = {1, 2, . . . , 𝐶}.

More specifically, we aim to infer one or both of the following given a set of mea-

surements Z: (1) the posterior distribution over latent variables X and L, conditioned

on measurements Z, or (2) the maximum a posteriori (MAP) estimates for X and L.

From the measurement and process models described in the previous section, we can

write the SLAM problem in terms of a Bayesian network, or “Bayes net.” A Bayes

net is simply a directed, acyclic graph that encodes a joint probability distribution of

the form:

𝑝(V) =
∏︁
𝑖

𝑝(𝑉𝑖 | Π𝑖), (2.1)

where 𝑉𝑖 is a variable and Π𝑖 is the set of “parents” of 𝑉𝑖. An example of a Bayesian

network is given in Figure 2-1.

The posterior distribution over poses and landmarks i.e. 𝑝(X,L | Z), can be

written as being proportional to the joint distribution (assuming uniform priors on

X and L, excluding 𝑥0):

𝑝(X,L | Z) ∝ 𝑝(𝑥0)
𝑇∏︁
𝑡=0

𝑝(𝑧𝑡 | 𝑥𝑡, ℓ1:𝑀)
𝑇∏︁
𝑡=1

𝑝(𝑥𝑡 | 𝑥𝑡−1). (2.2)

For example, the Bayes net in Figure 2-1 describes the joint distribution:

𝑝(𝑥1,𝑥2, ℓ1, ℓ2, 𝑧1, 𝑧2) = 𝑝(𝑧1 | 𝑥1, ℓ1)𝑝(𝑧2 | 𝑥2, ℓ2)𝑝(𝑥2 | 𝑥1)𝑝(𝑥1)𝑝(ℓ1)𝑝(ℓ2), (2.3)
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Figure 2-1: Bayesian network representation of simple SLAM problem. We depict
latent variables, i.e. poses and landmarks, as unfilled circles and observed variables,
in this case the sensor measurements, as filled circles.

which is, up to a constant of proportionality, equal to the posterior 𝑝(X,L | Z) for

that example.

The MAP estimates for X and L can be obtained as:

X̂, L̂ = argmax
X,L

𝑝(X,L | Z). (2.4)

Maximization can be done after recovering the posterior, or as an alternative to full

posterior inference, as we will describe later.

2.2 Probabilistic Modeling and Inference

2.2.1 Specifying the Process and Observation Models

Thus far, we have formulated the problem of robot navigation assuming the existence

and knowledge of inter-pose measurement models (the process model for consecu-

tive poses), and pose-landmark measurement models (the observation model). We

will now clarify a few common probabilistic models for the types of measurements

considered in this thesis.

We consider fairly simplistic perceptual noise models in this work, though the
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framework we present is by no means limited to the models considered here. Specifi-

cally, we consider common nonlinear Gaussian noise models for all of our sensors, and

show that even under these fairly stringent noise assumptions, there are challenging

inference problems that can be posed within the context of semantic navigation. A

more detailed treatment of nonlinear Gaussian measurement models of the form con-

sidered here can be found in [11], and a similar treatment for the case of non-Gaussian

measurements is given in [19].

Odometry Measurements

Odometry measurements may be obtained from a number of sources, including an

inertial measurement unit (IMU), integration of wheel rotations, or visual feature

tracking. In all of these systems the output is represented as the change in vehicle

pose from a discrete time step 𝑡− 1 to the subsequent time step 𝑡. We can represent

the true change as a deterministic, nonlinear function of 𝑥𝑡−1 and 𝑥𝑡. In particular,

we have the function ℎ : SE(𝑑)× SE(𝑑)→ SE(𝑑), defined as:

ℎ(𝑥𝑡−1,𝑥𝑡) , ⊖ 𝑥𝑡−1 ⊕ 𝑥𝑡. (2.5)

Recall that poses are represented as elements of the special Euclidean group in either

two or three dimensions. Here, we are making use of the pose inverse operation ⊖ and

pose composition ⊕, which correspond to matrix inversion and matrix multiplication,

respectively (see Appendix A.2 for a detailed description of operations on poses). The

output of this nonlinear function, then, is also an element of special Euclidean group

of the same dimensionality and represents the location and orientation of 𝑥𝑡 in the

reference frame of 𝑥𝑡−1.

No odometry method, however, obtains the true transformation between two

poses. Rather, the true transformation is corrupted by some noise in the measure-

ment process. It is common to assume that the measurement is corrupted by additive

Gaussian noise, and to properly account for the manifold structure of poses, it is

common to assume that the measurement noise is Gaussian in the tangent space of
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the measurement. In particular, let T denote the true transformation from 𝑥𝑡−1 to

pose 𝑥𝑡 (i.e. ℎ(𝑥𝑡−1,𝑥𝑡)), and T̃ denote the measured transformation.

T̃ = T Exp(𝜖), 𝜖 ∼ 𝒩 (0,Σ), (2.6)

where Exp denotes the exponential map, taking an element of the tangent space to

its counterpart in SE(𝑑). Background on manifolds for geometric representation in

SLAM, including description of the exponential and logarithm maps, is provided in

Appendix A. After some manipulation (see for example Forster et al. [18]) we can

obtain that the distribution of the pose T = ℎ(𝑥𝑡−1,𝑥𝑡) can be written in terms of

the measurement T̃ as:

𝑝(𝑥𝑡 | 𝑥𝑡−1) = 𝜂(T̃) exp

{︂
−1

2
‖Log(T−1T̃)‖2Σ

}︂
(2.7)

where 𝜂(T̃) is a normalizing constant dependent only the measured transform T̃

chosen to ensure the distribution integrates to 1, and Log denotes the logarithm map

for SE(𝑑)1. The term ‖ · ‖2Σ refers to the squared Mahalanobis distance, defined for a

vector 𝑣, given Σ as:

‖𝑣|2Σ = 𝑣𝑇Σ−1𝑣. (2.8)

Range-Bearing Measurements

Robots may also be equipped with sensors capable of measuring range and bearing,

such as stereo cameras or lidar. A range sensor measures the Euclidean distance

between the vehicle and a landmark:

𝑟(𝑥, ℓ) , ‖ℓ𝑝 − t‖2, (2.9)

1There has been substantial research on the representation of uncertainty on manifolds. The
critical component that we make use of in this thesis is simply the resulting probabilistic model
𝑝(𝑥𝑡 | 𝑥𝑡−1). Consequently, we do not delve into much detail on the representation of spatial
uncertainty or manifolds. For a thorough treatment of these topics, we refer the reader to [4].
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where ℓ𝑝 is the position vector of the landmark and t is the translation vector of the

pose 𝑥. It is common to assume the range measurement 𝑧𝑟 is equal to 𝑟(𝑥, ℓ) plus

additive Gaussian noise, resulting in the sensor model:

𝑝(𝑧𝑟 | 𝑥, ℓ) = 𝒩 (𝑟(𝑥, ℓ);𝜇𝑟, 𝜎
2
𝑟). (2.10)

Bearing measurements similarly can be written as a nonlinear measurement. For

example, the 2D bearing between a vehicle and a landmark can be written as:

ℓ𝑥 = ⊖ 𝑥 · ℓ (2.11)

𝑏(𝑥, ℓ) = atan2(ℓ𝑥𝑦 , ℓ
𝑥
𝑥) (2.12)

where here ℓ𝑥 is the location of the landmark ℓ expressed in the vehicle frame and ·𝑥
denotes the 𝑥-component of a vector (likewise for 𝑦). In 3D, we consider the bearing

as well as elevation angle, atan2(ℓ𝑥𝑧 , ℓ
𝑥
𝑥) and overload the 𝑏(𝑥, ℓ) notation to produce a

vector containing bearing and elevation in the 3D case. As with range measurements,

we typically assume additive Gaussian noise to obtain the probabilistic measurement

model:

𝑝(𝑧𝑏 | 𝑥, ℓ) = 𝒩 (𝑏(𝑥, ℓ);𝜇𝑏, 𝜎
2
𝑏 ), (2.13)

where in 3D the 2× 2 covariance matrix Σ𝑏 is used in place of 𝜎2
𝑏 .

Semantic Measurements

Many modern object detectors are designed to produce a bounding box and class

prediction for each object in an image frame. A bounding box can be used to inform

the location of a landmark, but the class prediction provides semantic information that

can aid in reliably associating new measurements to previously detected landmarks.

In order to use the semantic class prediction from an object detector, we make
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use of the following probabilistic sensor model for class predictions:

𝑝(𝑧𝑠 | ℓ) = 𝑝(𝑧𝑠 | ℓ𝑠) = Cat(𝐶𝑀(ℓ𝑠)) (2.14)

where 𝑧𝑠 ∈ 𝒞 is the semantic class prediction from the detector and ℓ𝑠 ∈ 𝒞 is the

true semantic class of the landmark. Both are elements of a discrete set of a priori

known classes 𝒞. Here 𝐶𝑀(ℓ𝑠) denotes the normalized confusion matrix for the

object detector indexed by the true class ℓ𝑠. For example, consider a general 𝐶 class

classification problem, 𝒞 = {1, 2, . . . , 𝐶}. A detector may have the following confusion

matrix:

𝐶𝑀 =

True class

1 2 . . . 𝐶

P
re

di
ct

ed
cl

as
s

1

2
...

𝐶

⎡⎢⎢⎢⎢⎢⎢⎣
0.9 0.05 . . . 0.01

0.05 0.9 . . . 0.01
...

... . . . ...

0.01 . . . . . . 0.9

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.15)

In general, we assume that the object must have class in 𝒞, so the columns of

𝐶𝑀 must sum to 1. This is despite the fact that detectors may output detections

even when there is no object with class in 𝒞 in the bounding box. The probability

𝑝(𝑧𝑠 = 𝑖 | ℓ𝑠 = 𝑗) where 𝑖, 𝑗 ∈ 𝒞 corresponds to the (𝑖, 𝑗) element of the normalized

confusion matrix. Cat(·) in the sensor model (2.14) denotes the categorical probability

distribution parameterized by the given argument. In our case, the probability vector

𝐶𝑀(ℓ𝑠), the column of the confusion matrix corresponding to the true landmark

class, parameterizes the categorical distribution.

The confusion matrix and consequently the probabilistic semantic measurement

model can be obtained offline through validation on data. That is, given a dataset

for which the true class of all objects is known, we can run a detector to obtain

a set of predictions and compute the confusion matrix as the count of predicted

classes for each object’s true class. Normalizing the result gives the confusion matrix
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above. Importantly, this process neglects the possibilities of missed detections or false

positives (detections where there is no object in 𝒞). Characterization of the object

detector depends also on knowledge of the probabilities of these events, though missed

detections are less problematic for navigation than false positives. Later in this thesis,

we discuss the practical mitigation of false positives, but we do not explicitly model the

probability of false positives or missed detections. A more detailed characterization of

semantic sensor measurements that explicitly models these possibilities can be found

in [2].

Combining Independent Measurements

Given the previously described sources of information, if we assume the measurement

noise in each is independent (i.e. classification error does not depend on range or

bearing, nor does range depend on class or bearing, and so on), we easily obtain the

following factored measurement model for the combined measurement:

𝑝(𝑧 | 𝑥, ℓ) = 𝑝(𝑧𝑟 | 𝑥, ℓ)𝑝(𝑧𝑏 | 𝑥, ℓ)𝑝(𝑧𝑠 | ℓ). (2.16)

The assumption of measurement independence is convenient for combining differ-

ent measurement sources, but measurement errors may have nontrivial correlations.

That said, if appropriate data is available offline, the full joint distribution for a

measurement 𝑧 , {𝑧𝑟, 𝑧𝑏, 𝑧𝑠} can be characterized empirically.

2.2.2 Graphical Models

Factor Graphs

While Bayes nets provide a modeling framework that allows us to make explicit the

causal relationships between observed and latent variables, representing the same

model as a factor graph is more convenient for discussion of inference algorithms.

A factor graph 𝒢 , {𝒱 , ℰ} is a bipartite graph that represents the factorization

of a function. A factor graph has vertices 𝒱 consisting of factors 𝑓 and variables 𝑉 .
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A factor 𝑓𝑖 simply represents a function that takes as an argument its neighbors V𝑖

(an edge exists between each 𝑓𝑖 and all 𝑉𝑖 in the set V𝑖). The entire factor graph can

be thought of as representing a single function:

𝑓(V) = 𝑓1(V1)𝑓2(V2) . . . 𝑓𝑛(V𝑛). (2.17)

A factor graph need not represent a normalized probability distribution. Rather,

in the context of inference we typically let the factor graph represent the unnormalized

joint probability over V:

𝑝(V) ∝
𝑛∏︁

𝑖=1

𝑓𝑖(V𝑖). (2.18)

Furthermore, in SLAM the variables V𝑖 represent subsets of X and L linked by

probabilistic constraints. Formally, we can now write the problem of SLAM with

known data association as a factor graph:

𝑝(X,L | Z) ∝
𝑛∏︁

𝑖=1

𝑓𝑖(V𝑖), V𝑖 ⊆ X,L. (2.19)

Figure 2-2 shows an example of a factor graph representing the same distribution as

the simple SLAM Bayes net from Figure 2-1

Tree-Structured Models

In SLAM, the factor graph is constructed from the measurement likelihoods and tran-

sition models. Thus, the factorization provided by the model is essentially the same

factorization as given in the Bayesian network. The factorization of a joint distribu-

tion is not unique, however. For example the following factorizations of distributions
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defined for arbitrary elements 𝑎, 𝑏, 𝑐 are equally valid:

𝑝(𝑎, 𝑏, 𝑐) = 𝑝(𝑎, 𝑏 | 𝑐)𝑝(𝑐) (2.20)

= 𝑝(𝑎 | 𝑏, 𝑐)𝑝(𝑏, 𝑐) (2.21)

= 𝑝(𝑎 | 𝑏, 𝑐)𝑝(𝑏 | 𝑐)𝑝(𝑐), (2.22)

among others. Thus, while the factor graph gives us a convenient way to write down

an inference problem (and can certainly be useful for inference), it may not always

be the ideal choice of factorization for inference algorithms.

