GP/PARI CALCULATOR Version 2.5.0 (released) amd64 running linux (x86-64/GMP kernel) 64-bit version compiled: Nov 17 2011, gcc-4.6.2 (Ubuntu/Linaro 4.6.2-2ubuntu1) (readline v6.2 enabled, extended help enabled) # PenUltimate prime factor ? pu(m)=z=matsize(m)[1];if(z==1,0,m[z-1,1]) ? \p999 realprecision = 1001 significant digits (999 digits displayed) ? for(i=1,99^99,print(i," ",pu(factorint(ceil(exp(i)))))) 1 0 2 0 3 3 4 5 5 0 6 2 7 0 8 11 9 2 10 0 11 5 12 43 13 7 14 19 15 197 16 13 17 3 18 367 19 3449 20 3 21 5 22 2939 23 2341 24 421 25 151 26 151 27 181 28 3251 29 167 30 3079 31 7 32 69661 33 176467 34 107 35 21817 36 11 37 227 38 67477 39 137 40 821 41 11383 42 3 43 312527 44 1699 45 17489 46 59 47 8707 48 179899 49 31 50 20144977 51 17489653 52 8509331 53 2310751 54 7999339 55 147957343 56 416623 57 26261 58 16417 59 5237 60 2206103 61 1487 62 163 63 11 64 138422831 65 79836398683 66 25147 67 64997 68 1606127933 69 38303393 70 2141 71 204793 72 163 73 603162739 74 5437 75 7310857 76 11014169 77 342889 78 12299201 79 460417 80 110369513 81 499 82 1303 83 2375888661889 84 82393 85 155162512481 86 196876311833 87 1783 88 1771361 89 20369 90 15654711994089473 91 17 92 41 93 9214537 94 345517 95 4474523 96 6974351 97 295732854962219 98 18077662403267 99 4273 100 3794537 101 752762291929 102 1413593 103 3328387 104 7901 105 0 106 11 107 18467672087 108 581429 109 415194715051 110 37 111 3 112 12822034021 113 1141191473 114 199324653103 115 5900093 116 3 117 336473848516411 118 193872136017961 119 245299 120 23941361935165459 121 4345481541980230516681 122 41 123 327118624331 124 589286787941 125 6696871 126 504142087 127 37 128 44100718486339 129 6071031541363 130 191277329 131 182989966988207623847 132 337933805197829 133 20358396881 134 6461479610933 135 614362751 136 1967087644333627 137 5068377336518115275701 138 40456897191142252801 139 31174396758367 140 919 141 31401965528846662879037 142 220542173003137373537 143 2 144 1101036769296311 145 907 146 779440674018272891 147 156358607 148 20463801444066774448639199 149 12289 150 264850407037 151 2593439 152 105692474748832496111 153 1335783902626340977 154 99906613038160765857588630613 155 9856372147 156 23394895552081143187921 157 433 158 12146383 159 3935033400951873714345274963514383 160 18889368920233189811 161 4691 162 7694652148279056830927381 163 4307416207 164 124283920246264244572363 165 984885000129782617 166 26053 167 1029145796634589 168 339178457 169 17744849244454260550297610999 170 49113875402112854643553 171 3447597855720799669642120933249 172 15369036063324181976729 173 7593762057055033509523 174 244706083417579723 175 487 176 283 177 206271172661 178 2546266433003 179 171631560866673060328631 180 6264150024923284861 181 8334984544220419 182 69909461130151638588899909 183 146166344598716336423059 184 34443476212545116429 185 35269996658826132143 186 51031154637145671727279 187 49241934601 188 142785029133093864020037579064182600257 189 3169859244962728277 190 41 191 924409666326414733255292891 192 20835586326379374330740785728583 193 47130331668794583937038853 194 98037984212023 195 24964874632273 196 22123568569859275188711891925487 197 646541669296269649820833 198 26782514707468614632539 199 1111421142703114787545763 200 377870370415445183 201 5 202 1582054146669619671444030532799219 203 491026602097 204 2203 205 4464781249466827668473 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 291516587908512396604961552245563825393695373744735403974991634595660118713593515887741781. 206 2175679881723006429932686699723 207 556266200350884203066707 208 18368119879 209 420554658743252837 210 210612369127059048655854994471098839 211 122279259987134861262247727 212 122781835755604803677 213 3142616687719915838205871 214 12787524510284905256103075061 215 2239 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 33258988787005348262883898707793028563367888224767641857304206069655305143219872462844853. Killed 215 2239 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 33258988787005348262883898707793028563367888224767641857304206069655305143219872462844853. 216 6492913174082461480771955664307 217 22237307 218 12752737511639150561 219 2617 220 22037 221 2578043507873 222 267285479746036850821 223 11934193269369457633 224 1849379182506711468558789908279 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 24594302991806755912164445422419934359494816830925286797557012843378182352379071060545269. 225 619495762477923135848365928397962873868247 226 858259543 227 161299361986571 228 18700753 229 57299315381459 230 19558402882571319383618069 231 459603227887489638099035159 232 23956935528950746363290024653 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 39808217963012025085383690946157214140977690049360459143340611225832964033291931122526728643. *** factorint: Warning: MPQS: Gauss elimination will require more than 128MBy of memory. Killed