[-*- Mode: emacs-lisp -*-] [-----grammar (gz start (prog)) (gz prog (module)) (gz module (id language-pragma-opt exports imports topdecl-star ::pr("[[language-pragma-opt]]" "{-\n" "Copyright 2011 Ken Takusagawa\n" "This program is free software: you can redistribute it and/or modify\n" "it under the terms of the GNU Affero General Public License as published by\n" "the Free Software Foundation, either version 3 of the License, or\n" "(at your option) any later version.\n\n" "This program is distributed in the hope that it will be useful,\n" "but WITHOUT ANY WARRANTY; without even the implied warranty of\n" "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n" "GNU General Public License for more details.\n\n" "You should have received a copy of the GNU Affero General Public License\n" "along with this program. If not, see .\n" "-}\n\n" "module [[id]] [[exports]] where{\n[[imports]]\n" "[[topdecl-star('',';\n','\n')]]}\n\n"))) (gz language-pragma ( :language-pragma f id-non-star j ::pr ("{-# LANGUAGE [[id-non-star('',',','')]] #-}\n"))) (gz exports (f export-star j ::pr("[[export-star('(',', ',')')]]")) (:export-everything ::pr(""))) (gz export (id) (f :module-export id j ::pr("module [[id]]")) ) (gz imports (f import-star j ::pr("[[import-star('',';\n',';\n')]]"))) (gz import(id ::pr( "import [[id]]")) (f :qualified (original-name ::is id) (new-name ::is id) j ::pr ( "import qualified [[original-name]] as [[new-name]]")) (f :specific id id-non-star j ::pr ("import [[id]][[id-non-star('(',',',')')]]")) (f :hiding import id-non-star j ::pr("[[import]] hiding[[id-non-star('(',',',')')]]") [dunno if this will work for complicated cases] ) ) (gz type-class (f decl-mark (class-name ::is id) :type-class context-opt id-non-plus type-class-decl-star j ::pr("class [[context-opt]][[class-name]] [[id-non-plus('',' ','')]] where{\n" "[[type-class-decl-star('',';\n','\n')]]}"))) (gz topdecl (decl) (data)(type-synonym)(newtype)(instance)(type-class)) (gz type-class-decl (type-signature)(decl)) (gz type-signature (f decl-mark name :tysig ret-type-and-params j ::pr("[[name]] :: [[ret-type-and-params]]"))) (gz instance (f :instance (type ::is id) (name ::is simpletype) decls j ::pr ("instance [[type]] ([[name]]) where [[decls]]"))) [(gz instance (f :instance context-opt (type ::is id) simpletype-plus :x decls j ::pr ("instance [[context-opt]][[type]] [[simpletype-plus('(',')(',')')]] where [[decls]]")))] (gz newtype (f decl-mark (name ::is id) :newtype type-vars-opt constr-or-wrap deriving-opt j ::pr("newtype [[name]] [[type-vars-opt]] = [[constr-or-wrap{my_name}]][[deriving-opt]]"))) (gz constr-or-wrap ::gets "tr-id*{name}" (constr)(wrap-constr ::pr("[[wrap-constr{name}]]"))) (gz wrap-constr ::gets "tr-id*{name}" ( :wrap id ::pr( (::c "name->print();") " {un_" (::c "name->print();") " :: [[id]]}"))) (gz deriving (:deriving f id-non-plus j ::pr(" deriving [[id-non-plus('(',', ',')')]]"))) (gz id-non (id)) (gz type-synonym (f decl-mark id :type-synonym type-vars-opt type j ::pr("type [[id]] [[type-vars-opt]] = [[type]]"))) (gz