It is common in many contexts to refactor the graph into a tree structure. Different

manifestations of this tree-structured refactorization have been called the junction tree

in artificial intelligence literature [31] or the Bayes tree in recent navigation literature

[29]. [11] gives a detailed treatment of the Bayes tree and the variable elimination

algorithm for performing the refactorization. For brevity, we state only the main

results.

The joint distribution 𝑝(V) can be refactored into a tree-structured set of cliques

C𝑘 = {F𝑘,S𝑘}, where F and S are subsets of V and are termed the “frontal” and

“separator” variables, respectively. The resulting factorization can be written as:

𝑝(V) ∝
∏︁
𝑘

𝑝(F𝑘 | S𝑘). (2.23)

In particular, the frontal and separator variables of a clique C𝑘 and its parent clique

Π𝑘 are related by the following definitions:

S𝑘 , C𝑘 ∩Π𝑘 (2.24)

F𝑘 , C𝑘 ∖ S𝑘. (2.25)

The root clique C𝑟, then, is defined as having only frontal variables F𝑟 and therefore

corresponds to a prior on the root variables, 𝑝(F𝑟).

Throughout this thesis we make use of tree-structured graphical models for in-
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ference without much explicit reference to the underlying data structures used. In

particular, in Chapter 4 we use the incremental smoothing and mapping framework

iSAM2 [30] and in Chapter 5 we leverage the “multimodal” incremental smoothing

and mapping work mm-iSAM [20].

2.2.3 Algorithms for Variable Elimination

Given graphical models of the form described in the previous section, we now consider

the problem of inferring the distribution over latent variables given the observed

variables. We consider two algorithms for marginalization: sum-product and max-

product.

The sum-product algorithm, summarized in Algorithm 1 provides a method for

exactly recovering the marginal distribution over a subset of variables. Given a set

of factors Φ and a continuous variable 𝑆 to eliminate, the sum-product algorithm for

variable elimination first computes the product over all factors related to 𝑆, denoted

𝜑. The result is a function 𝜓(· · · , 𝑆) of 𝑆 and all other variables related to 𝑆 by

factors in 𝜑. Finally, the term 𝜓(· · · , 𝑆) is integrated with respect to 𝑆, producing

the marginal term 𝜏(· · · ), which is strictly a function of variables other than 𝑆.

Algorithm 1 The sum-product elimination algorithm for continuous variables.
Φ Set of factors
𝑆 Variable to eliminate
𝜑← {𝜑 ∈ Φ, 𝑆 ∈ Scope(𝜑)}
𝜙← Φ ∖ 𝜑
𝜓(· · · , 𝑆)←

∏︀
𝜑∈𝜑 𝜑(· · · , 𝑆)

𝜏(· · · )←
∫︀
𝜓(· · · , 𝑠)𝑑𝑠

return 𝜏(· · · )

The max-product algorithm, summarized in Algorithm 2 provides a method for

exactly recovering the max-marginal for a subset of variables, and is used in the con-

text of maximum a posteriori (MAP) inference. As with the sum-product algorithm,

we first compute the product over factors adjacent to the variable 𝑆 to be eliminated.

In the max-product algorithm, however, we maximize over possible assignments to

𝑆, rather than integrating over the domain of 𝑆, to produce 𝜏(· · · ). The resulting
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marginal is termed a “max-marginal” and is used to recover the maximum a posteriori

assignments to a set of variables [31].

Algorithm 2 The max-product elimination algorithm.
Φ Set of factors
𝑆 Variable to eliminate
𝜑← {𝜑 ∈ Φ, 𝑆 ∈ Scope(𝜑)}
𝜙← Φ ∖ 𝜑
𝜓(· · · , 𝑆)←

∏︀
𝜑∈𝜑 𝜑(· · · , 𝑆)

𝜏(· · · )← max𝑆 𝜓(· · · , 𝑆)
return 𝜏(· · · )

2.2.4 MAP Inference as Optimization

Thus far our graphical model formulation of the SLAM problem makes no specific

distributional assumptions. That said, in Section 2.2.1 we described a number of

nonlinear Gaussian models we are concerned with in this thesis. Indeed, the most

commonly used sensor models treat measurements as a nonlinear, but deterministic

function of state variables (such as poses and landmarks) corrupted by additive Gaus-

sian noise. It is pertinent to consider the consequences these assumptions have on our

graphical model formulation and what new algorithms can be developed leveraging

these constraints. In particular, we consider how the problem changes when we aim

to recover only the most probable, i.e. the maximum a posteriori estimate of vehicle

poses and landmarks under such assumptions:

X̂, L̂ = argmax
X,L

𝑝(X,L | Z). (2.4, revisited)

Consider a general factor graph representation of a joint distribution over poses and

landmarks:

𝑝(X,L | Z) =
∏︁
𝑖

𝑓𝑖(V𝑖), V𝑖 ⊆ {X,L}. (2.26)

As before, we denote each factor as 𝑓𝑖 and adopt the notation V𝑖 for the subset of

poses and landmarks adjacent to the 𝑖-th factor. Next, let’s adopt the assumption
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that each factor 𝑓𝑖 is a Gaussian likelihood with respect to some nonlinear function

ℎ𝑖 of V𝑖, that is

𝑓𝑖(V𝑖) =
1√

2𝜋 det Σ𝑖

exp

{︂
−1

2
‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖

}︂
(2.27)

Then, substituting (2.27) into (2.26), we obtain the following expression for the

joint belief:

𝑝(X,L | Z) =
∏︁
𝑖

𝑓𝑖(V𝑖), V𝑖 ⊆ {X,L}. (2.26 revisited)

=
∏︁
𝑖

1√
2𝜋 det Σ𝑖

exp

{︂
−1

2
‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖

}︂
∝

∏︁
𝑖

exp

{︂
−1

2
‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖

}︂
(2.28)

Thus we obtain the result in (2.28) that the posterior belief 𝑝(X,L | Z) is, up to

a constant of proportionality which depends only on the measurements (and not on

our poses X or landmarks L), equal to the product of exponential terms. Since our

concern is to recover the most probable assignment to poses and landmarks, this

constant of proportionality has no influence on the result. Following this line of

reasoning, we can instead maximize the log of the posterior, which gives:

argmax
X,L

𝑝(X,L | Z) = argmax
X,L

log 𝑝(X,L | Z)

= argmax
X,L

log
∏︁
𝑖

exp

{︂
−1

2
‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖

}︂
= argmax

X,L

∑︁
𝑖

−1

2
‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖

= argmin
X,L

∑︁
𝑖

‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖
. (2.29)

The result in (2.29) has the form of a nonlinear least-squares problem in terms of

the Mahalanobis distance. In order to optimize the resulting expression in (2.29) we

can use nonlinear optimization methods like Gauss-Newton and Levenberg-Marquadt.
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Such methods depend on the linearization of the ℎ𝑖’s.

Specifically, we consider a first-order Taylor approximation of each ℎ𝑖 given a

particular linearization-point consisting of an assignment to the elements of V𝑖. Let

the linearization point be V̂𝑖, then the Taylor expansion of of ℎ𝑖 can be written as:

ℎ𝑖(V𝑖) ≈ ℎ𝑖(V̂𝑖) +∇ℎ𝑖(V̂𝑖)(V𝑖 − V̂𝑖), (2.30)

where ∇𝑔(𝑣) denotes the Jacobian of a function 𝑔 : R𝑛 → R𝑚 evaluated at 𝑣 with

element (𝑖, 𝑗) defined as:

∇𝑔(𝑣)(𝑖,𝑗) ,
𝜕𝑔𝑖
𝜕𝑣𝑗

⃒⃒⃒⃒
𝑣𝑗

. (2.31)

One caveat of the above is that we have assumed vector-valued V𝑖 and ℎ𝑖(V𝑖),

where in general this is not the case; poses 𝑥 are elements of the two- or three-

dimensional Euclidean groups, and similarly measurements may have their own man-

ifold structure. We will not discuss the subject of optimization on manifolds in detail

in this thesis, but refer to [11] for a more complete treatment of manifold optimization

for SLAM.

Substituting the Taylor expansion of ℎ𝑖 from (2.30) into the nonlinear least-squares

optimization from (2.29), we obtain:

‖ℎ𝑖(V𝑖)− 𝜇𝑖‖2Σ𝑖
≈ ‖ℎ𝑖(V̂𝑖) +∇ℎ𝑖(V̂𝑖)(V𝑖 − V̂𝑖)− 𝜇𝑖‖2Σ𝑖

, (2.32)

which allows us to rewrite the original problem as a weighted linear least-squares

problem. We make this explicit as follows by defining the matrix 𝐽𝑖 as the Jacobian

of the 𝑖-th measurement model ℎ𝑖 at the linearization point V̂𝑖:

X̂, L̂ = argmin
X,L

∑︁
𝑖

‖ℎ𝑖(V̂𝑖) + 𝐽𝑖(V𝑖 − V̂𝑖)− 𝜇𝑖‖2Σ𝑖
(2.33)

Defining the error residual 𝑟𝑖(V𝑖) = ℎ𝑖(V̂𝑖) + 𝐽𝑖(V𝑖 − V̂𝑖) − 𝜇𝑖, we can rewrite the

expression (2.33) in terms of the L2-norm (and therefore as a standard linear least-
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squares problem) as follows:

‖ℎ𝑖(V̂𝑖) + 𝐽𝑖(V𝑖 − V̂𝑖)− 𝜇𝑖‖2Σ𝑖
= ‖𝑟𝑖(V𝑖)‖2Σ𝑖

= ‖Σ−1/2𝑟𝑖(V𝑖)‖22. (2.34)

Thus, by changing variables to 𝐴𝑖 = Σ
−1/2
𝑖 𝐽𝑖 and 𝑏𝑖 = Σ

−1/2
𝑖 (𝜇𝑖 − ℎ𝑖(V̂𝑖)), we

obtain a simple linear least-squares problem:

X̂, L̂ = argmin
X,L

∑︁
𝑖

‖𝐴𝑖(V𝑖 − V̂𝑖)− 𝑏𝑖‖22

= argmin
X,L

‖A(V − V̂)− 𝑏‖22, (2.35)

where the last line (2.35) follows from block-wise stacking each term in the sum.

Broadly, nonlinear optimization methods such as Gauss-Netwon and Levenberg-

Marquadt perform linearization as we have shown above. They then solve for the term

V−V̂ in the linearized problem from which values of X and L can be recovered. This

process is repeated until the solution converges, or some fixed maximum number of

iterations is reached.

Lastly, the linearized joint covariance matrix Σ can be obtained, using the optimal

values of poses and landmarks X̂, L̂ as the linearization point, as:

Σ = (A𝑇A)−1. (2.36)

For this reason, A is referred to as the “square-root information matrix”; its square

corresponds to the information matrix, i.e. the inverse of the covariance matrix. The

above equality is straightforward to show by considering the definition of A as Σ−1/2J

where J is simply the concatenation of each measurement Jacobian 𝐽𝑖. In practice

this multiplication is not performed directly to obtain the covariance. Rather, more

efficient methods have been presented, such as those in [28].
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Figure 2-2: When we can uniquely identify the landmark corresponding to each mea-
surement, the only variables to infer are robot poses and landmarks. This factor
graph represents such a case, where we have two vehicle poses and two landmarks.
We have a prior factor 𝜑1 on the initial vehicle pose, and priors 𝜙1, 𝜙2 on each of the
landmark locations. An odometry measurement 𝜓1 links the poses, and range-bearing
measurements 𝜌1 and 𝜌2 are made from the first and second poses to the first and
second landmarks, respectively.

2.3 Summary

In this section we described several preliminaries related to state-of-the-art SLAM

systems used in this work. In particular, we describe the SLAM problem as one of

Bayesian inference, defined by probabilistic measurement models. We discussed the

measurement models relevant to the work proposed in this thesis, including odometry

models, range and bearing models, and semantic measurement models. We described

the sum-product and max-product algorithms for inference in graphical models with-

out assumptions on the distributional form of measurement models. Lastly, we showed

how the MAP inference problem for Gaussian factor graphs can be re-cast as one of

nonlinear optimization. The algorithms discussed form the foundation for state-of-

the-art SLAM methods, with the former being relevant to non-Gaussian SLAM in

the contexts of MAP inference and full posterior inference, and the latter being the

backbone for modern SLAM systems that assume Gaussian noise.
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Chapter 3

Data Association

3.1 Overview

In the previous section, discussion was limited to the case in which data associations—

the correspondences between sensor measurements and environmental landmarks—

are assumed to be known. In the probabilistic framework we developed in the previous

chapter, the likelihood of a measurement (and consequently the belief over poses and

landmarks given our measurements) depends on which landmark caused the mea-

surement. Similarly, in this section we describe how the determination of the data

association itself critically depends on our belief over robot poses and landmarks. In

this sense, as with the general SLAM problem, this presents a chicken and egg prob-

lem: we need measurement-landmark correspondences to infer poses and landmarks

(i.e. to do SLAM), but we need an estimate of poses and landmarks to infer data

associations.

In this chapter, we first outline the above problem of joint inference of poses, land-

marks, and data associations. We then describe a variety of methods for addressing

the data association problem. Broadly, data association methods may be lazy and

defer making association decisions (and allow for revision of previous decisions), or

proactive, making a decision about data associations (or their respective probabilities)

at a given point in time using only the information prior to that moment, and doing

so without revision. While this thesis concerns proactive approaches, many of the
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Figure 3-1: When data associations are unknown, they introduce an additional latent
variable into the factor graph. This graphical model extends the SLAM problem from
Figure 2-2 to a situation where the data association for the second range-bearing
measurement 𝜌2 is unknown.

ideas we develop are applicable in the general setting of lazy data association as well.

We conclude by discussing related works in semantic SLAM and data association.

