GP/PARI CALCULATOR Version 2.5.0 (released) amd64 running linux (x86-64/GMP kernel) 64-bit version compiled: Nov 17 2011, gcc-4.6.2 (Ubuntu/Linaro 4.6.2-2ubuntu1) (readline v6.2 enabled, extended help enabled) # PenUltimate prime factor ? pu(m)=z=matsize(m)[1];if(z==1,0,m[z-1,1]) ? \p999 realprecision = 1001 significant digits (999 digits displayed) ? for(i=2,99^99,print(i," ",pu(factorint(floor(exp(i)))))) 2 0 3 2 4 2 5 2 6 13 7 2 8 5 9 37 10 3 11 17 12 19 13 3 14 13 15 773 16 19 17 173 18 0 19 23 20 5 21 317 22 2 23 2129 24 103 25 41 26 37 27 31 28 24043 29 673 30 7 31 22697 32 7 33 10993 34 7 35 919 36 1134481 37 1217 38 16007 39 622481 40 54517 41 4817 42 10303 43 1191199 44 30137 45 4223381 46 345139 47 37 48 5301913 49 11366743 50 0 51 7232011 52 1597 53 15131 54 92993 55 156649093 56 522220631 57 36671 58 3 59 113 60 2 61 67904531 62 20051 63 2196510739 64 16363 65 3 66 119723 67 4537633 68 10067 69 688871 70 8701123 71 10009 72 10183463 73 774041728777 74 55232377 75 799519631 76 38921 77 1330407289 78 4753102589 79 814748969 80 2389183 81 54690380347 82 439 83 243046225921 84 2312338667 85 17793547 86 10026652613 87 359 88 145444525261339 89 24072013724029 90 2707057 91 251520421341524537 92 21121 93 10319567 94 790693 95 15222491 96 58180631 97 10133 98 35171177471 99 369841 100 6759114931 101 472799 102 2059160548351 103 67 104 377831 105 2941859424289 106 6121557077 107 52391 108 6361216291754483 109 551639776672037987 110 2381451525403 111 17674379 112 9739711 113 203982074494741 114 1285033697 115 3020296133 116 673 117 11121154139 118 10057337 119 39509 120 321911 121 509870591 122 87337553 123 30678726170219 124 2 125 133327223153 126 13754284216327 127 0 128 52523734880273 129 11887081 130 859913 131 33037338007 132 64958385518510304721145653 133 77495086589 134 1076137 135 407877721908217934999 136 73601348222771 137 109 138 62540771 139 75133635353526053495413 140 9552497918591051 141 0 142 673576925437923797 143 20969027721233 144 698729 145 7027845988952059 146 82813 147 5130059741793808754402410207 148 2463437298710337655167805791037 149 15731 150 218484443 151 12760280639 152 58322088975131 153 1362830066523861101 154 64325252408341893408359 155 5 156 1187 157 6057199323379 158 700211 159 7 160 6940279 161 884803463 162 71822372189 163 79897787 164 1376696314501905043 165 21680261968809687580148682259 166 3337149429697939 167 8282036736371161 168 147759028051 169 2196048196573988203 170 40522879391 171 37 172 1638988939323477418251822593 173 228240346028467 174 268668329387 175 441493833920295561681581943541 176 25463913562304076209783278840741 177 1687308040957610928557903193287 178 481324424587660756065838955086399 179 794193113942722493 180 22430833721886536408689 181 2861964671825745519917809873 182 33165093435728814664406243 183 137915293 184 51282007487327569121517226223 185 2729 186 50740883 187 2405734734979 188 160433772502274141347088034295057 189 6667522318466641427052598681 190 3499 191 13467346845260169489871588921747 192 804959631854480747 193 19 194 11 195 8191 196 69792399747634188586084297 197 5625313 198 167287867 199 1719773898706791713543 200 6447862742239 201 144890821921 202 613092158695739 203 524361340995865109360779 204 184791035211721 205 22409080521407 206 28661741138967921497 207 325271 208 3501687554910797246587 209 2395541351740221084983297752302931403 210 11619591392884126513 211 1005267272022492585007875085604147 212 1693920968543 213 4954993308945666944338126588181 214 101721568763579 215 88294580369153441 216 2750374056610141433 217 10791984848795890134313591 218 241913240314563498522116516573 219 3929211452232743167 220 969977 221 76271359937277691955234838571 222 10534977276016614459577230824536709 223 91671060034347689502626394233 224 7 225 10027921 226 12493169361965701229 *** factorint: Warning: MPQS: factoring this number will take many hours: N = 15378266519864216037383012682669998565707523990957192666902678289519439006768726034306153288277773. *** factorint: Warning: MPQS: Gauss elimination will require more than 128MBy of memory. 227 ? *** factorint: Warning: MPQS: factoring this number will take several hours: N = 1479624426670681584450023787097871701405803326696942619387758547727658316632231243438857. 228 396445360384411702188060144068589705864629 229 10070877725431077228312462581 230 8847869 231 1680996813124155935983616893 232 87323 233 3788776730390360312114261 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 6793977259576070806515118455063476637767086705993216676469335429566636017303691052831669. 234 14671834317216527272571545068629 235 284152497530917638370483242248615519 236 904861916755970507 237 101600540301778057 238 1319 239 233571872699111616423108451583 240 4088775630164663 241 9338657968009063 *** factorint: Warning: MPQS: factoring this number will take several hours: N = 9428010459870891043979668540057830021340033484833246893366511898983356519258196181812358851. *** factorint: Warning: MPQS: Gauss elimination will require more than 128MBy of memory. Killed