data (f decl-mark id :data type-vars-opt constrs deriving-opt j ::pr("data [[id]] [[type-vars-opt]] = [[constrs]][[deriving-opt]]"))) (gz simpletype (f id-non-plus j ::pr ("[[id-non-plus('',' ','')]]"))) (gz type-vars (:args f id-non-star j ::pr ("[[id-non-star('',' ','')]]"))) (gz constrs(constr-star ::pr("[[constr-star('',' | ','')]]")) ) (gz field-type-and-param (f param type j ::pr("[[param]] :: [[type]]"))) (gz type-and-param ( f param type j ::pr("[[type]]"))) (gz constr(positional-constructor) (field-label-constructor) ) (gz field-label-constructor(f type-ctor :field field-type-and-param-star j ::pr("[[type-ctor]][[field-type-and-param-star('{',', ','}')]]"))) (gz decls ( decl-star ::pr("{[[decl-star('\n',';\n','\n')]]}\n"))) (gz context (:context f a-context-plus j ::pr ("[[a-context-plus('(',', ',')')]] => "))) (gz a-context [(f (type ::is id) id-non-plus j ::pr("[[type]] [[id-non-plus('',' ','')]]"))] (f (class ::is id) type-plus j ::pr("[[class]] [[type-plus('(',')(',')')]]")) ) (gz forall (:forall f id-non-plus j ::pr("forall [[id-non-plus('',' ','')]] . "))) (gz ret-type-and-params (type f type-and-param-star j forall-opt context-opt ::pr("[[forall-opt]][[context-opt]][[type-and-param-star('',' \x2d> ','')]]" (::c "if(my_type_and_param_star->v.size()>0)out(' \x2d> ');") "[[type]]"))) (gz decl (f decl-mark name :fun haddock-opt ret-type-and-params expr j ::pr("[[haddock-opt]]" "[[name]] :: [[ret-type-and-params]];\n" "[[name]]" (::c "for(many_trees::const_iterator pos = my_ret_type_and_params->my_type_and_param_star->v.begin();pos!= my_ret_type_and_params->my_type_and_param_star->v.end();++pos){" "const tr_type_and_param* t=dynamic_cast(*pos);" "assert(t);" "out(' ');" "t->my_param->print();" "}") " = [[expr]]")) (f decl-mark name :fun :no-sig ret-type-and-params expr j ::pr("[[name]]" (::c "for(many_trees::const_iterator pos = my_ret_type_and_params->my_type_and_param_star->v.begin();pos!= my_ret_type_and_params->my_type_and_param_star->v.end();++pos){" "const tr_type_and_param* t=dynamic_cast(*pos);" "assert(t);" "out(' ');" "t->my_param->print();" "}") " = [[expr]]")) (f decl-mark name :simple expr j ::pr("[[name]] = [[expr]]")) ) (gz name (id)) (gz positional-constructor ["this one is sketchy"] (type-ctor ::pr("[[type-ctor]]")) (f type-ctor typepls-opt j ::pr("[[type-ctor]][[typepls-opt]]")) (f :tuple type-plus j ::pr("[[type-plus('(',', ',')')]]")) ) (gz pattern (id) (f pattern-ctor pattern-star j ::pr ("([[pattern-ctor]] [[pattern-star('',' ','')]])")) (f pattern-ctor :fpat f fpat-star j j ::pr ("[[pattern-ctor]][[fpat-star('{',', ','}')]]")) (f :ptuple pattern-plus j [pattern-plus cuz :nil exists for empty lists] ::pr("[[pattern-plus('(',', ',')')]]")) (f :plist pattern-plus j [pattern-plus cuz :nil exists for empty lists] ::pr("[[pattern-plus('\x5b',', ','\x5d')]]")) (f :pchar astring j ::pr("(\x27[[astring]]\x27)")) (f :pstring astring j ::pr("\x22[[astring]]\x22")) (f :as id pattern j ::pr("[[id]]@[[pattern]]")) ) (gz pattern-ctor (id) (:cons ::pr ("(:)")) (:nil ::pr ("[]")) (:paren id ::pr("([[id]])")) ["workaround for Qualified parenthesized constructors"] ) (gz fpat (f (variable ::is id) pattern j ::pr("[[variable]] = [[pattern]]"))) (gz type (f :fn ret-type-and-params j ::pr ("([[ret-type-and-params]])")) (:inforall f id-non-plus j type ::pr("(forall [[id-non-plus('',' ','')]] . [[type]])")) (:unit ::pr("()")) (positional-constructor)) (gz typepls (paren-type-plus)) (gz paren-type (type ::pr( "([[type]])")) (f :strict type j ::pr("!([[type]])")) (f :generic id j ::pr (" [[id]] "))) (gz type-ctor(id)(:list ::pr ("[]"))(:nondet ::pr ("[]"))) (gz param (pattern)) (gz qastring (astring ::pr("\x22[[astring]]\x22"))) (gz expr (id) (:mcons ::pr ("(:)")) [(:nil ::pr ("[]"))] (f :chain astring expr-plus j ::pr ([("[[expr-plus('(',' op ',')')]]")] "(" (::c "for(many_trees::const_iterator pos=my_expr_plus->v.begin();pos!=my_expr_plus->v.end();++pos){") (::c "if(pos!=my_expr_plus->v.begin()){") "[[astring]]" (::c "}(*pos)->print();}") ")" )) (f :join expr-plus j ::pr("[[expr-plus('(',' >>= ',')')]]")) (f :cc expr-star j ::pr ("[[expr-star('(',' ++ ',')')]]")) (f :rpipe expr-plus j ::pr[("[[expr-star('(',' $ ',')')]]")] (["http;//gcc.gnu.org/bugzilla/show_bug.cgi?id=11729"] (::c "for(many_trees::reverse_iterator pos = my_expr_plus->v.rbegin();" "pos!=my_expr_plus->v.rend();++pos){") "(" (::c "(*pos)->print();" "}") (::c "for(many_trees::const_iterator pos = my_expr_plus->v.begin();" "pos!=my_expr_plus->v.end();++pos){") ")" (::c "}") ) ) (f :rcompose expr-plus j ::pr ("(" (::c "for(many_trees::reverse_iterator pos = my_expr_plus->v.rbegin();" "pos!=my_expr_plus->v.rend();++pos){") (::c "if(pos!=my_expr_plus->v.rbegin())") " . " (::c "(*pos)->print();" "}") ")" ) ) (qastring) (f :lit astring j ::pr("[[astring]]")) (f :ty type expr j ::pr("([[expr]] :: [[type]])")) (f (fun-name ::is expr) expr-star j ::pr ("([[fun-name]][[expr-star(' ',' ','')]])")) (f :do stmt-star j ::pr("(do{\n[[stmt-star(' ','\n ','\n')]]})")) (f :case expr alt-star j ::pr("(case [[expr]] of {\n[[alt-star(' ',';\n ','\n')]]})")) (f :case expr alt-star :else (underbar ::is expr) j ["the else is there so the grammar does not have a reduce/reduce conflict"] ::pr("(case [[expr]] of {\n[[alt-star(' ',';\n ',';\n')]]" " _ -> [[underbar]]\n" "})")) (f :lcase alt-star j ::pr("(\x5clambda_case_var ->" "case lambda_case_var of {\n" "[[alt-star(' ',';\n ','\n')]]})")) (f :lcase alt-star :else (underbar ::is expr) j ::pr("(\x5clambda_case_var ->" "case lambda_case_var of {\n" "[[alt-star(' ',';\n ',';\n')]]" " _ -> [[underbar]]\n" "})")) (f :let decl-star expr j ::pr("(let {[[decl-star('\n',';\n','\n')]]}\n in [[expr]])")) (f :rlet expr decl-star j ::pr("(let {[[decl-star('\n',';\n','\n')]]}\n in [[expr]])")) (f :cfd expr assignments-star j ::pr("([[expr]][[assignments-star('{',', ','}')]])")) (f :mlist expr-star j ::pr("[[expr-star('\x5b',', ','\x5d')]]")) (f :cons-list expr-star j ::pr("[[expr-star('(',':',')')]]")) (f :mtuple expr-star j ::pr("[[expr-star('(',', ',')')]]")) (:nothing ::pr ("()")) (f :lambda name ret-type-and-params expr j ::pr("(let {[[name]] :: [[ret-type-and-params]];\n" "[[name]]" (::c "for(many_trees::const_iterator pos = my_ret_type_and_params->my_type_and_param_star->v.begin();pos!