3.2 SLAM with Unknown Data Association

When correspondences between measurements and landmarks are not known a priori,

they must also be inferred. Let 𝑑𝑘𝑡 denote a data association for measurement 𝑘 taken

at pose 𝑥𝑡, such that 𝑑𝑘𝑡 = 𝑗 signifies that measurement 𝑧𝑘
𝑡 corresponds to landmark

ℓ𝑗. Let D , {𝑑𝑡}𝑇𝑡=1 denote the set of all associations of measurements to landmarks.

The data associations at each time 𝑑𝑡 now appear as additional latent variables in

the factor graph, as in Figure 3-1.

We now obtain a new factor graph characterization of the joint:

𝑝(X,L,D | Z) =
∏︁
𝑖

𝑓𝑖(V𝑖), V𝑖 ⊆ {X,L,D}. (3.1)

More concretely, in the case of the example in Figure 3-1, the joint posterior can be
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Figure 3-2: At a given time 𝑡, there are 𝐾 measurements that must be associated to
any of 𝑀 landmarks. Depicted above is a graphical representation of this problem.
Here we denote the probability that a measurement arose due to the observation of
a particular landmark as the darkness of the edge that connects the nodes. Whether
the association process is done for each measurement independently or with consid-
eration of all 𝐾 measurements simultaneously is the distinction between individual
compatibility (IC) and joint-compatibility (JC) approaches [28].

written:

𝑝(𝑥1,𝑥2, ℓ1, ℓ2,𝑑2 | Z) = 𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2)× . . . (Prior terms)

. . . 𝜓1(𝑥1,𝑥2)× . . . (Odometry meas.)

. . . 𝜌1(𝑥1, ℓ1)𝜌2(𝑥2, ℓ1, ℓ2,𝑑2) (Landmark meas.).

Notably, factors are now functions not only of poses and landmarks, but also associa-

tion variables. The factor 𝜌2(𝑥2, ℓ1, ℓ2,𝑑2) corresponds to the measurement likelihood

conditioned on the association 𝑑 = 𝑗 with 𝑗 ∈ {1, 2}. More concretely, it corresponds

to the measurement model 𝑝(𝑧 | 𝑥, ℓ1, ℓ2,𝑑2 = 𝑗) = 𝑝(𝑧 | 𝑥, ℓ𝑗).

3.2.1 Measurement Gating

A problem that arises when data associations are unknown is when a measurement

corresponds to a landmark outside the known set. Often it is the case in SLAM

that we do not know how many landmarks exist in the environment a priori, and

we must determine online whether a measurement corresponds to a new landmark

ℓ𝑛𝑒𝑤. The most common and simple method for determining whether a measured

landmark is novel is gating. Gating refers to placing a threshold 𝜏 on the probability
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that a measurement arose from each of the candidate landmarks. If the probability

of an association to every currently known landmark falls below the threshold 𝜏 , we

assign a new landmark to the measurement. In the case of linearized Gaussian mod-

els, computing data association probabilities is equivalent to placing a Mahalanobis

distance threshold [28]. We discuss specific methods for computing data association

probabilities under Gaussian distribution assumptions and for arbitrary distributions

in Chapters 4 and 5 respectively.

3.2.2 Problem Dimensionality

Perhaps the most critical problem encountered in the consideration of unknown data

association is the dimensionality of the problem. When data associations are known,

the dimensionality of the SLAM joint is related directly to the product of the number

of poses 𝑇 and the number of landmarks 𝑀 , which is in the worst case equal to the

number of measurements |Z|. To simplify the analysis, recall that 𝐾𝑡 is the number

of measurements in 𝑧𝑡 (the set of measurements taken at time 𝑡) for all 𝑡, and define

𝐾 = max𝑡𝐾𝑡. The cardinality of Z, then, is in 𝒪(𝐾𝑇 ). Since generally we have

𝐾 << 𝑇 , i.e. the maximum number of measurements at a particular time 𝑡 is much

less than the total number of discrete time-steps in the entire history of a robot

trajectory, we can think of this set as growing linearly in 𝑇 .

When we consider unknown data associations, the space of the joint distribution

is multiplied by |D|, the size of the space of all possible measurement-landmark cor-

respondences. For each measurement 𝑧, there are at most |Z| candidate associations.

By our previous analysis, we have |Z| ∈ 𝒪(𝑇 ), Thus, a worst-case analysis suggests

that |D| ∈ 𝒪(𝑇 𝑇 ), i.e. exponential in the number of discrete time-steps. As a conse-

quence, it is generally not feasible to enumerate every possible set of data associations.

Fortunately, a number of reasonable approaches that mitigate the exponential growth

in data associations are available. We can leverage, for example, the property that

though the space of data associations is immense, very few of the outcomes D ∈ D

have non-negligible probability. This property allows us to circumvent joint consid-

eration of all possible data associations at once. As an example, for detections of
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landmarks in a given image, we need not consider associations to landmarks which

are with very high probability out of the image frame. We make note of approxima-

tions like these when we make use of them in Chapters 4 and 5, but the subsequent

discussion of data association methods neglects the computational burden of enumer-

ating the space of possible correspondences. Rather, we assume approximations can

be made that make this enumeration tractable and focus on the computational issues

associated with inference.

3.3 Maximum-Likelihood Data Association

One of the most common solutions to the data association problem is maximum-

likelihood estimation. That is, given an initial estimate of poses and landmarks X(0)

and L(0), respectively, maximum-likelihood data association performs the following

optimization:

D̂ = argmax
D

𝑝(D | X(0),L(0),Z) (3.2)

X̂, L̂ = argmax
X,L

𝑝(X,L | Z, D̂). (3.3)

Often the pose and landmark estimates X(0) and L(0) are produced using a subset

of measurements and marginalized out to compute the data association probabilities.

For example, in the case of proactive data association, usually the pose and landmark

estimates are obtained using measurements 𝑧1, . . . ,𝑧𝑡−1, and the pose and landmark

variables are marginalized out (a process we describe in detail for the Gaussian and

non-Gaussian cases in Chapters 4 and 5, respectively).

Broadly, in the maximum-likelihood approach, data associations are computed

and fixed, then the SLAM solution is optimized assuming the fixed set of data associ-

ations. Methods like the Hungarian algorithm [32] and joint compatibility branch and

bound [40] are typically used to simultaneously compute an optimal assignment of

all measurements 𝑧𝑘
𝑡 , 𝑘 = 1, . . . , 𝐾𝑡 observed at a pose 𝑥𝑡 to landmarks. While very

efficient and easy to implement, this method can be brittle. In particular, if there is
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(a) Computing belief over a data association variable by marginalizing out the history of
poses and landmarks (left). This produces the marginal belief over data association candi-
dates (right).

(b) Marginalization of the data association variable produces an equivalent factor graph
with a non-Gaussian factor linking 𝑥2, ℓ1, and ℓ2.

Figure 3-3: Computing the belief over possible data associations by marginalizing out
the current poses and landmarks.

an error in a data association, there is no opportunity to revise the association. In

approaches that address SLAM using nonlinear least-squares optimization, there is

a quadratic cost associated with each term. An incorrect association can give other-

wise correct solutions a high cost, which often makes the minimum cost solution very

far from the ground-truth solution (see for example the case of maximum-likelihood

associations in Figure 1-2).
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3.4 Probabilistic Data Association

An alternative solution is to consider probabilistic data associations. If we had access

to the probability of each data association, we could marginalize out data associations

when computing the solution to the SLAM problem,

X̂, L̂ = argmax
X,L

∑︁
D

𝑝(X,L,D | Z) (3.4)

= argmax
X,L

∑︁
D

𝑝(X,L | D,Z)𝑝(D | Z) (3.5)

= argmax
X,L

ED [𝑝(X,L | D,Z) | Z] (3.6)

The approximate marginal distribution represented by the expectation over data as-

sociation hypotheses—even when the individual measurement likelihoods are well-

represented by Gaussian distributions—is almost always multimodal in practice. This

may not be immediately obvious, however. Note that each term 𝑝(X,L | D,Z) repre-

sents the posterior belief over poses and landmarks given a fixed set of data associa-

tions. When measurement models are Gaussian conditioned on data associations, this

posterior is Gaussian, as we have seen in the previous chapter. Each term 𝑝(D | Z)

is simply a scalar probability. Thus the resulting expectation takes the form of a

sum-mixture of Gaussians.

The sum-mixture of Gaussians form is outside the realm of traditional least-

squares approaches to SLAM. Beyond this issue, as we have previously mentioned,

the space D is in the worst case exponentially large in the number of measurements.

A number of solutions exist that maintain a set of Gaussian solutions that branch

with each set of new hypothesis. Work in the this area has primarily focused on

methods to prune the space of plausible hypotheses (e.g. [9], [50], and recently [56]),

leveraging the fact that 𝑝(D | Z) is sparse over D.

A recent solution making use of expectation-maximization iterates between com-
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puting the data association probabilities and the conditional log-likelihood [5]:

X̂(𝑖+1), L̂(𝑖+1) = argmax
X,L

ED

[︀
log 𝑝(X,L | Z,D) | X(𝑖),L(𝑖),Z

]︀
. (3.7)

The effect of this approach is that the sum of Gaussians in the sum-marginal is re-

placed by a geometric mean. This has the benefit of preserving the Gaussian posterior

assumption, and iterating in this fashion provides guaranteed convergence. Through-

out this thesis we refer to this method as Gaussian probabilistic data association

(Gaussian PDA), as it performs probabilistic data association while preserving the

Gaussian distribution assumptions. This approach solves for point estimates of poses

and landmarks at each iteration using an approach similar to weighted maximum like-

lihood estimation [57], where weights are determined by estimated data association

probabilities. In practice, recomputing data association probabilities for all previous

measurements is a computational burden, so typically data association probabilities

are computed once proactively (i.e. after each keyframe), resulting in solutions some-

where between the modes induced by the plausible association hypotheses. Nonethe-

less, approximate methods for computing the permanent of a matrix exist which have

been shown to permit more efficient recomputation of data association probabilities

[2].

3.4.1 Our Approach

We consider two approaches in this thesis for addressing non-Gaussianity in the se-

mantic SLAM problem with probabilistic data associations. Both leverage the idea

of marginalizing out the discrete data association variables in the solution to the

SLAM problem, as described graphically in Figure 3-3. The sum-marginalization we

initially proposed in Equation (3.4) computes the posterior belief 𝑝(X,L | Z) before

maximizing. In our first approach, described in Chapter 4, we show that if our goal

is solely MAP inference, we can replace the sum-marginal with a max-marginal and

perform (in principle) exact MAP inference in a nonlinear least-squares framework.

In many cases, however, the MAP estimate is insufficient. For example, if we
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aim to inform planning decisions based on uncertainty in the posterior (as is the case

broadly in active SLAM ), richer posterior representations are required. In Chapter

5, we consider directly inferring the (non-Gaussian) posterior 𝑝(X,L | Z) represented

by the marginalization in Equation (3.4). The resulting computation is necessarily

approximate, but provides a rich representation for planning that incorporates am-

biguity due to uncertain data associations. Furthermore, this approach is capable

of coping with non-Gaussian uncertainties in measurement likelihoods, such as those

arising from nonlinearity in measurements, physical and environmental effects like

acoustic multipath, and undetermined systems (as encountered in range-only and

bearing-only inference problems), topics we will revisit in Chapter 6.
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Chapter 4

Robust Semantic SLAM with

Max-Mixtures

In the previous chapter, we outlined several approaches to inference in graphical mod-

els and introduced the two core algorithms from which the methods in this thesis can

be derived. In this chapter, we are specifically concerned with maximum a posteriori

MAP inference for semantic SLAM with unknown data association. That is, we want

to find the most probable set of robot poses and landmarks given the measurements:

X̂, L̂ = argmax
X,L

𝑝(X,L | Z). (2.4, revisited)

In this chapter, we present an algorithm addressing the MAP inference problem

for ambiguities that can be represented by a mixture of Gaussians. In particular, we

make use of max-product marginalization, as described in Algorithm 2 to eliminate

discrete data association variables in the SLAM solution. In doing so, we arrive at a

formulation that is similar to the “max-mixtures” method of Olson and Agarwal [42].

4.1 Max-Marginalization of Data Associations

As described in the previous chapter, we approach the problem of SLAM with un-

known data association by introducing the associations as additional latent variables.
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In order to address the specific problem of MAP inference posed in (2.4), we would like

to eliminate the influence of the data association variable. Previously we introduced

two algorithms for variable elimination: the sum-product algorithm and max-product

algorithm. For MAP inference it will suffice to compute the so-called “max-marginal”

of X and L over all possible D. That is:

X̂, L̂ = argmax
X,L

𝑝(X,L | Z) (2.4, revisited)

= argmax
X,L

[︁
max
D

𝑝(X,L,D | Z)
]︁

(4.1)

= argmax
X,L

[︁
max
D

𝑝(X,L | D,Z)𝑝(D | Z)
]︁
. (4.2)

We refer to the inner maximization term as the “max-marginal” of X and L, formally

defined as:

𝜇(X,L | Z) = max 𝑝(X,L | D,Z)𝑝(D | Z), (4.3)

where we use the notation 𝜇(X,L | Z) to distinguish this function from the posterior

belief 𝑝(X,L | Z) (which would be equal to the result of sum-marginalization of

data associations). Under common Gaussian measurement assumptions. This result

conveniently replaces the sum-of-Gaussians representation of the true posterior with

a maximization over terms which individually are Gaussian.

4.1.1 Proactive Max-Marginalization

Exact computation of the max-marginal over all possible data associations in Equa-

tion (4.2) is computationally expensive. In the Gaussian case, and when applying

nonlinear least-squares optimization algorithms like Gauss-Newton and Levenberg-

Marquadt, we need to evaluate this max-marginal each time we update the assign-

ment of X and L (i.e. on every iteration of the optimization procedure). As we

described in Chapter 3, the exponentially large set of possible data associations D

makes brute-force consideration of ever association impractical. This becomes par-
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ticularly relevant when we consider that an autonomous robot requires up-to-date

estimates of its own state and the state of the environment in order to reliably nav-

igate. As a consequence, we perform data association proactively. This allows us to

eliminate data associations as new measurements are made, and the set of plausible

associations to a single measurement (or subset of measurements) at a particular time

is ostensibly smaller than the set of all possible associations to measurements at any

time. However, this method is approximate in that it does not consider the influence

of future measurements when computing data association probabilities.

