Audio and Video Coding

Keith Winstein (keithw@mit.edu)

Student Information Processing Board

November 6, 2008
Overview

1. Mathematical preliminaries
2. Lossless compression
3. Audio coding
4. Video coding
The problems:

- **Representing information digitally.** We have Dvorak’s “New World Symphony.” How should we represent this inside a computer? ⇒ *Clearly a domain-specific problem.*...

- **Lossless compression.** We have a set of bitstrings, like the great works of English literature represented in UTF-16LE. What’s the most efficient way to represent them?

- **Lossy compression.** We have a set of bitstrings, and we want to represent them efficiently, but we’re willing to tolerate some distortion. Given a “distortion function” that relates two bitstrings, and a maximum tolerance for distortion, what’s the most efficient way to represent the strings? Or the constraint can be on maximum bits, trying to minimize distortion.
The problems:

- **Representing information digitally.** We have Dvorak’s “New World Symphony.” How should we represent this inside a computer? ⇒ *Clearly a domain-specific problem.*

- **Lossless compression.** We have a set of bitstrings, like the great works of English literature represented in UTF-16LE. What’s the most efficient way to represent them?

- **Lossy compression.** We have a set of bitstrings, and we want to represent them efficiently, but we’re willing to tolerate some distortion. Given a “distortion function” that relates two bitstrings, and a maximum tolerance for distortion, what’s the most efficient way to represent the strings? Or the constraint can be on maximum bits, trying to minimize distortion.

These are inevitably domain-specific too!
Say we want to transmit a sequence of numbers.

| 9 | 11 | 11 | 11 | 14 | 13 | 15 | 17 | 16 | 17 | 20 | 21 | … |
Say we want to transmit a sequence of numbers.

| 9 | 11 | 11 | 11 | 14 | 13 | 15 | 17 | 16 | 17 | 20 | 21 | ... |

One possibility: send five bits per symbol.

Or:
Say we want to transmit a sequence of numbers.

| 9 | 11 | 11 | 11 | 14 | 13 | 15 | 17 | 16 | 17 | 20 | 21 | ... |

One possibility: send five bits per symbol.

Or:
Say we want to transmit a sequence of numbers.

| 9 | 11 | 11 | 11 | 14 | 13 | 15 | 17 | 16 | 17 | 20 | 21 | ...

One possibility: send five bits per symbol.

Or:

| 0 | 1 | 0 | -1 | 1 | -1 | 0 | 1 | -1 | -1 | 1 | 1 | ...

Subtract $x + 8$, then send just two bits per symbol!

Sayood, 1996
Another example:

| 27 | 28 | 29 | 28 | 26 | 27 | 29 | 28 | 30 | 32 | 34 | 36 | 38 | ...

Send six bits per symbol?
Another example:

| 27 | 28 | 29 | 28 | 26 | 27 | 29 | 28 | 30 | 32 | 34 | 36 | 38 | ... |

Send six bits per symbol?

This time we can subtract $f[x - 1]$:

| ♥ | 1 | 1 | -1 | -2 | 1 | 2 | -1 | 2 | 2 | 2 | 2 | ... |

Sayood, 1996

So **modeling** the source of data to let us **predict** symbols is important to finding an efficient representation.
Shannon (1948) showed that the best that lossless compression can do, on average, is to match the *entropy* of the data source.

Let X be a discrete random variable, which outputs symbol $x \in \mathcal{X}$ with probability $p(x)$. Then the *entropy* $H(X)$ is:

$$H(X) = \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)}.$$
Self-information

Entropy:

\[H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} = - \sum_{x \in X} p(x) \log p(x) \]

Each possible output \(x \in X \) will occur with a certain probability. The more probable outputs are not that surprising. The less probable outputs have a high “surprise factor,” also known as self-information.

We define the self-information of symbol \(x \) as \(\log \frac{1}{p(x)} \).