= my_ret_type_and_params->my_type_and_param_star->v.end();++pos){" "const tr_type_and_param* t=dynamic_cast(*pos);" "assert(t);" "out(' ');" "t->my_param->print();" "}") " = [[expr]]} in [[name]])")) (f :lambda-simple id-non expr j [recommended only for reordering arguments to functions and other simple expressions] [only one variable to keep it simple] ::pr ("(\x5c[[id-non]] -> [[expr]])")) (f :field-edit expr field-edit-plus j [plus is required by Haskell] ::pr("([[expr]][[field-edit-plus('{',',','}')]])")) ) (gz field-edit (f id expr j ::pr ("[[id]] = [[expr]]"))) (gz assignments (f id expr j ::pr("[[id]] = [[expr]]"))) (gz stmt (expr ::pr("[[expr]];")) (f ":=" pattern type expr j ::pr("[[pattern]] :: [[type]] <- [[expr]];")) (f :let-many decl-star j ::pr ("let {[[decl-star('\n',';\n','\n')]]};")) (f :dlet id type expr j ::pr ("let {" " [[id]] :: [[type]];" " [[id]] = [[expr]];" "};")) ) (gz alt (f pattern expr-or-gpat j ::pr("[[pattern]][[expr-or-gpat]]"))) (gz expr-or-gpat (expr ::pr ("-> [[expr]]")) (where-opt :gpats pred-expr-star [silly lookahead limitation] ::pr ("\n[[pred-expr-star('','','')]] [[where-opt]]" ))) (gz pred-expr ( f (pred ::is expr) (do ::is expr) j ::pr ("| [[pred]]\n -> [[do]]\n"))) (gz where (:where decls ::pr ("where [[decls]]"))) (gz decl-mark (":")) (gz haddock ( :doc f docline-star j ::pr ("[[docline-star('\n\x7b\x2d |','\n',' \x2d\x7d\n')]]"))) (gz docline (astring)) ] Main :language-pragma ( ScopedTypeVariables [GeneralizedNewtypeDeriving] [RankNTypes] ) (main) ( Data.List Data.Maybe Control.Monad ) (: main :fun (IO :unit) () (:do (putStrLn "=============test1") test1 (putStrLn "=============test2") test )) (: Btape :type-synonym (Listzipper Bool)) (: btape-initial :fun Btape () (infinite-repeat False)) (: siblings-blank :fun (Siblings a) ((x a)) (:mtuple (repeat x)(repeat x))) (: infinite-repeat :fun (Listzipper a)((x a)) (Listzipper x (siblings-blank x))) (: tape-left :fun (Listzipper a) (((Listzipper middle (:ptuple (:cons h t)right))(Listzipper a))) (Listzipper h (:mtuple t (:mcons middle right)))) (: tape-right :fun (Listzipper a) (((Listzipper middle (:ptuple left (:cons h t)))(Listzipper a))) (Listzipper h (:mtuple (:mcons middle left)t))) (: Tt :type-synonym (Listzipper Btape)) (: tt-initial :fun Tt ()(infinite-repeat btape-initial)) (: left :fun Zipper (((Zipper n parents)Zipper)) (Zipper (tape-left n) parents)) (: right :fun Zipper (((Zipper n parents)Zipper)) (Zipper (tape-right n) parents)) (: up :fun Zipper (((Zipper n (:cons parent grandparents)) Zipper)) (Zipper (Listzipper (Internal n) parent) grandparents)) (: down :fun (m Zipper) (((Zipper(Listzipper n sibs)parents)Zipper)) :context((Monad m)) (:case n ((Internal t)(return(Zipper t(:mcons sibs parents)))) :else (fail "cannot descend leaf") )) (: jdown :fun Zipper ((z Zipper)) (:rpipe z down fromJust)) (: get-node :fun Node (((Zipper(Listzipper n _)_)Zipper))n) (: read-tape :fun (m Bool) ((z Zipper)) :context((Monad m)) (:case (get-node z) ((Leaf x)(return x)) :else(fail "cannot read internal node"))) (: is-leaf :fun Bool ((n Node)) (:case n((Leaf _)True) :else False)) (: write-node-bool :fun (m Node)((n Node)(x Bool)):context((Monad m)) (:case n((Leaf _)(return(Leaf x))) :else (fail "error: tried to write internal node"))) (: write-tape-bool :fun (m Zipper) ((x Bool)((Zipper(Listzipper n sibs)parents)Zipper)) :context((Monad m)) (:do (:= new Node (write-node-bool n x)) (return (Zipper(Listzipper new sibs)parents)) )) (: set-tape :fun Zipper ((z Zipper)) (:rpipe z (write-tape-bool True) fromJust)) [never have to worry about empty lists for infinite lists] (: Listzipper :data :args(a) (Listzipper a (Siblings a))) [not enforcing that all nodes at the same level are the same kind] (: Node :data (Leaf Bool)(Internal Tape)) (: Tape :type-synonym (Listzipper Node)) (: Zipper :data (Zipper Tape (:list (Siblings Node)))) (: Siblings :type-synonym :args(a) (:tuple(:list a)(:list a))) (: empty-regular-tape :fun Tape ()(infinite-repeat (Leaf False))) (: first-siblings :fun (Siblings Node)() (siblings-blank (Internal empty-regular-tape))) (: higher-tape :fun Tape ((t Tape)) (infinite-repeat (Internal t))) (: get-sibs :fun (Siblings a)(((Listzipper _ sibs)(Listzipper a)))sibs) (: initial-sibs :fun (:list (Siblings Node))() (:rpipe empty-regular-tape (iterate higher-tape) tail (map get-sibs))) (: initial-zipper :fun :doc ("Infinite tapes of Falses are all on the same bottom level." "Every level up, each cell is itself an infinite tape.") Zipper () (Zipper empty-regular-tape initial-sibs)) (: test1 :fun (IO :unit)() (:do (:dlet z Zipper initial-zipper) (:let-many (: p :fun (IO :unit)((z Zipper)) [(:rpipe z read-tape print)] (print (:ty (Maybe Bool) (read-tape z))) )) (:rpipe z p) (:rpipe z left p) (:rpipe z up p) (:rpipe z up jdown p) (:rpipe z left up jdown p) (:rpipe z up left jdown p) (:rpipe z set-tape up up jdown jdown p) (:rpipe z set-tape left right p) (:rpipe z set-tape left up left up left right jdown right jdown right p) )) (: not-flat-sibs :fun (Siblings Node)() (siblings-blank (Leaf False))) (: not-flat-initial-zipper :fun :doc("The current tape is at the base on an infinite tree." "Going up yields a tape with Falses on either side, and an infinite tape under the current cell") Zipper () (:rpipe False Leaf siblings-blank repeat (Zipper empty-regular-tape)) ) (: write-tape :fun :doc ("Replace the current cell with an empty subtape") Zipper (((Zipper(Listzipper _ sibs)parents)Zipper)) (Zipper(Listzipper (Internal empty-regular-tape) sibs)parents)) (: test :fun (IO :unit)() (:do (:dlet z Zipper not-flat-initial-zipper) (:let-many (: p :fun (IO :unit)((z Zipper)) (print (:ty (Maybe Bool)(read-tape z))))) (:rpipe z p) (:rpipe z write-tape p) (:rpipe z left set-tape right write-tape jdown p) (:rpipe z left set-tape right write-tape jdown up left p) (:rpipe z left set-tape up left up right left jdown right jdown p) ))