In particular, suppose we have some set of previous measurements Z− and new

measurements Z+ (i.e. Z = Z+ ∪ Z− with Z+ ∩ Z− = ∅). We aim to compute the

max-marginal over associations to the new measurements, denoted D+. Formally, we

have the following:

𝑝(X,L,D+ | Z+,Z−) =
𝑝(Z+ | X,L,D+,Z−)𝑝(X,L | D+,Z−)𝑝(D+ | Z−)𝑝(Z−)

𝑝(Z+,Z−)

∝ 𝑝(Z+ | X,L,D+)𝑝(X,L | Z−)𝑝(D+ | Z−), (4.4)

where in the last line we have removed the proportionality constant 𝑝(Z−)/𝑝(Z+,Z−),

used the conditional independence 𝑝(Z+ | X,L,D+,Z−) = 𝑝(Z+ | X,L,D+), and

used the conditional independence 𝑝(X,L | D+,Z−) = 𝑝(X,L | Z−), since D+ con-

sists of associations to only measurements outside of Z−. Using the above decompo-

sition, we apply max-marginalization to data associations:

𝜇(X,L | Z+,Z−) = max
D+

[︀
𝑝(Z+ | X,L,D+)𝑝(X,L | Z−)𝑝(D+ | Z−)

]︀
(4.5)

= 𝑝(X,L | Z−) max
D+

[︀
𝑝(Z+ | X,L,D+)𝑝(D+ | Z−)

]︀
. (4.6)

Here 𝑝(X,L | Z−) is the (potentially non-Gaussian) posterior distribution over

poses and landmarks after sum-marginalization of data associations to the measure-

ments Z−. For the purposes of optimization in the Gaussian case, we take this as the

max-marginal 𝜇(X,L | Z−).

As an example, consider a simple factor graph consisting of two vehicles poses
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with an odometry constraint between them, each measuring one of two candidate

landmarks, each with a prior (as in Figures 3-1 and 3-3). We can write the posterior

as:

𝑝(X,L,D | Z) ∝ 𝜓1(𝑥1,𝑥2)𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1)𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2),

where here D = {𝑑1, 𝑑2}. Suppose that each distribution is Gaussian conditioned

on the data association variables 𝑑1 and 𝑑2; thus the posterior conditioned on the

associations is jointly Gaussian (subject to the appropriate linearization of any non-

linear models). Straightforward sum-product marginalization of the data association

variables (according to Algorithm 1) here will result in a decidedly non-Gaussian in-

ference problem. Furthermore, while the non-Gaussian problem represented here is

tractable (as there are only 4 possible solutions), exact inference for these types of

problems is generally computationally intractable due to the large number of modes

that arise in the posterior. Max-marginalization (which retains the Gaussianity of

the problem conditioned on the data associations) can be computed as:

𝜇(X,L | Z) ∝

max
D∈D

𝜓1(𝑥1,𝑥2)𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1)𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2). (4.7)

Assuming that data associations are independent (conditioned on previous measure-

ments) we may in fact push the maximization into the individual terms. In general,

the following reduction applies to any two factors 𝜑1 and 𝜑2:

max
𝑥

(𝜑1 · 𝜑2) ≡ 𝜑1 ·max
𝑥

𝜑2. (4.8)

whenever 𝑥 /∈ Scope(𝜑1) [31]. Thus, when data associations can be considered condi-

tionally independent given previous measurements (as we have written them in the
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original max-marginal equation), the resulting max-marginal can be rewritten as:

𝜇(X,L | Z) ∝

𝜓1(𝑥1,𝑥2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2) max
𝑑1∈𝒟1

𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1) max
𝑑2∈𝒟2

𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2). (4.9)

The consequences of this simple change are quite significant: the complexity of eval-

uating the max operators in the above expression is in the worst case quadratic1,

rather than exponential in the number of measurements. Practically, there will often

be many fewer landmarks (and thus candidate hypotheses) than measurements, so

in practice this is usually roughly linear in the number of measurements. In prac-

tice, of course, computing the data association probability for a measurement requires

marginalization of the current belief over poses and landmarks, and that belief hinges

critically on previous associations. The result is that we have arrived at an approxi-

mate max-product algorithm for SLAM with unknown data associations.

4.2 Max-Mixtures Semantic SLAM

To perform covariance recovery for computing data association probabilities, we use

the method of Kaess and Daellart [28]. In particular, consider a single measurement

of a landmark 𝑧, which in our case consists of the estimated range and bearing to the

landmark (though which landmark is unknown a priori). Furthermore, let Σ denote

the block joint covariance matrix:

Σ =

⎡⎣Σ𝑡𝑡 Σ𝑡𝑗

Σ𝑗𝑡 Σ𝑗𝑗

⎤⎦ (4.10)

between a pose 𝑥𝑡 and candidate landmark ℓ𝑗, obtained from the solution to the

factor graph obtained at time 𝑡. We assume the data association probability is pro-

1The true total number of operations is roughly the product of the number of hypotheses per
measurement and the number of measurements. Here we say this is in the worst-case quadratic,
since we could plausibly have at most one landmark per measurement, discounting the possibility of
a false positive measurement that arises without the existence of a landmark.
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portional to the likelihood 𝑝(𝑧𝑡 | 𝑑𝑡,Z
−). We can write the joint distribution between

a new measurement and data association conditioned on all previous measurements

as follows:

𝑝(𝑧𝑘
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−) =

∫︁∫︁
𝑝(𝑧𝑘

𝑡 ,𝑥𝑡, ℓ𝑗 | 𝑑𝑘𝑡 = 𝑗,Z−)𝑑𝑥𝑡𝑑ℓ𝑗 (4.11)

=

∫︁∫︁
𝑝(𝑧𝑘

𝑡 | 𝑑𝑘𝑡 = 𝑗,𝑥𝑡, ℓ𝑗)𝑝(𝑥𝑡, ℓ𝑗 | Z−)𝑑𝑥𝑡𝑑ℓ𝑗. (4.12)

With data associations marginalized out, the belief 𝑝(𝑥𝑡, ℓ𝑗 | Z−) would be generally

non-Gaussian. Consequently, we again make an approximation. We use the max-

marginal for the posterior 𝜇(𝑥𝑡, ℓ𝑗 | Z−) evaluated at the current MAP estimate of

𝑥𝑡 and ℓ𝑗, which we denote �̂�(𝑥𝑡, ℓ𝑗 | Z−), to form the tractable approximation:

𝑝(𝑧𝑘
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−) ≈

∫︁∫︁
𝑝(𝑧𝑘

𝑡 | 𝑑𝑘𝑡 = 𝑗,𝑥𝑡, ℓ𝑗)�̂�(𝑥𝑡, ℓ𝑗 | Z−)𝑑𝑥𝑡𝑑ℓ𝑗. (4.13)

Recalling the factored measurement model assumptions from Section 2.2.1, we also

have that the distribution of the form 𝑝(𝑧 | 𝑑,Z−) can be broken into the product

𝑝(𝑧𝑟 | 𝑑,Z−)𝑝(𝑧𝑏 | 𝑑,Z−)𝑝(𝑧𝑠 | 𝑑,Z−), where 𝑧𝑟, 𝑧𝑏, and 𝑧𝑠 are the range, bearing,

and semantic class measurements, respectively2. Consequently, subject to the max-

marginal approximation above, we obtain the following equivalent expression:

𝑝(𝑧𝑘
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−) = 𝑝(𝑧𝑠

𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−)𝑝(𝑧𝑟
𝑡 , 𝑧

𝑏
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−)

≈

[︃∑︁
𝑐

𝑝(𝑧𝑠
𝑡 | ℓ𝑠𝑗 = 𝑐)𝑝(ℓ𝑠𝑗 = 𝑐 | Z−)

]︃
× . . .

. . .

[︂∫︁∫︁
𝑝(𝑧𝑟

𝑡 , 𝑧
𝑏
𝑡 | 𝑑𝑘𝑡 = 𝑗,𝑥𝑡, ℓ𝑗)�̂�(𝑥𝑡, ℓ𝑗 | Z−)𝑑𝑥𝑡𝑑ℓ𝑗

]︂
.

We have dropped the superscript 𝑘 for a single measurement to emphasize the de-

composition into range, bearing, and semantic components, but we are considering a

single measurement 𝑧𝑘
𝑡 throughout. Since the range and bearing measurements are

2It is simple to consider range-bearing measurements which are jointly Gaussian, but typical
noise model assumptions for such sensors assume diagonal covariances, and therefore assume the
same factorization as presented here
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geometric and are agnostic to the class of the landmark, the original integral can be

broken into a discrete summation over landmark classes and integration over robot

pose and landmark location. The result of the summation is simply a scalar. Fur-

thermore, since all of the terms in the integral are Gaussian, it can be simplified as

follows:

𝑝(𝑧𝑟
𝑡 , 𝑧

𝑏
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−) ≈

∫︁∫︁
1√︀
|2𝜋Γ|

𝑒−
1
2
‖ℎ𝑘(𝑥𝑡,ℓ𝑗)−z‖2Γ

1√︀
|2𝜋Σ|

𝑒‖x−x̂‖2Σ𝑑𝑥𝑡𝑑ℓ𝑗

≈ 1√︀
|2𝜋𝐶𝑡𝑗𝑘|

𝑒
− 1

2
‖ℎ𝑘(x̂)−z‖2𝐶𝑡𝑗𝑘 (4.14)

where x is the stacked vector representation [𝑥𝑡, ℓ𝑗]
𝑇 , z is the stacked vector [𝑧𝑟

𝑡 , 𝑧
𝑏
𝑡 ],

x̂ is the mean of the joint distribution over 𝑥𝑡 and ℓ𝑗. Furthermore, we take Γ to be

the joint covariance over 𝑧𝑟 and 𝑧𝑏. The covariance 𝐶𝑡𝑗𝑘, then, is defined as:

𝐶𝑡𝑗𝑘 ,
𝜕ℎ𝑘
𝜕x

⃒⃒⃒⃒
x̂

Σ
𝜕ℎ𝑘
𝜕x

⃒⃒⃒⃒𝑇
x̂

+ Γ. (4.15)

Taking the distribution 𝑝(𝑑 | Z−) as proportional to the above (over all assignments

to 𝑑) and normalizing the result appropriately, we compute the max-mixture factor

for a measurement 𝑧𝑡 as:

𝑓(𝑥𝑡, ℓ1:𝑀) = max
𝑗
𝑝(𝑧𝑡 | 𝑥𝑡, ℓ𝑗)𝑝(𝑑

𝑘
𝑡 = 𝑗 | Z−). (4.16)

Here we have used the most general case where we consider all landmarks 𝑗 =

1, . . . ,𝑀 , but in practice we use measurement gating as described in Section 3.2.1 to

reduce the subset of landmarks that are examined in the maximization.

Finally, we can recover maximum a posteriori landmark semantic class estimates

(assuming uniform priors) as in [5] follows:

ℓ̂𝑠𝑗 = argmax
𝑐

∏︁
𝑡

∑︁
𝑑𝑡

𝑝(𝑑𝑡, ℓ
𝑠
𝑗 = 𝑐 | Z), (4.17)

which are easily recovered from the data association probabilities stored as the com-
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max mean median min rmse sse std
ML 52.00 26.84 28.69 1.368 30.34 1.10e+06 14.14

GPDA 17.13 5.402 5.12 0.28 6.07 4.01e+04 2.77
MM 15.57 2.80 2.60 0.29 3.24 1.10e+04 1.62

Table 4.1: Comparison of maximum, mean, median, and minimum absolute pose error
(APE) on KITTI Sequence 05 between maximum-likelihood (ML), Gaussian PDA
(GPDA) and max-mixtures (MM) approaches to data association. Also provided
are the root-mean-squared error (RMSE), the sum of squared errors (SSE), and the
standard deviation (STD) of the APE. The best performing method in each case is
shown in bold.

ponent weights of the max-mixture factors.

4.3 Experimental Results

We evaluate our approach on real stereo camera data from the KITTI dataset odom-

etry sequence 5 [22]. In our experiments, we use the MobileNet-SSD object detec-

tor ([27, 26, 35]). We threshold the confidence of the detector at 0.8 to avoid false

positive detections and use detections of cars as landmarks. We use VISO2 stereo

odometry for visual odometry [23]. We estimate the range and bearing to cars as

the average range and bearing to all points tracked by VISO2 that project into the

bounding box for a given car detection. To solve the SLAM problem efficiently, we

the implementation of iSAM2 [30] within the GTSAM [10] library. As a result, all

three methods that were evaluated run at approximately 10 Hz on a single core of

a 2.2 GHz Intel i7 CPU (object detections and stereo odometry were preprocessed

and played back in real-time to evaluate the SLAM system). We use evo [24] for

trajectory evaluation.