Entropy is just the expected “surprise” per symbol! In other words, the entropy of the source is the average self-information per symbol.
Benefits of a logarithmic measure.

Why do we define entropy \textit{logarithmically}, as $- \sum p(x) \log p(x)$?

Because it works. We want the information in two independent sources to be the sum of the information in each independent source. With a logarithmic measure, $H(X, Y) = H(X) + H(Y)$ for independent sources.

What do we call the measure of information?

Huffman coding.

- In coding data from a source, we want the coded rate to match the entropy as closely as possible. Each symbol’s code length should be close to its self-information. More “surprising” symbols should require more bits.
Huffman coding.

- In coding data from a source, we want the coded rate to match the entropy as closely as possible. Each symbol’s code length should be close to its self-information. More “surprising” symbols should require more bits.

- David Huffman came up with a way of generating an optimal code as a homework project at MIT. (It was the first class in information theory ever, taught by Professor Fano.)
Huffman coding.

► In coding data from a source, we want the coded rate to match the entropy as closely as possible. Each symbol’s code length should be close to its self-information. More “surprising” symbols should require more bits.

► David Huffman came up with a way of generating an optimal code as a homework project at MIT. (It was the first class in information theory ever, taught by Professor Fano.)

► The code assigns rarer symbols more bits, and the most common symbols are coded with the fewest bits. The procedure is based on one rule, applied recursively:

1. The two symbols that occur least frequently should have the same length and differ only in the last bit.
Huffman coding.

- In coding data from a source, we want the coded rate to match the entropy as closely as possible. Each symbol’s code length should be close to its self-information. More “surprising” symbols should require more bits.

- David Huffman came up with a way of generating an optimal code as a homework project at MIT. (It was the first class in information theory ever, taught by Professor Fano.)

- The code assigns rarer symbols more bits, and the most common symbols are coded with the fewest bits. The procedure is based on one rule, applied recursively:
 1. The two symbols that occur least frequently should have the same length and differ only in the last bit.

- As an added benefit, Huffman codes are *prefix codes*, meaning we can decode each symbol immediately, without having to “look ahead.”
Huffman coding example.

', ' ⇒ 111 E ⇒ 000
T ⇒ 1101 A ⇒ 1011
I ⇒ 1001 O ⇒ 1000
R ⇒ 0111 S ⇒ 0110
N ⇒ 0100 H ⇒ 11001
C ⇒ 10101 L ⇒ 10100
D ⇒ 01011 M ⇒ 00111
U ⇒ 00110 P ⇒ 00100
F ⇒ 110001 G ⇒ 110000
B ⇒ 010100 W ⇒ 001011
Y ⇒ 001010 V ⇒ 0101010
K ⇒ 01010110 X ⇒ 010101110
Q ⇒ 0101011110 J ⇒ 01010111110
Z ⇒ 01010111111
Example by hand.
Coding audio.

What we want:
Coding audio.

What we want:

One way to compress:
Coding audio.

A better idea: put our bits where they can do the most good.

- Nonlinear quantizer – pack output values closer together for more probably outputs.
Coding audio.

A better idea: put our bits where they can do the most good.

- Nonlinear quantizer – pack output values closer together for more probably outputs.
- Code multiple symbols at once to increase efficiency (vector quantization).
Coding audio.

A better idea: put our bits where they can do the most good.

- Nonlinear quantizer – pack output values closer together for more probably outputs.
- Code multiple symbols at once to increase efficiency (vector quantization).
- **Use a smart distortion measure that makes use of the ear’s weaknesses.**
Change of basis.

- Just like we were able to increase efficiency on the number sequences by changing the basis, we can do that to help with audio signals.
Change of basis.

- Just like we were able to increase efficiency on the number sequences by changing the basis, we can do that to help with audio signals.
Change of basis.

- Just like we were able to increase efficiency on the number sequences by changing the basis, we can do that to help with audio signals.