We compared maximum-likelihood data association to two-component Gaussian

probabilistic data association (Gaussian PDA)3 and our approach using a max-mixture

with two components. A comparison of trajectories produced by each method is

shown in Figure 4-1, which shows the estimated trajectory for each method colored

by the absolute pose error (APE) at each point in the trajectory. Similarly, we pro-

3This is similar to a single iteration of the EM approach of Bowman et al. [5]

60



(a) Max-Likelihood (b) Gaussian PDA

(c) Max-Mixtures

Figure 4-1: Absolute pose error (APE) mapped onto the predicted trajectory for
KITTI Sequence 05. False loop closures cause the maximum-likelihood data associ-
ation method to fail catastrophically, while both probabilistic methods show better
performance. Note that the color is scaled uniquely to each method.
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(a) Max-Likelihood (b) Gaussian PDA

(c) Max-Mixtures

Figure 4-2: Relative pose error (RPE) mapped onto the predicted trajectory for
KITTI Sequence 05. Note that the color is scaled uniquely to each method.
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(a) Max-Likelihood (b) Gaussian PDA

(c) Max-Mixtures

Figure 4-3: Absolute pose error (APE) over time for each method evaluated on KITTI
Sequence 05. The max-mixtures approach achieved the smallest error across each
metric, with Gaussian probabilistic data association performing similarly. Note the
difference in 𝑦-axis scale across methods.
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(a) Max-Likelihood (b) Gaussian PDA

(c) Max-Mixtures

Figure 4-4: Relative pose error (RPE) over time for each method evaluated on KITTI
Sequence 05. The max-mixtures approach achieved the smallest error across each
metric, with Gaussian probabilistic data association performing similarly. Note the
difference in 𝑦-axis scale across methods.
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vide the vehicle trajectories colored by relative pose error (RPE) in Figure 4-2. The

APE and RPE as a function of time for each method are shown in Figures 4-3 and

4-4, respectively. A quantitative comparison of the translation and rotation error for

the methods is shown in Table 4.1. We observe that even keeping a single additional

component in the max-mixture approach helps substantially in empirical performance

over maximum-likelihood approaches to data association. Our method performs only

slightly better than the Gaussian PDA method on this dataset, and has roughly the

same minimum error, as can be seen from Table 4.1.

4.4 Summary

In this chapter we derived a max-mixtures approach to semantic SLAM based on

max-product marginalization of data associations. The max-mixtures formulation

results in a convenient nonlinear least-squares approximation to the original non-

Gaussian problem. Additionally, we have demonstrated results on real data in which

the proposed method empirically outperformed maximum-likelihood data association.

Our results with the proposed approach were also competitive with the state-of-the-art

probabilistic method (Gaussian PDA) that “averages” over all candidate associations.
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Chapter 5

Non-Gaussian Semantic SLAM

In Chapter 4 we considered a nonlinear approximation to the non-Gaussian semantic

SLAM problem. This permitted efficient approximate inference and allowed the use

of many now standardized optimization tools for smoothing-based robot navigation.

On the other hand, by making the max-mixture approximation to the original sum-

mixture, and by linearizing measurement models, we lost the ability to represent the

rich and complex uncertainties induced over our robot state by non-Gaussian measure-

ments. In this chapter, we provide an alternative approach. Rather than converting

the non-Gaussian inference problem into one of approximate nonlinear optimization

under a Gaussian noise assumption, we address directly posterior inference for the

non-Gaussian navigation problem. To this end, we formalize the semantic SLAM

problem with uncertain data associations as one of non-Gaussian inference. To be

precise, we consider full posterior inference of the form:

𝑝(X,L | Z) ∝
∏︁
𝑖

𝑓𝑖(V𝑖), V𝑖 ⊆ X,L. (2.26, revisited)

As discussed in Chapter 3, when we marginalize out data associations D to form

the above inference problem, the resulting posterior is in general non-Gaussian. In

this chapter, we aim to compute this posterior. We solve the inference problem

approximately using nonparametric belief propagation on the Bayes tree. The specific

inference procedure used is referred to as multimodal incremental smoothing and
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Figure 5-1: Multiple modes arise from data association ambiguity between two land-
marks (1 and 2), in which the probability of an association to landmark 1 is greater
than the probability of an assignment to landmark 2. Top: Ambiguity in an object
detection results from occlusion and objects in close proximity. Bottom-left: Associa-
tions represented as a non-Gaussian sensor model when the data association variable
is marginalized out. Bottom-right : Ambiguous measurements are incorporated into a
factor graph as multimodal semantic factors (green). Here we depict visually the pro-
cess of marginalizing the data association variable to recover a non-Gaussian factor.

mapping (mm-iSAM) [20], and we refer to the approach presented in this chapter as

“multimodal semantic SLAM” [13].

5.1 Sum-Marginalization of Data Associations

While we previously considered “max-marginalization” of data associations, here we

consider the problem of computing the sum-marginal over possible assignments to
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the association variable. Our goal, in particular, is to approximate the joint belief:

𝑝(X,L | Z) =
∑︁
D

𝑝(X,L,D | Z) (3.4, revisited)

=
∑︁
D

𝑝(X,L | D,Z)𝑝(D | Z).

As we have discussed, exact computation of this belief is intractable, and the result is

generally a non-Gaussian posterior (for example, see Figure 5-1). The first approach

we take, again, is to compute data association probabilities proactively, which greatly

reduces the size of the space of data associations that need to be examined. We then

solve the non-Gaussian inference problem approximately using the state-of-the-art

non-Gaussian SLAM solver mm-iSAM [20].

5.1.1 Proactive Sum-Marginalization

We proceed with proactive computation of data association probabilities as in Chapter

4. Given a set of previous measurements Z− and new measurements Z+ (i.e. Z = Z+∪

Z− again satisfying Z+ ∩ Z− = ∅). We compute the sum-marginal over associations

to the new measurements, again denoted D+. Revisiting the joint decomposition in

the previous chapter, we have:

𝑝(X,L,D+ | Z+,Z−) =
𝑝(Z+ | X,L,D+,Z−)𝑝(X,L | D+,Z−)𝑝(D+ | Z−)𝑝(Z−)

𝑝(Z+,Z−)

∝ 𝑝(Z+ | X,L,D+)𝑝(X,L | Z−)𝑝(D+ | Z−).

Applying sum-marginalization to data associations, as in Equation (3.4), we obtain:

𝑝(X,L | Z+,Z−) ∝
∑︁
D+

[︀
𝑝(Z+ | X,L,D+)𝑝(X,L | Z−)𝑝(D+ | Z−)

]︀
(5.1)

= 𝑝(X,L | Z−)
∑︁
D+

[︀
𝑝(Z+ | X,L,D+)𝑝(D+ | Z−)

]︀
. (5.2)

Exactly as in the previous chapter, 𝑝(X,L | Z−) is the posterior distribution over

poses and landmarks after sum-marginalization of data associations to the measure-
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ments Z−, and therefore is generally non-Gaussian. In our previous attempts to

convert this problem into one of nonlinear least-squares, we made a number of ap-

proximations here. In particular, when computing the max-marginal, we replaced

the joint belief with its max-marginal form, then approximated further by selecting

only a single set of data associations when computing data association probabilities

𝑝(D+ | Z−). Here, we consider approximate non-Gaussian inference of the posterior,

allowing us to directly address problems of this form.

In the recurring example of a factor graph with two vehicles poses linked by an

odometry constraint, each measuring one of two candidate landmarks, each with a

prior (see Figures 3-1 and 3-3), we earlier wrote the posterior as:

𝑝(X,L,D | Z) ∝ 𝜓1(𝑥1,𝑥2)𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1)𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2),

where here D = {𝑑1, 𝑑2}. In this chapter, we allow the distribution corresponding

to any or all of these factors to be an arbitrary non-Gaussian distribution. That

is, we make no specific distributional assumptions whatsoever (in contrast to the

max-mixtures approach). Exact marginalization of the data association variables

corresponds to the following computation:

𝑝(X,L | Z) ∝∑︁
D∈D

𝜓1(𝑥1,𝑥2)𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1)𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2). (5.3)

Assuming that data associations are independent (conditioned on previous measure-

ments) we push the summation into the individual terms. This allows us to obtain

the following result:

𝑝(X,L | Z) ∝

𝜓1(𝑥1,𝑥2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2)
∑︁
𝑑1∈𝒟1

𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1)
∑︁
𝑑2∈𝒟2

𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2). (5.4)

Since we have relaxed the assumption of Gaussianity, we can simply rewrite this

70



Figure 5-2: The representation used by nonparametric belief propagation consists of
a mixture of evenly-weighted Gaussian kernels. In order to approximate a distribu-
tion (green), nonparametric belief propagation (and mm-iSAM, consequently) uses
a fixed number of evenly-weighted kernels (black).

expression by defining the following new non-Gaussian factors:

𝑓1(𝑥1, ℓ1, ℓ2) ,
∑︁
𝑑1∈𝒟1

𝜌1(𝑥1, ℓ1, ℓ2, 𝑑1) (5.5)

𝑓2(𝑥2, ℓ1, ℓ2) ,
∑︁
𝑑2∈𝒟2

𝜌2(𝑥2, ℓ1, ℓ2, 𝑑2), (5.6)

which gives the new joint belief:

𝑝(X,L | Z) ∝ 𝜓1(𝑥1,𝑥2)𝜑1(𝑥1)𝜙1(ℓ1)𝜙2(ℓ2)𝑓1(𝑥1, ℓ1, ℓ2)𝑓2(𝑥2, ℓ1, ℓ2). (5.7)

Here we refer back to the sum-product algorithm (Algorithm 1) for details about

the above marginalization. Similarly, this corresponds to the elimination of the data

association variable as displayed in Figure 3-3.

The number of terms in the product of these summations grows quite quickly.

Hence, we do not explicitly compute distributions of the above form. Rather, we

resort to approximate Bayesian inference.

5.2 Multimodal iSAM

We use multimodal iSAM (mm-iSAM) [20] to compute the posterior over poses and

landmarks given a non-Gaussian factor graph, such as those often obtained after

marginalization of data association variables. To accommodate non-Gaussian vari-

ables in the factor graph, multimodal iSAM makes use of nonparametric belief prop-

agation [52]. Nonparametric belief propagation approximates the belief over all con-
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tinuous state variables absent the assumption of Gaussianity using a combination of

Gibbs sampling and kernel density estimation. That is, for a random variable 𝑋, we

approximate the marginal over 𝑋 as

𝑝(𝑋) =
𝑁∑︁

𝑛=1

𝑤[𝑛]𝒩
(︀
𝑥[𝑛],Σ[𝑛]

)︀
, (5.8)

where𝒩 is a multivariate Gaussian kernel, each kernel is centered at a sample 𝑥[𝑛], 𝑤[𝑛]

is the weight associated with the 𝑛-th kernel, and Σ[𝑛] is the associated Gaussian kernel

bandwidth, determined using leave-one-out cross-validation. The weights 𝑤[𝑛] are

chosen uniformly such that the resulting sum is a valid probability density function.

An illustrative example of the belief representation used by nonparametric belief

propagation (and consequently mm-iSAM) is shown in Figure 5-2.

5.2.1 Computational Complexity

A beneficial aspect of the functional approximation of marginals is that we no longer

need to explicitly represent the potentially many modes in the posterior. This implicit

representation decouples the complexity of inference from the number of hypotheses,

as the computation involved in the approximation of the marginals depends only

on a fixed number of samples. Due to proactive computation of data associations,

examining the space of candidate hypotheses has the same complexity as the max-

mixtures approach (generally roughly linear in the number of measurements). Similar

to the max-mixtures approach, the process of inference is agnostic to the number of

hypotheses. In the case of max-mixtures, the optimization corresponds to nonlinear

least-squares, and the representation is essentially no different from any other nonlin-

ear measurement function from the perspective of the optimizer. In the multimodal

(non-Gaussian) SLAM case, the complexity of inference is no different than it would

be for any other arbitrary non-Gaussian distribution.

Both the complexity and accuracy of inference depend critically on the number

of samples used for inference, which is a hyperparameter selected by the practitioner

(determined a priori) and controls the fidelity of the non-Gaussian approximation.
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The result is that modes with very low probability are unlikely to be represented in

the approximate marginal density. However, we do not explicitly prune these modes,

and since they still exist in the factor graph, modes which later become more probable

can be recovered.

Of practical note, the nonparametric inference method used by multimodal iSAM

is in its present form computationally intensive relative to mature nonlinear least-

squares solvers. At the time the experiments in this thesis were performed, a single

solve involving around 300 vehicle poses and less than 100 landmarks required around

10 seconds of computation time. Re-solving several times over the course of a trajec-

tory often required a cumulative computation time of several minutes. There are a

number of optimizations that could be made to the implementation of the nonpara-

metric inference procedure, which we discuss in Chapter 6, but such optimizations

are outside the scope of the work in this thesis.

5.3 Multimodal Semantic Factors

Earlier in this chapter, we described how we could arrive at non-Gaussian factors de-

scribing sum-marginalization of data associations. We now aim to explicitly describe

these factors. As in Chapter 4, marginalization of data associations critically depends

on computation of the distribution over new data associations given all previous mea-

surements 𝑝(D+ | Z−).

To incorporate the non-Gaussian factors resulting from ambiguous data associ-

ations into the factor graph, we use multimodal factors. In particular, since we

consider measurements with semantic properties, we consider multimodal semantic

factors, which introduce constraints between a pose and potentially many landmarks.

As we have throughout this thesis, we assume a factorized semantic measurement

model 𝑝(𝑧 | 𝑥, ℓ) = 𝑝(𝑧𝑠 | ℓ𝑠)𝑝(𝑧𝑟 | 𝑥, ℓ)𝑝(𝑧𝑏 | 𝑥, ℓ) consisting of the class estimate

𝑧𝑠 from an object detector, the estimated range to the object 𝑧𝑟, and the estimated

bearing to the object 𝑧𝑏. The distribution 𝑝(𝑧𝑠 | ℓ𝑠) corresponds to the confusion

matrix for the classifier, learned offline, while 𝑝(𝑧𝑟 | 𝑥, ℓ) and 𝑝(𝑧𝑏 | 𝑥, ℓ) are each
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assumed Gaussian with means 𝑧𝑟 and 𝑧𝑏 and variances 𝜎2
𝑟 and 𝜎2

𝑏 , respectively. We

determine the latter terms by considering the range and bearing to the set of 3D

points estimated by a stereo vision system which project into the bounding box for

the object detection corresponding to measurement 𝑧.

5.3.1 Monte Carlo Approximation of Association Probabilities

At each time step 𝑡, we update the factor graph solution in order to obtain the belief

𝑝(X,L | Z−), which provides marginals for all poses X , 𝑥1:𝑡 and known landmarks.

Given the semantic measurement model, we compute the probability of an association

as the total posterior probability of all associations at time 𝑡 of measurement 𝑘 to

landmark 𝑗 given the measurements. That is, we consider joint-compatibility for the

measurements taken at time 𝑡, as opposed to individual-compatibility, which we used

in the case of max-mixtures1. Let 𝒟𝑡 denote the set of all possible associations of

measurements at time 𝑡 to known landmarks. Similarly, define D𝑘
𝑡 (𝑗) , {𝑑𝑡 ∈ 𝒟𝑡 |

𝑑𝑘𝑡 = 𝑗}, the set of all possible sets of data associations at time 𝑡 in which measurement

𝑘 is associated to landmark 𝑗. Assuming a uniform prior on data associations, we

then have:

𝑝(𝑑𝑘𝑡 = 𝑗 | Z−) ∝
∑︁

𝑑𝑡∈D𝑘
𝑡 (𝑗)

𝐾𝑡∏︁
𝑖=1

𝑝(𝑧𝑖
𝑡 | 𝑑𝑡,Z

−), (5.9)

Just as in the previous chapter, we compute the likelihood of each measurement 𝑧𝑘
𝑡

given its association 𝑑𝑘𝑡 by marginalizing out the pose estimate at 𝑥𝑡 and the landmark

1Neither of our proposed methods is restricted to joint-compatibility or individual compatibility.
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position and class, i.e. for arbitrary 𝑧𝑡:

𝑝(𝑧𝑘
𝑡 | 𝑑𝑡,Z

−) = 𝑝(𝑧𝑘
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−)

= 𝑝(𝑧𝑠
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−)𝑝(𝑧𝑟

𝑡 , 𝑧
𝑏
𝑡 | 𝑑𝑘𝑡 = 𝑗,Z−)

=

[︃∑︁
𝑐

𝑝(𝑧𝑠
𝑡 | ℓ𝑠𝑗 = 𝑐)𝑝(ℓ𝑠𝑗 = 𝑐 | Z−)

]︃
× . . .

. . .

[︂∫︁∫︁
𝑝(𝑧𝑟

𝑡 , 𝑧
𝑏
𝑡 | 𝑑𝑘𝑡 = 𝑗,𝑥𝑡, ℓ𝑗)𝑝(𝑥𝑡, ℓ𝑗 | Z−)𝑑𝑥𝑡𝑑ℓ𝑗

]︂
.

Above we have dropped the superscript 𝑘 for the measurement in order to make ex-

plicit the dependence on the range, bearing, and semantic components. Furthermore,

here we take 𝑗 as the particular association for measurement 𝑧𝑘
𝑡 , i.e. it does not

correspond to the 𝑗 in Equation (5.9). Similarly, here we take 𝑘 as an arbitrary index

into the measurements at time 𝑡, and 𝑘 does not correspond to 𝑘 in Equation (5.9).

Rather, 𝑘 is replaced with each 𝑖 as we compute the product over all measurement

probabilities given the set of data associations and history of measurements at the

current time 𝑡.

While in Chapter 4 we approximated this integral by considering a single compo-

nent of the max-marginal, in a non-Gaussian framework, we can readily compute this

term by Monte Carlo approximation using a set of pose samples 𝑥
[𝑛]
𝑡 , 𝑛 = 1, . . . , 𝑁 :

𝑝(𝑧𝑘
𝑡 | D𝑡,Z

−) ≈

[︃∑︁
𝑐

𝑝(𝑧𝑠
𝑡 | ℓ𝑠𝑗 = 𝑐)𝑝(ℓ𝑠𝑗 = 𝑐 | Z−)

]︃
× . . .

. . .

𝑁∑︁
𝑛=1

∫︁
𝑝(𝑧𝑟

𝑡 , 𝑧
𝑏
𝑡 | 𝑥

[𝑛]
𝑡 , ℓ𝑑𝑘𝑡 , 𝑑

𝑘
𝑡 )𝑝(𝑥

[𝑛]
𝑡 | Z−)𝑝(ℓ𝑑𝑘𝑡 | Z

−)𝑑ℓ𝑑𝑘𝑡 , (5.10)

where we have replaced the integral over the pose distribution by a sampled approx-

imation. For data association computation, we adopt a maximum likelihood sensor

model to simplify the integral over the landmark position. We find this works well,

empirically, when the sensor model is Gaussian, but non-Gaussian sensor models

can be accommodated by making a sample-based approximation, for example. An

illustrative example of the computation in Equation (5.10) is shown in Figure 5-4.
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5.3.2 Constructing Multimodal Semantic Factors

Given 𝑝(𝑑𝑘𝑡 = 𝑗 | Z−) for all landmarks 𝑗 in a setℋ ⊆ 1, . . . ,𝑀 of candidate landmark

hypotheses, a multimodal semantic factor for each measurement 𝑘 links a pose 𝑥𝑡 and

each candidate in ℋ:

𝑓(𝑥𝑡, ℓℋ) =
∑︁
𝑗∈ℋ

𝑝(𝑧𝑘
𝑡 | 𝑥𝑡, ℓ𝑗)𝑝(𝑑

𝑘
𝑡 = 𝑗 | Z−), (5.11)

which for a Gaussian measurement model is a weighted sum of Gaussians.

Finally, MAP estimates for each landmark class, assuming a uniform prior, can

be computed in the same manner as in Chapter 4:

ℓ𝑐𝑗 = argmax
𝑐

∏︁
𝑡

∑︁
𝑑𝑡

𝑝(𝑑𝑡, ℓ
𝑐
𝑗 = 𝑐 | Z), (4.17, revisited)

which are obtained by maximizing over the probabilities determined using Equation

5.10 with respect to the landmark classes, rather than marginalizing them out, and

instead marginalizing out data associations.

5.4 Experimental Results

Experiments with mm-iSAM were implemented in the Julia programming language

using the Caesar.jl library2. We demonstrate the proposed approach both in sim-

ulation, with a hallway environment, and using real data from the KITTI dataset

[22, 21]. All experiments were run offline using 10 cores of a 2.2 GHz i7 CPU and

factor graph computation time was roughly identical across the three methods (ap-

proximately 1 minute for simulated data and 3 minutes for the KITTI dataset). In

both tests, we compared our method, multimodal semantic SLAM (MMSS) with

maximum-likelihood (ML) data association and Gaussian probabilistic data (Gaus-

sian PDA). The ML method selects the maximum-likelihood association considering

all measurements in a keyframe. We implement the Gaussian PDA method using

2https://github.com/JuliaRobotics/Caesar.jl
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Gaussian factors with variance inversely weighted by data association probabilities3.

In practice, new landmarks are determined using a threshold on their likelihood

given each known landmark (similar to a Mahalanobis distance threshold in the Gaus-

sian case) and we compute data association probabilities for each candidate landmark

within a conservative range of the estimated pose at time 𝑡 (this determines the set

ℋ in Equation 5.11).

5.4.1 Simulated Data

Our simulated navigation experiments consist of a two-dimensional hallway environ-

ment with landmarks of two classes. The robot in this simulation makes noisy mea-

surements to each landmark within its limited field of view (120∘ up to 3.5 m), and

each range measurement has an associated distribution over class probabilities. We

model semantic measurements as samples from a categorical model having a confusion

matrix with 90% accuracy for all landmark classes. Range and bearing measurements

were corrupted with zero-mean Gaussian noise with variance 0.01. We also simulate

an odometry model corrupted by Gaussian noise with diagonal covariance Λ𝑡, which

we vary in our experiments.

In Figures 5-3a-c, trajectories and landmark estimates from each method are com-

pared qualitatively for a simulated run with Λ𝑡 = diag(0.01; 0.01; 0.001). In this ex-

ample, we find that ML data association fails in the presence of substantial perceptual

aliasing. Both Gaussian PDA and our method are more robust to errors in data asso-

ciation, but we find that ours is the only method that accurately closes the loop after

executing the full trajectory. In Figure 5-3d, we show the average trajectory error for

the three methods, plotted against 𝑡𝑟(Λ𝑡). Error for our approach increases the least

as the odometry becomes more noisy, suggesting improved robustness to odometry

uncertainty.

3Our implementation of the Gaussian PDA method uses the approximate marginal likelihood of
each observation to compute data association probabilities, rather than a point estimate of poses
and landmarks; thus, it can be viewed as an extension of the EM formulation in [5] from maximum-
likelihood estimation to MAP estimation.
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5.4.2 Real Data

We evaluated the three approaches for a navigation using a stereo camera with data

from KITTI odometry sequence 5 [22]. Odometry is provided by VISO2 stereo odom-

etry [23], and probabilistic data associations with objects provide loop closures. We

sample keyframes at 1 Hz and objects are detected in the left camera image using

the MobileNet-SSD neural network [27] (with the single-shot detector (SSD) and Mo-

bileNets proposed respectively in [35] and [26]) trained on the PASCAL Visual Object

Categories (VOC) dataset [17]. We accept measurements for which the neural net-

work reports a confidence greater than 0.8. Semantic measurements are produced in

the KITTI dataset by detections of cars and are represented by the average range

and bearing to all 3D points that project into the detection bounding box. We as-

sume that the stereo pair has fixed height and is constrained in pitch and roll, so the

resulting estimation procedure is carried out with respect to the vehicle translation

along the ground plane and yaw.

Figure 5-5 shows estimated trajectories and landmark positions for each method

on KITTI sequence 5, and corresponding average translation and rotation errors can

be found in Table 5.1. As a result of perceptual aliasing due to long rows of parked

cars, maximum-likelihood associations cause a number of incorrect loop closures that

are hard to recover from. Gaussian PDA makes “soft” measurements in these cases,

and produces a much better solution. By representing the full posterior, however,

our method obtains a more accurate solution, recovering from the uncertainty in

growth in the largest loop. We additionally mark a pose near this loop closure in

Figure 5-5c and display the contour plot of its distribution in Figure 5-6, which

shows that odometry uncertainty coupled with data association ambiguity results in

a non-Gaussian posterior. A supplemental video provides visualization of the object

detections and estimated vehicle trajectory using our approach on the KITTI dataset4.

4https://youtu.be/9hEonD8KDrs
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Method Avg. Trans. Error (m) Avg. Rot. Error (rad)
ML 20.427 0.0810

GPDA 8.814 0.0446
MMSS (Ours) 5.718 0.0255

Table 5.1: Comparison of translation and rotation error on KITTI sequence 5 for the
different methods tested.

5.5 Summary

In this chapter, we proposed a solution to semantic SLAM with unknown data as-

sociations that implicitly represents multiple association hypotheses as a multimodal

sensor model. This formulation leads to a non-Gaussian SLAM problem, which we

solve using mm-iSAM [20]. Constructing our approach with non-Gaussian infer-

ence in mind, in the process we developed a method of performing semantic SLAM

with unknown data association in situations where measurements themselves are non-

Gaussian (e.g. when using acoustic sensing), and consequently can operate with many

sensors with characteristics that are difficult or impossible to model adequately in

traditional SLAM frameworks. We validated our approach on a simulated naviga-

tion task under variety of odometry noise characteristics, as well as on data from

the KITTI dataset. In addition to representing non-Gaussian belief over poses and

landmarks, our multimodal semantic SLAM approach showed improved robustness

to odometry noise and perceptual aliasing as compared with other methods.
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(a) Maximum-Likelihood
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(c) MMSS (Ours)

(d) Avg. translation error vs. 𝑡𝑟(Λ𝑡)

Figure 5-3: (a-c): Comparison of trajectories estimated using each approach in a sim-
ulated hallway environment. Ground-truth trajectories are shown as dashed black
lines. Ground-truth landmarks are shown as circles and colored by semantic class.
Landmark position estimates from each method are shown as rings and colored sim-
ilarly by class. (d) Comparison of translation error on simulated navigation tasks
under five odometry noise models, Λ𝑡, with best fit line for each method.
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Figure 5-4: Illustrative example of approximating data association probabilities as
in Equation (5.10). Each contour plot describes the marginal distribution for one
of the three relevant variables 𝑥1, ℓ1, or ℓ2. We use a sample-based approximation
to compute data association probabilities, wherein we draw pose samples 𝑥

[𝑛]
1 from

the marginal distribution over poses 𝑝(𝑥1 | Z−). We then approximate Gaussian
measurement models using the maximum-likelihood estimate, i.e. we take 𝑝(𝑧 | 𝑥, ℓ)
as 𝛿(ℎ(𝑥, ℓ); 𝑧) where 𝛿(·) here is the Dirac delta function equal to 1 only where
ℎ(𝑥, ℓ) = 𝑧, and zero elsewhere. This produces the terminal points of each line
(corresponding to range-bearing measurements) in the above figure. The opacity of
each line represents the probability of the pose 𝑥[𝑛]

1 from which it originates. The result
is a set of weighted Dirac functions corresponding to the locations where the most-
likely measurement would “land” in space from the pose sample 𝑥

[𝑛]
1 . The product of

these functions with each landmark marginal represents the result of the approximate
convolution in Equation (5.10).
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(c) MMSS (Ours)

Figure 5-5: Comparison of trajectories (lines) and landmark position estimates
(points) for each method applied to KITTI sequence 5. Ground truth trajectory
is plotted as a black dashed line. The contour plot for the pose marked with a purple
cross in (c) is shown in Figure 5-6.

82



x
46 48 50

0.3

0.4

0.2

0.0

0.1

Color

-13

-12

-11

-10

-9

y

Figure 5-6: Contour plot for the marginal distribution of the marked pose in Fig-
ure 5-5c. Multimodality is induced by odometry uncertainty and data association
ambiguity.
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Chapter 6

Discussion and Conclusion

6.1 Our Contributions

In this thesis we developed a formulation of semantic SLAM with unknown data asso-

ciation wherein we use variable elimination to remove the data association variables

from the inference process. We leverage both the max-product and sum-product vari-

able elimination algorithms for performing marginalization of data association vari-

ables. Considering each of these algorithms led to the development of two novel ap-

proaches for semantic SLAM, “max-mixtures semantic SLAM” and the non-Gaussian

method “multimodal semantic SLAM”. We have shown through experiments on real

and simulated data that the proposed methods are competitive with the state-of-the-

art methods for semantic data association.

6.1.1 Max-Mixtures Semantic SLAM

The max-product approach we developed has a strong correspondence with the well-

known “max-mixtures” approach for robust SLAM (hence our reference to the method

as “max-mixtures semantic SLAM”), and allows us to perform approximate MAP

inference under the assumption of nonlinear Gaussian measurement models using

state-of-the-art nonlinear optimization method for SLAM like iSAM2 [30].

The max-mixtures approach required us to make several approximations in the
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computation of data associations. Most critically, we choose an assignment to all other

data associations when computing new data association probabilities. Beyond that,

however, the assumption of nonlinear Gaussian measurement models is quite limiting

in the context of sensors like sonar, or measurements which are “undetermined” e.g.

range-only or bearing-only measurements.

6.1.2 Multimodal (Non-Gaussian) Semantic SLAM

The second approach we consider, based on the sum-product marginalization of data

associations, corresponds to a problem of non-Gaussian Bayesian inference. Using

the state-of-the-art non-Gaussian SLAM solver multimodal-iSAM (mm-iSAM) [20],

we are able to perform approximate inference on factor graphs with arbitrary non-

Gaussian factors. This allows us to relax the assumptions of the max-mixture ap-

proach and infer complex, multimodal posterior distributions with nontrivial depen-

dence on the history of data associations. Furthermore, this allowed us to obtain a

more comprehensive approximation of the probabilities of data associations as com-

pared to the computation we used for the max-mixtures approach. In particular, the

non-Gaussian approach leverages a sample-based approximation that considers the

full, non-Gaussian posterior marginals over poses and landmarks, rather than assum-

ing a particular set of data associations in order to force the resulting integral to be

over a product of Gaussian terms.

6.2 Comparison of Representations

In Figure 6-1, we show an illustrative comparison of all of the data association methods

described throughout this thesis. In particular, we compare the representations of

maximum-likelihood data association, the single iteration expectation-maximization

(EM) approach, referred to in this thesis as Gaussian probabilistic data association

(PDA), the max-mixtures approach of Chapter 4, and the multimodal (non-Gaussian)

approach of Chapter 5. In this figure, we assume the probability of the left (orange)

hypothesis is greater than that of the right (blue) hypothesis.
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(a) Multi-hypothesis ambiguity for two associations.

(b) Maximum-likelihood data association approach.

(c) Single iteration EM approach (Gaussian Probabilistic Data Association.)

(d) Max-mixtures approach (used in Max-Mixtures Semantic SLAM)

(e) Non-Gaussian approach (used in Multimodal Semantic SLAM).

Figure 6-1: Illustrative comparison of the maximum-likelihood, Gaussian probabilistic
data association, max-mixture, and sum-mixture representations for data association
ambiguity. Here we assume the probability of the leftmost hypothesis (orange) is
greater than that of the rightmost hypothesis (blue).
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The maximum-likelihood approach selects the mode with the larger probability

(the orange mode), and discards the alternative mode. Since each hypothesis corre-

sponds to a Gaussian solution (conditioned on the data association), the result is a

single Gaussian mode.

The Gaussian probabilistic data association approach also obtains a unimodal

Gaussian solution. However, with only a single iteration of expectation-maximization,

this approach corresponds to computing a geometric mean over possible solutions

given each data association. The resulting unimodal Gaussian solution is the “aver-

age” over possible associations, and consequently sits “between” the candidate modes,

closer to the mode with higher probability (left).

The max-mixtures approach selects the most probable data association at each

point in the measurement domain. The result is that the association “switches” from

one hypothesis (left) to the other (right) when the probability of the latter hypothesis

(blue) becomes greater than that of the former hypothesis (orange). At any given

point, the solution “looks” Gaussian locally, and is amenable to nonlinear least-squares

optimization methods if we seek the most probable estimates of poses and landmarks.

Note that characterization of uncertainty in this framework is quite difficult, as lin-

earization of the covariance implicitly requires selecting a set of data associations (as

we do when computing data association probabilities in Chapter 4).

Lastly, the multimodal approach computes the proper sum-marginal over candi-

date data associations. In the Gaussian case, this sum results in a sum-of-Gaussians

weighted by the individual association probabilities. The resulting mixture is not

in a form that can be addressed by standard nonlinear least-squares methods for

SLAM. Consequently, we resort to new tools for non-Gaussian inference to infer the

posterior distribution over poses and landmarks. Inference in this framework is nec-

essarily approximate, but allows for a higher fidelity characterization of uncertainty

than the max-mixtures approach, which required implicitly selecting a set of data as-

sociations when performing linearization. Furthermore, the individual measurements

need not be Gaussian for this approach. Given an arbitrary (non-Gaussian) measure-

ment model, the resulting sum-mixture would simply be a weighted combination of
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measurement models with one component corresponding to each possible landmark.

6.3 Limitations of the Proposed Approaches

Despite the promising initial results of the proposed approaches, there remain several

limitations of these methods in their current form that ought to be addressed. In

particular, proactively computing data association weights and never revising them

allows us to easily construct situations where the correct association may have very

low probability. This can happen if, for example, there is substantial drift in odom-

etry over a large loop and too much ambiguity in possible data associations due to

accumulated uncertainty. The ability to revise data associations has potential to

greatly improve both of these methods. This could be done in the non-Gaussian case,

for example, by introducing the discrete data association variables into the Bayes tree

and performing Gibbs sampling when estimating the joint probability for a clique.

Even more commonly, we may have poorly modeled the covariance (or more

broadly the error distribution) of one of our measurements, such as the stereo odom-

etry, giving an incorrect characterization of measurement uncertainty. More work is

needed on accurate characterization of uncertainty in black-box systems like those

often used for visual odometry. One benefit, however, of the non-Gaussian approach

is that we can make use of arbitrary, potentially non-Gaussian, empirical noise models

computed offline using validation data. This is especially important in the characteri-

zation of noise for sensors like sonars, but also for characterizing the noise distribution

of black-box models like visual odometry subsystems that may have environment de-

pendent noise.

Finally, throughout this thesis, we made the assumption that our detector pro-

duces no “false positives”, i.e. detections that arise without correspondence to any

object at all. This assumption allowed us to focus on errors due to misclassification

or ambiguity in the location of detected objects. In reality, is incredibly difficult to

achieve zero false positives for any detector. For practical purposes, we reduce the

potential for false positives in this work by setting a high detection confidence thresh-
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old. This causes us to miss a large number of detections that otherwise could provide

informative loop closures in order to avoid the detrimental effects of detector false

positives. Better characterization of the errors made by object detectors is vital for

their use in navigation systems.

6.4 Future Work

Both of the methods we presented could be very promising when combined with

methods for place recognition. In particular, place recognition could help recover in

situations where perhaps we cannot reliably make a data association due to odometry

drift. Another idea that we could benefit from is uniqueness in data association.

Specifically, by maintaining a feature descriptor of relevant objects in the scene, we

can enable more precise data association based not just on the class of the object,

but also the unique features of that specific object.

While our methods deal with uncertain associations, like many previous efforts,

we rely on hard decisions about whether or not to add landmarks. Representing

this uncertainty is an important step toward more tightly coupling the data associa-

tion and SLAM problems, but computation of association probabilities may become

expensive. Dirichlet process priors on associations, as in [38] provide one avenue

for future work, while the approximate matrix permanent methods of [2] may help

address computational complexity.

Besides the ability to make use of arbitrary non-Gaussian measurement models,

another benefit of the multimodal semantic SLAM approach is that it provides rich

uncertainty representations that can include ambiguity due to data association. The

belief computed using this method can be used to inform approaches in non-Gaussian

active SLAM (as explored, for example using particle filter-based methods in [7]), or

more generally for non-Gaussian belief space planning [45].

The latter proposed approach enables semantic SLAM with non-traditional sens-

ing modalities. By choosing a representation that does not make assumptions about

the measurement distribution, we are able to deal with ambiguous data associations
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that arise from non-Gaussian sensor models, for example in the case of multiple

returns by a sonar. This opens interesting new avenues for future work in object

detection and tracking in underwater environments.

We assumed a simple geometric model and focused on comparison of data asso-

ciation methods. Another important area for future work is the application of our

approach using novel geometric representations, e.g. quadrics [54, 41]. More detailed

information about the geometric state of each landmark (e.g. the 6-degree-of-freedom

pose) can be very helpful in disambiguating landmarks.

Finally, there is ample room for future work on the development of non-Gaussian

inference methods for SLAM. The multimodal iSAM framework enables navigation

with a much broader class of sensor models than typically accommodated by SLAM

solutions. That said, nonlinear least-squares optimization approaches to SLAM have

the benefit of nearly two decades of research and development in contrast to the mul-

timodal iSAM approach. Consequently, new approaches to non-Gaussian inference

for SLAM as well as optimizations of the current approaches are needed in order

for non-Gaussian SLAM methods to reach the real-time performance and compu-

tational efficiency of competitive methods making nonlinear Gaussian measurement

assumptions.

6.5 Concluding Remarks

The two methods presented in this thesis represent steps toward coupling data as-

sociation and SLAM into a single navigation framework. Furthermore, we describe

ways in which semantics can inform data association and be incorporated into the

SLAM problem, while accommodating the discrete measurement noise due to detec-

tor misclassification. There has been substantial recent interest in three ideas in the

context of semantic SLAM: “semantics informing SLAM,” i.e. the use of semantics

to aid in navigation, “SLAM informing semantics,” leveraging knowledge of the geo-

metric structure of the environment to perform, for example, better object detection,

and “joint SLAM and semantics inference,” which is the use of semantics and SLAM
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to the mutual benefit of one another [6]. The methods presented in this thesis are

important steps toward addressing the latter problem of joint SLAM and semantics

inference, and consequently toward a unifying perspective on navigation and scene

understanding.
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Appendix A

Matrix Manifolds in SLAM

Robot poses 𝑥 consist of a position component t and a rotation component R. In two

dimensions, the position of the vehicle is a real-valued vector in R2, and similarly in

three-dimensions the position vector is in R3. These represent the translation of the

robot with respect to some global coordinate system. Rotations in two- and three-

dimensional coordinate systems, in contrast, have several possible representations,

including quaternions H, Euler angles (often denoted 𝛼, 𝛽, 𝛾 or “roll”, “pitch”, and

“yaw”), or elements of the special orthogonal matrix groups SO(2) and SO(3) (for two

and three dimensions, respectively). In this thesis, we consider rotations as elements

of the matrix groups SO(2) and SO(3), and consequently robot poses 𝑥 in the special

Euclidean groups SE(2) and SE(3). Here we review several definitions and facts about

these groups used implicitly in this thesis.

A.1 Matrix Lie Groups and Lie Algebras

All of the groups we discuss are Lie groups, meaning they are also smooth, dif-

ferentiable manifolds. A Lie group locally resembles a Euclidean vector space. In

particular, all matrix Lie groups have a corresponding “infinitesimal group”, termed

a Lie algebra. The Lie algebra is a group in that it consists of a set and a binary

operation, namely a vector space called the tangent space and a binary operation

called the Lie bracket [𝑋, 𝑌 ] = 𝑋𝑌 − 𝑌 𝑋.
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A.1.1 Special Orthogonal Group

Representing two-dimensional rotations, the special orthogonal group in two di-

mensions SO(2) is defined as:

SO(2) ,
{︀
R ∈ R2×2 | R𝑇R = RR𝑇 = 𝐼2×2, detR = 1

}︀
. (A.1)

That is, it consists of 2 × 2 orthogonal matrices with determinant 1. SO(2) is iso-

morphic to the unit circle S1. This isomorphism is intuitive, since rotations in two-

dimensional space can be equivalently expressed with a single yaw angle 𝛾:

SO(2) ,

⎧⎨⎩
⎡⎣cos 𝛾 − sin 𝛾

sin 𝛾 cos 𝛾

⎤⎦ ⃒⃒⃒⃒
⃒⃒ 𝛾 ∈ R/2𝜋Z

⎫⎬⎭ . (A.2)

The angle 𝛾 is real-valued (modulo integer multiples of 2𝜋).

The corresponding Lie algebra is so(2):

so(2) ,

⎧⎨⎩
⎡⎣0 −𝜃

𝜃 0

⎤⎦ ⃒⃒⃒⃒
⃒⃒ 𝜃 ∈ R

⎫⎬⎭ . (A.3)

Thus so(2) consists of the vector space R and has a trivial Lie bracket [𝑋, 𝑌 ] =

𝑋𝑌 − 𝑌 𝑋 = 0 since the matrices commute.

The special orthogonal group in three dimensions SO(3) is defined as:

SO(3) ,
{︀
R ∈ R3×3 | R𝑇R = RR𝑇 = 𝐼3×3, detR = 1

}︀
. (A.4)

It consists of 3 × 3 orthogonal matrices with determinant 1. In general, the 𝑑-

dimensional special orthogonal group SO(𝑑) group consists of the 𝑑 × 𝑑 orthogonal

matrices with determinant 1.

The Lie algebra corresponding to the group SO(3) is denoted so(3) and defined
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as:

so(3) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

0 −𝜑3 𝜑2

𝜑3 0 −𝜑1

−𝜑2 𝜑1 0

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ 𝜑 = [𝜑1 𝜑2 𝜑3]

𝑇 ∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (A.5)

which is simply the set of skew-symmetric matrices in R3×3.

A.1.2 Special Euclidean Group

The special Euclidean group in two dimensions SE(2) is defined as:

SE(2) ,

⎧⎨⎩
⎡⎣R t

0𝑇
2 1

⎤⎦ ⃒⃒⃒⃒
⃒⃒ R ∈ SO(2), t ∈ R2

⎫⎬⎭ . (A.6)

Thus, it consists of a rotation R ∈ SO(2) and a translation t ∈ R2. Here we denote

the 𝑛× 1 zero vector as 0𝑛.

The corresponding Lie algebra is se(2):

se(2) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

0 −𝜃 𝜌1

𝜃 0 𝜌2

0 0 0

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ [𝜌1 𝜌2 𝜃] ∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A.7)

In three dimensions, the special Euclidean group SE(3) is defined as:

SE(3) ,

⎧⎨⎩
⎡⎣R t

0𝑇
3 1

⎤⎦ ⃒⃒⃒⃒
⃒⃒ R ∈ SO(3), t ∈ R3

⎫⎬⎭ . (A.8)

The corresponding Lie algebra is se(3):

se(3) ,

⎧⎨⎩
⎡⎣𝜑∧ 𝜌

0𝑇
3 0

⎤⎦ ⃒⃒⃒⃒
⃒⃒ 𝜌,𝜑 ∈ R3

⎫⎬⎭ , (A.9)

where we use the “hat” notation (·)∧ to denote the 𝑛 × 𝑛 skew-symmetric matrix
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consisting of elements of the 𝑛-dimensional vector argument. For example, for a

3-dimensional vector 𝑎:

𝑎∧ ,

⎡⎢⎢⎢⎣
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

⎤⎥⎥⎥⎦ . (A.10)

We similarly define the inverse “vee” operation (·)∨ for a 3×3 skew-symmetric matrix

as: ⎡⎢⎢⎢⎣
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

⎤⎥⎥⎥⎦
∨

, 𝑎. (A.11)

A.1.3 Exponential and Logarithm Maps

The exponential map and logarithm map allow us to relate elements of a matrix Lie

group to their correspondents in the Lie algebra. In particular, the exponential map

produces an element of a matrix Lie group M from an element of the corresponding

Lie algebra A = 𝑎∧:

M = exp(A) =
∞∑︁
𝑛=0

1

𝑛!
A𝑛. (A.12)

The logarithm map takes as argument an element M from the matrix Lie group and

produces in turn the corresponding element A of the Lie algebra:

A = log(M) =
∞∑︁
𝑛=1

(−1)𝑛−1

𝑛
(M− 𝐼)𝑛, (A.13)

where 𝐼 is the identity matrix with dimensionality equal to that of M.

The exponential and logarithm maps are defined over matrices, but in the case of

the exponential map, the “input” matrices we are concerned with are skew-symmetric,

and for the logarithm map, the “output” matrices are skew-symmetric. For conve-
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nience, we define the following notation for the exponential and logarithm maps:

Exp(𝑎) , exp(𝑎∧) (A.14)

Log(A) , log(A)∨, (A.15)

where here Exp is a function of an 𝑛-dimensional vector 𝑎 and recovers a matrix, while

Log is a function which operates on 𝑛×𝑛 matrices A and “returns” an 𝑛-dimensional

vector.

A.2 Operations on Poses

We make use of pose composition ⊕ and pose inversion ⊖ in this thesis. Here we

briefly describe these operations as defined in [51], [4].

A.2.1 Pose Composition

The composition of two poses 𝑥1,𝑥2 ∈ SE(𝑑), denoted by ⊕ is defined as:

𝑥1 ⊕ 𝑥2 ,

⎡⎣R1R2 R1t2 + t1

0𝑇
𝑑 1

⎤⎦ (A.16)

where R1 ∈ SO(𝑑) and t1 ∈ R𝑑 are the rotation matrix and translation vector for

pose 𝑥1, respectively, and likewise for 𝑥2.

A.2.2 Pose Inversion

Pose inversion, denoted ⊖ is defined as:

⊖𝑥 , 𝑥−1 =

⎡⎣R t

0𝑇
𝑑 1

⎤⎦−1

=

⎡⎣R𝑇 −R𝑇 t

0𝑇
𝑑 1

⎤⎦ , (A.17)

where R ∈ SO(𝑑) and t ∈ R𝑑 are the rotation matrix and translation vector for the

pose 𝑥.

97



98



Bibliography

[1] BlueRobotics BlueROV2 Underwater Vehicle. https://bluerobotics.com/
store/rov/bluerov2/bluerov2/. Accessed August 2019.

[2] Nikolay Atanasov, Menglong Zhu, Kostas Daniilidis, and George J Pappas. Se-
mantic localization via the matrix permanent. In Robotics: Science and Systems,
volume 2, 2014.

[3] Yaakov Bar-Shalom and Edison Tse. Tracking in a cluttered environment with
probabilistic data association. Automatica, 11(5):451–460, 1975.

[4] Timothy D Barfoot. State Estimation for Robotics. Cambridge University Press,
2017.

[5] Sean L Bowman, Nikolay Atanasov, Kostas Daniilidis, and George J Pappas.
Probabilistic data association for semantic SLAM. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 1722–1729. IEEE, 2017.

[6] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. Past, present, and future of simul-
taneous localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332, 2016.

[7] Luca Carlone, Jingjing Du, Miguel Kaouk Ng, Basilio Bona, and Marina Indri.
Active slam and exploration with particle filters using kullback-leibler divergence.
Journal of Intelligent & Robotic Systems, 75(2):291–311, 2014.

[8] Ingemar J Cox and John J Leonard. Probabilistic data association for dy-
namic world modeling: A multiple hypothesis approach. In Advanced Robotics,
1991.’Robots in Unstructured Environments’, 91 ICAR., Fifth International
Conference on, pages 1287–1294. IEEE, 1991.

[9] Ingemar J Cox and John J Leonard. Modeling a dynamic environment using
a bayesian multiple hypothesis approach. Artificial Intelligence, 66(2):311–344,
1994.

[10] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Technical
report, Georgia Institute of Technology, 2012.

99

https://bluerobotics.com/store/rov/bluerov2/bluerov2/
https://bluerobotics.com/store/rov/bluerov2/bluerov2/


[11] Frank Dellaert, Michael Kaess, et al. Factor graphs for robot perception. Foun-
dations and Trends R○ in Robotics, 6(1-2):1–139, 2017.

[12] Kevin Doherty, Genevieve Flaspohler, Nicholas Roy, and Yogesh Girdhar. Ap-
proximate distributed spatiotemporal topic models for multi-robot terrain char-
acterization. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3730–3737. IEEE, 2018.

[13] Kevin Doherty, Dehann Fourie, and John J Leonard. Multimodal semantic
SLAM with probabilistic data association. In 2019 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2019.

[14] Hugh Durrant-Whyte, Somajyoti Majumder, Sebastian Thrun, Marc De Bat-
tista, and Steve Scheding. A Bayesian algorithm for simultaneous localisation
and map building. In Robotics Research, pages 49–60. Springer, 2003.

[15] Arne D Ekstrom, Hugo J Spiers, Véronique D Bohbot, and R Shayna Rosen-
baum. Human spatial navigation. Princeton University Press, 2018.

[16] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European conference on computer vision, pages 834–849.
Springer, 2014.

[17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The Pascal Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision, 88(2):303–338, June 2010.

[18] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-
manifold preintegration for real-time visual–inertial odometry. IEEE Transac-
tions on Robotics, 33(1):1–21, 2016.

[19] Dehann Fourie. Multi-modal and inertial sensor solutions for navigation-type
factor graphs. PhD thesis, Massachusetts Institute of Technology and Woods
Hole Oceanographic Institution, 2017.

[20] Dehann Fourie, John Leonard, and Michael Kaess. A nonparametric belief
solution to the Bayes tree. In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pages 2189–2196. IEEE, 2016.

[21] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets robotics: The kitti dataset. International Journal of Robotics Research
(IJRR), 2013.

[22] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the KITTI Vision Benchmark Suite. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

100



[23] Andreas Geiger, Julius Ziegler, and Christoph Stiller. StereoScan: Dense 3d
Reconstruction in Real-time. In IEEE Intelligent Vehicles Symposium, Baden-
Baden, Germany, June 2011.

[24] Michael Grupp. evo: Python package for the evaluation of odometry and slam.
https://github.com/MichaelGrupp/evo, 2017.

[25] Dirk Hähnel, Sebastian Thrun, Ben Wegbreit, and Wolfram Burgard. Towards
lazy data association in slam. In Robotics Research. The Eleventh International
Symposium, pages 421–431. Springer, 2005.

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[27] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,
et al. Speed/accuracy trade-offs for modern convolutional object detectors. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 7310–7311, 2017.

[28] Michael Kaess and Frank Dellaert. Covariance recovery from a square root
information matrix for data association. Robotics and autonomous systems,
57(12):1198–1210, 2009.

[29] Michael Kaess, Viorela Ila, Richard Roberts, and Frank Dellaert. The bayes
tree: An algorithmic foundation for probabilistic robot mapping. In Algorithmic
Foundations of Robotics IX, pages 157–173. Springer, 2010.

[30] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and mapping using
the Bayes tree. The International Journal of Robotics Research, 31(2):216–235,
2012.

[31] Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[32] Harold W Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics (NRL), 2(1-2):83–97, 1955.

[33] Yasir Latif, César Cadena, and José Neira. Robust loop closing over time for pose
graph slam. The International Journal of Robotics Research, 32(14):1611–1626,
2013.

[34] John J Leonard and Hugh F Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on robotics and Automation,
7(3):376–382, 1991.

101

https://github.com/MichaelGrupp/evo


[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[36] John McCormac, Ronald Clark, Michael Bloesch, Andrew J Davison, and Ste-
fan Leutenegger. Fusion++: Volumetric Object-Level SLAM. arXiv preprint
arXiv:1808.08378, 2018.

[37] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
SLAM: A factored solution to the simultaneous localization and mapping prob-
lem. In Proc. of the AAAI National Conference on Artificial Intelligence, 2002,
2002.

[38] Beipeng Mu, Shih-Yuan Liu, Liam Paull, John Leonard, and Jonathan P How.
SLAM with objects using a nonparametric pose graph. In Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 4602–4609.
IEEE, 2016.

[39] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262, 2017.

[40] José Neira and Juan D Tardós. Data association in stochastic mapping using
the joint compatibility test. IEEE Transactions on robotics and automation,
17(6):890–897, 2001.

[41] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf. QuadricSLAM:
Constrained Dual Quadrics from Object Detections as Landmarks in Semantic
SLAM. IEEE Robotics and Automation Letters (RA-L), 2018.

[42] Edwin Olson and Pratik Agarwal. Inference on networks of mixtures for robust
robot mapping. The International Journal of Robotics Research, 32(7):826–840,
2013.

[43] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

[44] Max Pfingsthorn and Andreas Birk. Simultaneous localization and mapping
with multimodal probability distributions. The International Journal of Robotics
Research, 32(2):143–171, 2013.

[45] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake. Non-
gaussian belief space planning: Correctness and complexity. In 2012 IEEE In-
ternational Conference on Robotics and Automation, pages 4711–4717. IEEE,
2012.

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

102



[47] Donald Reid. An algorithm for tracking multiple targets. IEEE transactions on
Automatic Control, 24(6):843–854, 1979.

[48] Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly,
and Andrew J Davison. SLAM++: Simultaneous localisation and mapping at
the level of objects. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1352–1359, 2013.

[49] Aleksandr V Segal and Ian D Reid. Hybrid inference optimization for robust pose
graph estimation. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2675–2682. IEEE, 2014.

[50] Christopher M Smith and John J Leonard. A multiple-hypothesis approach to
concurrent mapping and localization for autonomous underwater vehicles. In
Field and Service Robotics, pages 237–244. Springer, 1998.

[51] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain spa-
tial relationships in robotics. In Autonomous robot vehicles, pages 167–193.
Springer, 1990.

[52] Erik B Sudderth, Alexander T Ihler, Michael Isard, William T Freeman, and
Alan S Willsky. Nonparametric belief propagation. Communications of the ACM,
53(10):95–103, 2010.

[53] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen
Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, et al.
The limits and potentials of deep learning for robotics. The International Journal
of Robotics Research, 37(4-5):405–420, 2018.

[54] Niko Sünderhauf and Michael Milford. Dual quadrics from object detec-
tion bounding boxes as landmark representations in SLAM. arXiv preprint
arXiv:1708.00965, 2017.

[55] Niko Sünderhauf and Peter Protzel. Switchable constraints for robust pose graph
SLAM. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 1879–1884. IEEE, 2012.

[56] Jinkun Wang and Brendan Englot. Robust exploration with multiple hypothesis
data association. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3537–3544. IEEE, 2018.

[57] Steven Xiaogang Wang. Maximum weighted likelihood estimation. PhD thesis,
University of British Columbia, 2001.

[58] Shichao Yang and Sebastian Scherer. CubeSLAM: Monocular 3D object detec-
tion and SLAM without prior models. arXiv preprint arXiv:1806.00557, 2018.

103


	Introduction
	Motivation
	Related Work
	Robust SLAM
	Non-Gaussian SLAM
	Semantic SLAM

	Thesis Overview

	Perception as Bayesian Inference
	Problem Formulation
	Problem Statement

	Probabilistic Modeling and Inference
	Specifying the Process and Observation Models
	Graphical Models
	Algorithms for Variable Elimination
	MAP Inference as Optimization

	Summary

	Data Association
	Overview
	SLAM with Unknown Data Association
	Measurement Gating
	Problem Dimensionality

	Maximum-Likelihood Data Association
	Probabilistic Data Association
	Our Approach


	Robust Semantic SLAM with Max-Mixtures
	Max-Marginalization of Data Associations
	Proactive Max-Marginalization

	Max-Mixtures Semantic SLAM
	Experimental Results
	Summary

	Non-Gaussian Semantic SLAM
	Sum-Marginalization of Data Associations
	Proactive Sum-Marginalization

	Multimodal iSAM
	Computational Complexity

	Multimodal Semantic Factors
	Monte Carlo Approximation of Association Probabilities
	Constructing Multimodal Semantic Factors

	Experimental Results
	Simulated Data
	Real Data

	Summary

	Discussion and Conclusion
	Our Contributions
	Max-Mixtures Semantic SLAM
	Multimodal (Non-Gaussian) Semantic SLAM

	Comparison of Representations
	Limitations of the Proposed Approaches
	Future Work
	Concluding Remarks

	Matrix Manifolds in SLAM
	Matrix Lie Groups and Lie Algebras
	Special Orthogonal Group
	Special Euclidean Group
	Exponential and Logarithm Maps

	Operations on Poses
	Pose Composition
	Pose Inversion



